セミナー情報
|
|
 |
2014年 1月13日(月)〜1月17日(金)
|
|
1月13日(月) |
■整数論セミナー 13:30--15:00【会場:合同A棟801(2)】
休み(成人の日)
|
1月14日(火) |
■幾何セミナー 15:00--17:05【会場:数学棟305】
15:00-16:00
講演者:小松 尭 氏(東北大学大学院理学研究科D1)
題目:二部グラフ上の量子ウオークのスペクトルについて
16:05-17:05
講演者:Abdullah Kizilay 氏(東北大学大学院理学研究科D3)
題目:PDE-based Image Processing and Viscosity Solution
|
1月16日(木) |
■代数セミナー 13:30--【会場:合同A棟209】
(1)13:30--15:00
講演者: 甲斐 亘 氏 (東京大学大学院数理科学研究科)
題目:A $p$-adic exponential map for the Picard group and its application to the Albanese map
【概要】
We define an exponential map from the $H^1$ of the structure sheaf
of a proper flat scheme over a complete DVR of characteristic zero
to its Picard group. To be precise,
it is an isomorphism between subgroups of both members. It is an analogue of the classical
one defined in complex geometry. This exponential map is then applied to prove a surjectivity
property concerning the Albanese map of a smooth projective variety over a complete DVF of characteristic zero.
(2)15:15--16:45
講演者: Shane Kelly 氏 (東京工業大学大学院理工学研究科)
題目:Unramified sheaves in the cdh and ldh topologies
【概要】
Many sheaves of interest in algebraic geometry are "unramified"
(in Morel's sense). Examples include the sheaf of de Rham differentials,
the Zariski sheafification of K-theory, and the homotopy invariant Nisnevich
sheaves with transfers that are central to Voevodsky's category of motives.
In order to apply the theorem of Gabber on alterations to remove the resolution
of singularities hypothesis from the work of Friedlander-Suslin-Voevodsky,
one of the main theorems is a comparison of the cdh and ldh sheafifications
of certain unramified sheaves, and showing that they have a structure of
transfers. In this talk we will state, and give a sketch of the elements
of the proof of this theorem.
■応用数学セミナー 16:00--18:00【会場:合同A棟303】
修士論文発表2
15:00-15:50
講演者:佐藤 龍一 氏(東北大学大学院理学研究科)
題目:非線形境界条件付き熱方程式の解の存在
16:00-16:50
講演者:和久井 洋司 氏(東北大学大学院理学研究科)
題目:退化移流拡散方程式の弱解の大域的漸近挙動
17:10-18:00
講演者:木村 悠紀 氏(東北大学大学院理学研究科)
題目:消散項を持つ弾性体方程式の解の Lp-Lq 型評価
|
1月17日(金)
|
■ロジックセミナー 16:00-- 【会場:合同A棟1201】
講演者: 鈴木 登志雄 氏 (首都大学東京 理工学研究科)
題目:Equilibriums of Independent Distributions on an AND-OR Tree under Constraints
【概要】
We study a probability distribution d on the truth assignments to a uniform binary AND-OR tree. Liu and Tanaka [2007, Inform. Process. Lett.] show the following: If d achieves the equlibrium among independent distributions (ID) then d is an identical independent distribution (IID). We show a stronger form of the above result: Under a condtraint on the probability at the root, the resut still holds. The proof is elementary, but employs a clever trick of induction.
|
|