### Publication（peer-reviewed）

- K. Fujie, T. Senba, Global boundedness of solutions to a parabolic-parabolic chemotaxis system with local sensing in higher dimensions, Nonlinearity, 35 (2022), 3777--3811.
- K. Fujie, T. Senba, Global existence and infinite time blow-up of classical solutions to chemotaxis systems of local sensing in higher dimensions, Nonlinear Anal. 222 (2022), Paper No. 112987.
- K. Fujie, J. Jiang, A note on construction of nonnegative initial data inducing unbounded solutions to some two-dimensional Keller--Segel systems, Mathematics in Engineering, 4 (2022), 1--12.
- K. Fujie, Energy-like functional in a quasilinear parabolic chemotaxis system, Geometric properties for parabolic and elliptic PDE's, Springer INdAM Ser., 47, Springer, Cham, 2021, 67--77.
- K. Fujie, J. Jiang, Comparison Methods for a Keller--Segel-type Model of Pattern Formations with Density-suppressed Motilities, Calc. Var. Partial Differential Equations, 60 (2021), 92.
- K. Fujie, J. Jiang, Global existence for a kinetic model of pattern formation with density-suppressed motilities, J. Differential Equations, 269 (2020), 5338--5378.
- K. Fujie, Global asymptotic stability in a chemotaxis-growth model for tumor invasion, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 203--209.
- T. Cieślak, K. Fujie, Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity, Discrete Contin. Dyn. Syst. Ser. S, 13 (2020), 165--176.
- T. Cieślak, K. Fujie, Some remarks on well-posedness of the higher-dimensional chemorepulsion system, Bull. Pol. Acad. Sci. Math., 67 (2019), 165--178.
- B. Bieganowski, T. Cieślak, K. Fujie, T. Senba, Boundedness of solutions to the critical fully parabolic quasilinear one-dimensional Keller-Segel system, Math. Nachr., 292 (2019), 724--732.
- K. Fujie, T. Suzuki, Global existence and boundedness in a fully parabolic 2D attraction-repulsion system: chemotaxis-dominant case, Adv. Math. Sci. Appl., 28 (2019), 1--9.
- K. Fujie, T. Senba, Blowup of solutions to a two-chemical substances chemotaxis system in the critical dimension, J. Differential Equations, 266 (2019), 942--976.
- K. Fujie, T. Senba, A sufficient condition of sensitivity functions for boundedness of solutions to a parabolic-parabolic chemotaxis system, Nonlinearity, 31 (2018), 1639--1672.
- T. Cieślak, K. Fujie, No critical nonlinear diffusion in 1D quasilinear fully parabolic chemotaxis system, Proc. Amer. Math. Soc., 146 (2018), 2529--2540.
- K. Fujie, S. Ishida, A. Ito, T. Yokota, Large time behavior in a chemotaxis model with nonlinear general diffusion for tumor invasion, Funkcialaj Ekvacioj, 61 (2018), 37--80.
- K. Fujie, T. Senba, Application of the Adams type inequality to a two-chemical substances chemotaxis system, J. Differential Equations, 263 (2017), 88--148.
- K. Fujie, T. Senba, Global existence and boundedness of radial solutions to a two dimensional fully parabolic chemotaxis system with general sensitivity, Nonlinearity, 29 (2016), 2417--2450.
- K. Fujie, A. Ito, M. Winkler, T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151--169.
- K. Fujie, T. Senba, Global existence and boundedness in a parabolic-elliptic Keller-Segel system with general sensitivity, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 81--102.
- K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity, J. Math. Anal. Appl., 424 (2015), 675--684.
- K. Fujie, M. Winkler, T. Yokota, Boundedness of solutions to parabolic-elliptic Keller-Segel systems with signal-dependent sensitivity, Math. Methods Appl. Sci., 38 (2015), 1212--1224.
- K. Fujie, A. Ito, T. Yokota, Existence and uniqueness of local classical solutions to modified tumor invasion models of Chaplain-Anderson type, Adv. Math. Sci. Appl., 24 (2014), 67--84.
- K. Fujie, T. Yokota, Boundedness of solutions to parabolic-elliptic chemotaxis-growth systems with signal-dependent sensitivity, Math. Bohem., 139 (2014), 639--647.
- K. Fujie, T. Yokota, Boundedness in a fully parabolic chemotaxis system with strongly singular sensitivity, Appl. Math. Lett., 38 (2014), 140--143.
- K. Fujie, M. Winkler, T. Yokota, Blow-up prevention by logistic sources in a parabolic-elliptic Keller-Segel system with singular sensitivity, Nonlinear Anal., 109 (2014), 56--71.

### Selected talks at International conferences

- K. Fujie, Self-similar solutions to a chemotaxis system with local sensing, International Workshop Critical phenomena in Nonlinear Partial Differential Equations, Harmonic analysis, and Functional inequalities, Sendai International Center, November 2023.
- K. Fujie, New energy-like functional in fully parabolic systems of chemotaxis, VI° Italian-Japanese Workshop GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE's, Palazzone, May 2019.
- K. Fujie, Global existence and boundedness in a fully parabolic two-chemical substances chemotaxis system, 8th Euro-Japanese Workshop on Blow-up, Tohoku University, July 2018.
- K. Fujie, A higher dimensional generalization of the Keller-Segel system, "Mathematical aspects of chemotaxis, cross-diffusion effects and concentration phenomena", Banach Center, February 2018.
- K. Fujie, A generalization of the Keller--Segel system to higher dimensions from a structural viewpoint, Equadiff 2017 (Invited minisymposia), Slovak University of Technology, July 2017.
- K. Fujie, Global existence and boundedness in a fully parabolic two-chemical substances chemotaxis system, 7th Euro-Japanese Workshop on Blow-up, The Mathematical Research and Conference Center, September 2016.