セミナー情報
|
|
 |
2013年 11月4日(月)11月8日(金)
|
|
11月4日(月) |
■整数論セミナー 13:30--15:00【会場:合同A棟801(2)】
休み(振替休日)
|
11月5日(火) |
■幾何セミナー 15:00--16:30【会場:数学棟305】
講演者:酒匂 宏樹 氏(東海大学)
題目:離散距離空間の従順性とネットワークの連結性について(Amenability for discrete metric spaces and connectivity for networks)
|
11月7日(木) |
■応用数学セミナー 16:00--17:30【会場:合同A棟303】
講演者: 宮本 安人 氏 (東京大学 大学院数理科学研究科)
題目:ソボレフ優臨界の非線形項を持つノイマン問題の正値球対称解の構造について
【概要】
球領域におけるソボレフ優臨界の非線形項を持つNeumann問題 ε^2Δu-u+u^p=0 の正値球対称解の構造を考える. N(>=3)を空間次元とするとき,pがソボレフ臨界指数(N+2)/(N-2)より小さい(劣臨界)か,等しい(臨界)か,
大きい(優臨界)かに応じて,解の構造が大きく変わることが知られている. 講演ではpが大きい場合(優臨界)の正値球対称解の構造(分岐図式)を考える.劣臨界や臨界の場合の解構造と
比較することによって,ソボレフの埋め込みが成り立たない時に特有の現象を探求する.
|
11月8日(金)
|
■ロジックセミナー 16:00-- 【会場:合同棟1201】
講演者:横山 啓太 氏(北陸先端科学技術大学院大学 情報科学研究科)
題目:A strengthened version of Ramsey's theorem and its finite iteration
【概要】
It is well-known that several finite variations of Ramsey's theorem
provide independent statements from PA. The first such example was
found by Paris by using an iteration of finite Ramsey's theorem plus
relatively largeness condition. Later, that statement is simplified by
Harrington, and nowadays, it is known as the famous Paris-Harrington
principle. However, the original "iteration version" has the advantage
that it can approximate the infinite version of Ramsey's theorem. This
fact also shows the limitation of the power of infinite Ramsey's
theorem, in other words, infinite Ramsey's theorem as itself cannot
prove the statement "for any m, m-th iteration of finite Ramsey's
theorem holds".
In this talk, we try to fill this gap. A natural question arising from
the above is "what is a version of infinite Ramsey's theorem which
implies iterated finite Ramsey's theorem?" Of course a naive answer to
this question is a (finite) iteration of infinite Ramsey's theorem.
However, this does not succeed, since the iterated version of infinite
Ramsey's theorem is just equivalent to the original one. Thus, we will
introduce a slightly strengthened version of infinite Ramsey's
theorem, which is still equivalent to the original one over WKL0, and
then consider the iterated version of it.
|
|