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Setting

Let

F be a p-adic field;

G ∈ {GLn(F ),Sp2n(F ), SO2n+1(F )} be split;

P = MN be a standard parabolic subgroup of G;

IndGP (πM ) be the (normalized) parabolically induction of
πM ∈ Rep(G)

JacP (π) be the Jacquet module of π ∈ Rep(G);

π 7→ [π] be the semisimplification.
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Zelevinsky–Aubert duality

For π ∈ Rep(G), define

DG(π) :=
∑

P=MN

(−1)dimAM [IndGP (JacP (π))],

where P runs over all standard parabolic subgroups of G.

Theorem (Aubert 1996)

For any irreducible π, there exists ϵ ∈ {±1} such that

π̂ := ϵ ·DG(π)

is also irreducible. Moreover, ˆ̂π ∼= π.

Call π̂ the Zelevinsky–Aubert dual of π.

Hiraku Atobe (Hokkaido) The Zelevinsky–Aubert duality January 28 2021 5 / 32



History (partial)

Alvis (’79, ’82) and Curtis (’80) defined/studied DG for reductive
group G over a finite field Fq.

Deligne–Lusztig (’83) showed that DG(R
G
T (θ)) = ±RG

T (θ), where
RG

T (θ) is the Deligne–Lusztig induction of θ ∈ Irr(T (Fq)). As an
application, one can determine dimRG

T (θ).

Zelevinsky (’80) defined a similar involution for G = GLn(F )
generated by Steinberg ↔ trivial. He predicted that it preserves the
irreducibility.

After a work of S.-I. Kato (’93), Aubert (’96) defined DG for general
reductive group G over F , and showed that it preserves the
irreducibility.
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Motivation and Main Result

Conjecture

If π is irreducible and unitary, then so is π̂.

In particular, this duality would produce many unitary representations.

Mœglin–Waldspurger (’86) gave an algorithm to compute π̂ for
G = GLn(F ). Together with Tadić’s result on the unitary dual, it
shows the conjecture in this case.

Main Result (A.-Ḿınguez)

We give an explicit algorithm for π̂ for G = Sp2n(F ), SO2n+1(F ).
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Known results for G = Sp2n(F ), SO2n+1(F )

It is trivial that if π is supercuspidal, then π̂ = π (Aubert (’96)).

Hanzer (’09) showed that if π is a strongly positive discrete series,
then π̂ is unitary.

Arthur (’13) established an endoscopic classification. As a
consequence, he proved that if π is tempered, then π̂ is unitary.

Matić (’17, ’19) gave an explicit formula for π̂ when π is discrete
series which is strongly positive or is in the first induction step.

C. Jantzen (’18) gave an algorithm for π̂ of good parity when π is in
the “half-integral case”.
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Notation

We explain Jantzen’s algorithm for τ̂ for τ ∈ Irr(GLn(F )).

Let ρ be a supercuspidal representation of GLd(F ).

A segment is a set

[x, y]ρ = {ρ| · |x, ρ| · |x−1, . . . , ρ| · |y},

where x, y ∈ R such that x− y ∈ Z≥0.

Denote by ∆ρ[x, y] (resp. Zρ[y, x]) the unique irreducible
subrepresentation (resp. quotient) of induced representation

ρ| · |x × · · · × ρ| · |y := Ind
GLd(x−y+1)(F )

P (ρ| · |x ⊠ · · ·⊠ ρ| · |y).
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Jacquet modules of ∆ρ[x, y] and Zρ[y, x]

∆ρ[x, y] is an essentially discrete series representation.
(∆1GL1(F )

[n−1
2 ,−n−1

2 ] is called a Steinberg representation.)

If ρ = 1GL1(F ), then Zρ[y, x] is a character of GLx−y+1(F ).

Proposition (Zelevinsky 1980)

When Pd is a standard parabolic with Levi GLd(F )×GLd(x−y)(F ),

JacPd
(∆ρ[x, y]) = ρ| · |x ⊠∆ρ[x− 1, y],

JacPd
(Zρ[y, x]) = ρ| · |y ⊠ Zρ[y + 1, x].

Here, we set ∆ρ[y − 1, y] := 1GL0(F ) and Zρ[x+ 1, x] := 1GL0(F ).
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Derivatives

We introduce the following notion.

Definition (essentially due to Jantzen and Ḿınguez)

The k-th left ρ-derivative of τ ∈ Rep(GLn(F )) is a semisimple

representation L
(k)
ρ (τ) satisfying

[JacPdk
(τ)] = ρk ⊠ L(k)

ρ (τ) +
∑
i

τ ′i ⊠ τ ′′i ,

where τ ′i ⊠ τ ′′i ∈ Irr(GLdk(F )×GLn−dk(F )) such that τ ′i 6∼= ρk.

When L
(k)
ρ (τ) 6= 0 but L

(k+1)
ρ (τ) = 0, call L

(k)
ρ (τ) the highest ρ-derivative.

Similarly, one can define the right ρ-derivative R
(k)
ρ (τ).
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Properties of derivatives

Let soc(Π) denote the socle of Π, i.e., the maximal semisimple
subrepresentation of Π.

Theorem (Jantzen 2007, Ḿınguez 2009)

Let τ be an irreducible representation of GLn(F ).

The highest ρ-derivative L
(k)
ρ (τ) is irreducible.

τ can be recovered from L
(k)
ρ (τ) by

τ = soc
(
ρk × L(k)

ρ (τ)
)
.

There is an explicit formula for the highest ρ-derivative L
(k)
ρ (τ).

There is an explicit formula for soc(ρr × τ), which is irreducible.
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Algorithm for computing τ̂

The analogous results for R
(k)
ρ are also known.

The derivatives are related with the Zelevinsky dual as follows.

Proposition

For τ ∈ Irr(GLn(F )),
L(k)
ρ (τ̂) = R(k)

ρ (τ)̂.
Using this proposition together with explicit formulas for derivatives and
socles, one can compute τ̂ by induction on n.

Example

We have Zρ[y, x]̂ = ∆ρ[x, y] since

L
(1)
ρ|·|x(∆ρ[x, y]) = ∆ρ[x− 1, y], R

(1)
ρ|·|x(Zρ[y, x]) = Zρ[y, x− 1].
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Remark

Mœglin–Waldspurger (1986) gave an algorithm to compute the
Zelevinsky dual τ̂ by a different form.

The idea to use derivatives for an algorithm to compute τ̂ is due to
Jantzen (2007).

There are three explicit formulas for the highest derivatives and socles
given by Janzten (2007), Mı́nguez (2009), and Lapid–Mı́nguez (2016).

We will use the explicit formula of Lapid–Mı́nguez, which uses the
notion of best matching functions.
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Derivatives

From now, let G = Sp2n(F ) or G = SO2n+1(F ).
Fix an irreducible supercuspidal representation ρ of GLd(F ).

Definition

The k-th ρ-derivative of π is a semisimple representation D
(k)
ρ (π) satisfying

[JacPdk
(π)] = ρk ⊠D(k)

ρ (π) +
∑
i

τi ⊠ πi,

where Pdk is a parabolic of G with Levi GLdk(F )×G0, and
τi ⊠ πi ∈ Irr(GLdk(F )×G0) such that τi 6∼= ρk.

If D
(k)
ρ (π) 6= 0 but D

(k+1)
ρ (π) = 0, call D

(k)
ρ (π) the highest ρ-derivative.
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Compatibility with the Aubert duality

As in the GLn-case, derivatives are compatible with the Aubert duality.

Proposition

We have
D(k)

ρ (π̂) = D
(k)
ρ∨ (π)̂ .

Here, ρ∨ denotes the contragredient of ρ.

To obtain an algorithm for π̂, we want to solve the following questions:

Is the highest derivative D
(k)
ρ (π) irreducible?

Can we establish an explicit formula for D
(k)
ρ (π)?

Can π be recovered from D
(k)
ρ (π)?
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Properties of derivatives

Proposition (Jantzen 2018, Lapid–Tadić 2020, A.–Ḿınguez)

Suppose that ρ is not self-dual. Let π be irreducible representation of G.

The highest derivative D
(k)
ρ (π) is irreducible.

The socle soc(ρr ⋊ π) is irreducible.

They are related as

π = soc
(
ρk ⋊D(k)

ρ (π)
)
.

Hence, we want explicit formulas for D
(k)
ρ (π) and for soc(ρr ⋊ π).

From now, fix an irreducible self-dual supercuspidal representation ρ of

GLd(F ), and consider ρ| · |x-derivative D
(k)
ρ|·|x(π) for x ∈ R.
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Langlands classification

As a parametrization of Irr(G), we will use the Langlands classification.

Theorem (Langlands, Arthur)

Any π ∈ Irr(G) can be written as

π = L(∆ρ1 [x1, y1], . . . ,∆ρr [xr, yr];πtemp)

:= soc (∆ρ1 [x1, y1]× · · · ×∆ρr [xr, yr]⋊ π(ϕ, η)) ,

where

ρi is unitary supercuspidal, and x1 + y1 ≤ · · · ≤ xr + yr < 0;

π(ϕ, η) is an irreducible tempered representation.

(ϕ, η) is the tempered L-parameter for π(ϕ, η).
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Jantzen’s algorithm

Jantzen (2018) suggested an algorithm to compute the highest
ρ| · |x-derivative of π for x 6= 0.
The first step is to rewrite

π = soc (τ ⋊ πA) ,

where

τ = soc(∆ρ1 [x1, y1]× · · · ×∆ρr [xr, yr]) with [xi, yi]ρi 6= [x− 1,−x]ρ
for any i;

πA = L(∆ρ[x− 1,−x]t;π(ϕ, η)) with t ≥ 0.
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Explicit formula for the highest derivatives

π = soc(τ ⋊ πA) with πA = L(∆ρ[x− 1,−x]t;π(ϕ, η)).

Use the best matching functions for R
(a)
ρ|·|−x(τ) and L

(k)
ρ|·|x(τ).

Use an A-parameter for D
(kA)
ρ|·|x (πA).

By combining them with Jantzen’s algorithm, we have:

Theorem (A.–Ḿınguez)

Assume that ρ| · |x is not self-dual. Let π ∈ Irr(G). Then we have

explicit formulas for the highest ρ| · |x-derivative D
(k)
ρ|·|x(π) and for the

socle soc((ρ| · |x)r ⋊ π) in terms of the best matching functions and
A-parameters.
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The first step of the algorithm

We can now state the first step of our algorithm.

Algorithm: Step 1

Let π be an irreducible representation of G. If there exist ρ and x ∈ R such

that ρ| · |x is not self-dual and π0 := D
(k)
ρ|·|x(π) 6= 0 for k > 0, then use

π̂ = soc
(
(ρ| · |−x)k ⋊ π̂0

)
to reduce the computation of π̂ to the one of π̂0.
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Problem

Step 1 reduces the problem to the case where π is irreducible such that

D(1)
ρ (π) 6= 0 =⇒ ρ is self-dual. (∗)

From now, assume that ρ is self-dual. In this case, the ρ-derivatives

D
(k)
ρ (π) is difficult, and π cannot be recovered from D

(k)
ρ (π) in general.

Example

If σ is supercuspidal such that ρ⋊ σ = π+ ⊕ π−. Then

D(1)
ρ (π+) = D(1)

ρ (π−) = σ.

But it is easy to see that π̂+ = π− by definition (Aubert).

Hiraku Atobe (Hokkaido) The Zelevinsky–Aubert duality January 28 2021 24 / 32



Tempered case

As in this example, we can compute π̂ if π is tempered.

Proposition (A.–Ḿınguez)

Suppose that π = π(ϕ, η) is tempered and satisfies (∗). Set
{ρ ⊂ ϕ | even mult.} = {ρ1, . . . , ρr} and yi = max{di−1

2 | ρi ⊠ Sdi ⊂ ϕ}.
Assume that y1 ≥ · · · ≥ yt > 0 = yt+1 = · · · = yr. Then

π̂ = L(∆ρ1 [0,−y1], . . . ,∆ρt [0,−yt];π(ϕ
′, η′)),

where

ϕ′ = ϕ−
t⊕

i=1

ρi ⊠ (S1 ⊕ S2yi+1)

and η′(ρ⊠ Sd) 6= η(ρ⊠ Sd) ⇐⇒ ρ ∈ {ρ1, . . . , ρr}.
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New derivatives

The remaining case is that π is non-tempered and satisfies (∗).
The key idea to deal with this case is to define new derivatives.

Definition (A.-Ḿınguez)

Define the k-th ∆ρ[0,−1]-derivative D
(k)
∆ρ[0,−1](π) and the k-th

Zρ[0, 1]-derivative D
(k)
Zρ[0,1]

(π) as semisimple representations satisfying

[JacP2dk
(π)] = ∆ρ[0,−1]k⊠D

(k)
∆ρ[0,−1](π)

+Zρ[0, 1]
k⊠D

(k)
Zρ[0,1]

(π) + (others).

One can define the notions of the highest ∆ρ[0,−1]-derivatives and the
highest Zρ[0, 1]-derivatives.
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Properties

These derivatives are substitute for the ρ-derivatives.

Proposition (A.–Ḿınguez)

Suppose that π is irreducible and satisfies (∗).
1 The highest ∆ρ[0,−1]-derivative D

(k)
∆ρ[0,−1](π) (resp. the highest

Zρ[0, 1]-derivative D
(k)
Zρ[0,1]

(π)) is irreducible.

2 The socles soc(∆ρ[0,−1]r ⋊ π) (resp. soc(Zρ[0, 1]
r ⋊ π)) is

irreducible.

3 π ∼= soc(Zρ[0, 1]
k ⋊D

(k)
Zρ[0,1]

(π)).

4 D
(k)
Zρ[0,1]

(π̂) = D
(k)
∆ρ[0,−1](π)̂ .

Actually, we only assume a weaker condition than (∗).
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The explicit formulas

Moreover:

Theorem (A.–Ḿınguez)

Suppose that π satisfies (∗). Then we have explicit formulas for

the highest ∆ρ[0,−1]-derivatives D
(k)
∆ρ[0,−1](π);

the highest Zρ[0, 1]-derivatives D
(k)
Zρ[0,1]

(π);

the socle soc(Zρ[0, 1]
r ⋊ π)

in terms of matching functions and A-parameters.

Actually, we only assume a weaker condition than (∗).
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Completion of the algorithm

Algorithm: Step 2 and Step 3

Let π be an irreducible representation satisfying that

D(1)
ρ (π) 6= 0 =⇒ ρ is self-dual. (∗)

If π is non-tempered, can find ρ such that π0 := D
(k)
∆ρ[0,−1](π) 6= 0 for

k > 0, and use

π̂ = soc
(
Zρ[0, 1]

k ⋊ π̂0

)
to reduce the computation of π̂ to the one of π̂0.

If π is tempered, we have an explicit formula for π̂.
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Example

Now we set ρ = 1GL1(F ), and drop ρ in the notation.
Let π(xη11 , . . . , xηrr ) = π(ϕ, η) with ϕ = ⊕r

i=1S2xi+1 and η(S2xi+1) = ηi.

Example

Let us consider L(∆[0,−2];π(0−, 0−, 1+)) ∈ Sp10(F ), which satisfies (∗).
Hence

L(∆[0,−2];π(0−, 0−, 1+))

D
(1)
∆[0,−1]

��
L(| · |−2;π(0−, 0−, 1+))

D
(1)

|·|−2

��
π(0−, 0−, 1+).

By the explicit formula, π̂(0−, 0−, 1+) = L(∆[0,−1];π(0+)).
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Example

Example (continued)

Now take socles
L(∆[0,−1];π(0+))

soc(|·|2⋊−)
��

L(∆[0,−2];π(0+))

soc(Z[0,1]⋊−)
��

L(∆[0,−2];π(0−, 0−, 1+)).

We conclude that L(∆[0,−2];π(0−, 0−, 1+)) is fixed by the
Zelevinsky–Aubert duality.
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Remarks

Remark

Even if we start at a tempered representation, we need to compute
∆ρ[0,−1]-derivatives and the Zρ[0, 1]-socles in general.

As an application of Zρ[0, 1]-derivatives, one can refine Mœglin’s
explicit construction of local A-packets (A.).

In that work, a conjectural “formula” for π̂ for π of Arthur type was
formulated.

Although the explicit formulas for derivatives and for socles are
complicated, it would be easy to write a computer program.
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