Contact｜Sitemap｜HOME｜Japanese
HOME > Table of Contents and Abstracts > Vol. 65, No. 2
Tohoku Mathematical Journal
2013
June
SECOND SERIES VOL. 65, NO. 2
Tohoku Math. J.
65 (2013), 281295

Title
VISIBLE ACTIONS ON FLAG VARIETIES OF TYPE C AND A GENERALIZATION OF THE CARTAN DECOMPOSITION
Author
Yuichiro Tanaka
(Received March 12, 2012, revised June 18, 2012) 
Abstract.
We give a generalization of the Cartan decomposition for connected compact Lie groups of type C motivated by the work on visible actions of T. Kobayashi [J. Math. Soc. Japan, 2007] for type A groups. Let $G$ be a compact simple Lie group of type C, $K$ a ChevalleyWeyl involutionfixed point subgroup and $L,H$ Levi subgroups. We firstly show that $G=LKH$ holds if and only if either Case I: $(G,H)$ and $(G,L)$ are both symmetric pairs or Case II: $L$ is a Levi subgroup of maximal dimension and $H$ is an arbitrary maximal Levi subgroup up to switch of $L,H$. This classification gives a visible action of $L$ on the generalized flag variety $G/H$, as well as that of the $H$action on $G/L$ and of the $G$action on the direct product of $G/L$ and $G/H$. Secondly, we find a generalized Cartan decomposition $G=LBH$ explicitly, where $B$ is a subset of $K$. An application to multiplicityfree theorems of representations is also discussed.
Mathematics Subject Classification.
Primary 22E46; Secondary 32A37, 53C30.
Key words and phrases.
Cartan decomposition, multiplicityfree representation, semisimple Lie group, flag variety, visible action, herringbone stitch.


To the top of this page
Back to the Contents