線形代数学概説の正誤表

1. p.3 10 行目 $M(1, n) \rightarrow M(n, 1)$

2. p.5 1.10 0 行列、索引も「零行列」と変更
 p.9 1.7, 1.12 0 ベクトル
 p.16 1.11 0 行列
 p.33 下から 2 行目 0 行列
 p.77 定義 4.1.1(1) 0 ベクトル
 p.79 1.2 0 ベクトル
 p.82 1.5, 1.7 0 ベクトル
 p.129 1.5 0 ベクトル, 0 行列
 p.139 1.2 0 ベクトル
 索引に零ベクトルを追加。

3. p.14 reduced row echelon form → reduced row echelon form 索引の一番最初も
echelon から echelon に変更

4. p.48 下から 4 行目 $v_1 = [a_{11}, a_{12}, 0], \quad v_2 = [a_{21}, a_{22}, 0] \rightarrow v_1 = [a_{11}, a_{21}, 0], \quad v_2 = [a_{12}, a_{22}, 0]$

5. p.48 下から 2 行目 $[a_{11}, a_{12}], [a_{21}, a_{22}] \rightarrow [a_{11}, a_{21}], [a_{12}, a_{22}]$

6. p.50 1.7 $\det(v_1, v_2, v_3) \rightarrow \det(v_1, v_2, v_3)$

7. p.56 「$\sigma, \tau, \nu \in S_n$ なら，$(\sigma \tau)\nu = \sigma(\tau \nu)$ であることは写像の合成に対して同様の性質が成り立っているので，その順序を逆にした置換の積に対しても成り立つ。したがって，ν というものを挿入予定

8. p.59 命題 3.2.10 の証明の 3 行目 $(\sigma \tau)(n) \rightarrow (\sigma \tau)(n)$

9. p.67 1.8 2 + 1 = 3 回 → (3 - 2) + (3 - 1) = 2(3 - 2 - 1) + (2 + 1) = 偶数 + 2 + 1 回

10. p.69 1.2 $(-1)^{i+j}$ は $(-1)^{j+k}$ であるべき。

11. p.73 3.3 (5) 行の最初の \det が抜けている。

12. p.77 例 4.1.3 $M(1, n)_C, M(m, 1)_C$ を $M(1, n)_K, M(m, 1)_K$ とし，次のページの
 $M(m, 1)_C, \mathbb{C}^m$ を $M(m, 1)_K, \mathbb{C}^m$ とす る。p.78 1.5 「などが成り立つ」の後「K^n はベクトル空間の一番基本的な例である。」を挿入。
13. p.99 超平面を $P(*)$ と表すのは、平行体の記号と混同するので、
1.11 $P = P(a_1, \ldots, a_n, b) \rightarrow L = L(a_1, \ldots, a_n, b)$
1.13 $P, H \rightarrow L, H$
1.16 $P(a_1, \ldots, a_n, b) \rightarrow L(a_1, \ldots, a_n, b)$
14. p.141 「x を λ に関する固有ベクトルという」 → 「x を A の固有値 λ に関する固有ベクトルという」
15. p.144 注 6.3.5 の上の証明に最後を「従う (これは K^n が固有空間の『直和』(定義 9.5.2) になるということである)。」と変更。
16. p.153 $\sum_{n=0}^{\infty} \frac{1}{n!} A^n \rightarrow \sum_{m=0}^{\infty} \frac{1}{m!} A^m$
17. p.196 「ミンコフスキー (Minkowski) 定数」を「エルミート定数」に変更。索引もミンコフスキー (Minkowski) 定数から
エルミート定数 Hermite’s constant 196
に変更
18. p.207 のケーリーハミルトンの定理を索引に入れる。

第 2 刷に関する正誤表

1. 4.9 節 加算個 → 可算個