The Zelevinsky-Aubert duality for classical groups

Hiraku Atobe

Hokkaido University

(Joint work with Alberto Mínguez)

January 28 2021

1 The Zelevinsky–Aubert duality

2 The case for $\operatorname{GL}_n(F)$

3 The case for classical groups

1 The Zelevinsky–Aubert duality

- **2** The case for $GL_n(F)$
- 3 The case for classical groups

Let

- *F* be a *p*-adic field;
- $G \in {GL_n(F), Sp_{2n}(F), SO_{2n+1}(F)}$ be split;
- P = MN be a standard parabolic subgroup of G;
- $\operatorname{Ind}_P^G(\pi_M)$ be the (normalized) parabolically induction of $\pi_M \in \operatorname{Rep}(G)$
- $\operatorname{Jac}_P(\pi)$ be the Jacquet module of $\pi \in \operatorname{Rep}(G)$;
- $\pi \mapsto [\pi]$ be the semisimplification.

For $\pi \in \operatorname{Rep}(G)$, define

$$D_G(\pi) \coloneqq \sum_{P=MN} (-1)^{\dim A_M} [\operatorname{Ind}_P^G(\operatorname{Jac}_P(\pi))],$$

where P runs over all standard parabolic subgroups of G.

Theorem (Aubert 1996)

For any irreducible π , there exists $\epsilon \in \{\pm 1\}$ such that

 $\hat{\pi} \coloneqq \epsilon \cdot D_G(\pi)$

is also irreducible. Moreover, $\hat{\pi} \cong \pi$.

Call $\hat{\pi}$ the Zelevinsky–Aubert dual of π .

- Alvis ('79, '82) and Curtis ('80) defined/studied D_G for reductive group G over a finite field \mathbb{F}_q .
- Deligne-Lusztig ('83) showed that $D_G(R_T^G(\theta)) = \pm R_T^G(\theta)$, where $R_T^G(\theta)$ is the Deligne-Lusztig induction of $\theta \in \operatorname{Irr}(T(\mathbb{F}_q))$. As an application, one can determine dim $R_T^G(\theta)$.
- Zelevinsky ('80) defined a similar involution for $G = GL_n(F)$ generated by Steinberg \leftrightarrow trivial. He predicted that it preserves the irreducibility.
- After a work of S.-I. Kato ('93), Aubert ('96) defined D_G for general reductive group G over F, and showed that it preserves the irreducibility.

Conjecture

If π is irreducible and unitary, then so is $\hat{\pi}.$

In particular, this duality would produce many unitary representations.

 Mœglin–Waldspurger ('86) gave an algorithm to compute π̂ for G = GL_n(F). Together with Tadić's result on the unitary dual, it shows the conjecture in this case.

Main Result (A.-Mínguez)

We give an explicit algorithm for $\hat{\pi}$ for $G = \text{Sp}_{2n}(F), \text{SO}_{2n+1}(F)$.

- It is trivial that if π is supercuspidal, then $\hat{\pi} = \pi$ (Aubert ('96)).
- Hanzer ('09) showed that if π is a strongly positive discrete series, then $\hat{\pi}$ is unitary.
- Arthur ('13) established an endoscopic classification. As a consequence, he proved that if π is tempered, then π̂ is unitary.
- Matić ('17, '19) gave an explicit formula for π̂ when π is discrete series which is strongly positive or is in the first induction step.
- C. Jantzen ('18) gave an algorithm for $\hat{\pi}$ of good parity when π is in the "half-integral case".

1 The Zelevinsky–Aubert duality

2 The case for $GL_n(F)$

3 The case for classical groups

We explain Jantzen's algorithm for $\hat{\tau}$ for $\tau \in Irr(GL_n(F))$.

- Let ρ be a supercuspidal representation of $\operatorname{GL}_d(F)$.
- A segment is a set

$$[x, y]_{\rho} = \{\rho | \cdot |^{x}, \rho | \cdot |^{x-1}, \dots, \rho | \cdot |^{y}\},\$$

where $x, y \in \mathbb{R}$ such that $x - y \in \mathbb{Z}_{\geq 0}$.

 Denote by Δ_ρ[x, y] (resp. Z_ρ[y, x]) the unique irreducible subrepresentation (resp. quotient) of induced representation

$$\rho|\cdot|^x \times \cdots \times \rho|\cdot|^y \coloneqq \operatorname{Ind}_P^{\operatorname{GL}_{d(x-y+1)}(F)}(\rho|\cdot|^x \boxtimes \cdots \boxtimes \rho|\cdot|^y).$$

Jacquet modules of $\Delta_{\rho}[x,y]$ and $Z_{\rho}[y,x]$

• $\Delta_{\rho}[x, y]$ is an essentially discrete series representation. $(\Delta_{\mathbf{1}_{\mathrm{GL}_1(F)}}[\frac{n-1}{2}, -\frac{n-1}{2}]$ is called a *Steinberg* representation.) • If $\rho = \mathbf{1}_{\mathrm{GL}_1(F)}$, then $Z_{\rho}[y, x]$ is a character of $\mathrm{GL}_{x-y+1}(F)$.

Proposition (Zelevinsky 1980)

When P_d is a standard parabolic with Levi $\operatorname{GL}_d(F) \times \operatorname{GL}_{d(x-y)}(F)$,

$$\begin{aligned} \operatorname{Jac}_{P_d}(\Delta_{\rho}[x,y]) &= \rho| \cdot |^x \boxtimes \Delta_{\rho}[x-1,y], \\ \operatorname{Jac}_{P_d}(Z_{\rho}[y,x]) &= \rho| \cdot |^y \boxtimes Z_{\rho}[y+1,x]. \end{aligned}$$

Here, we set $\Delta_{\rho}[y-1,y] \coloneqq \mathbf{1}_{\mathrm{GL}_0(F)}$ and $Z_{\rho}[x+1,x] \coloneqq \mathbf{1}_{\mathrm{GL}_0(F)}$.

We introduce the following notion.

Definition (essentially due to Jantzen and Mínguez)

The k-th left ρ -derivative of $\tau \in \operatorname{Rep}(\operatorname{GL}_n(F))$ is a semisimple representation $L_{\rho}^{(k)}(\tau)$ satisfying

$$[\operatorname{Jac}_{P_{dk}}(\tau)] = \rho^k \boxtimes L_{\rho}^{(k)}(\tau) + \sum_i \tau'_i \boxtimes \tau''_i,$$

where $\tau'_i \boxtimes \tau''_i \in \operatorname{Irr}(\operatorname{GL}_{dk}(F) \times \operatorname{GL}_{n-dk}(F))$ such that $\tau'_i \not\cong \rho^k$.

When $L_{\rho}^{(k)}(\tau) \neq 0$ but $L_{\rho}^{(k+1)}(\tau) = 0$, call $L_{\rho}^{(k)}(\tau)$ the highest ρ -derivative. Similarly, one can define the right ρ -derivative $R_{\rho}^{(k)}(\tau)$. Let $\operatorname{soc}(\Pi)$ denote the socle of $\Pi,$ i.e., the maximal semisimple subrepresentation of $\Pi.$

Theorem (Jantzen 2007, Mínguez 2009)

Let τ be an irreducible representation of $\operatorname{GL}_n(F)$.

- The highest $\rho\text{-derivative }L^{(k)}_{\rho}(\tau)$ is irreducible.
- τ can be recovered from $L^{(k)}_{\rho}(\tau)$ by

$$\tau = \operatorname{soc}\left(\rho^k \times L_{\rho}^{(k)}(\tau)\right).$$

There is an explicit formula for the highest ρ-derivative L^(k)_ρ(τ).
 There is an explicit formula for soc(ρ^r × τ), which is irreducible.

Algorithm for computing $\hat{\tau}$

The analogous results for $R_{\rho}^{(k)}$ are also known. The derivatives are related with the Zelevinsky dual as follows.

Proposition

For $\tau \in \operatorname{Irr}(\operatorname{GL}_n(F))$,

$$L_{\rho}^{(k)}(\hat{\tau}) = R_{\rho}^{(k)}(\tau)^{\hat{}}.$$

Using this proposition together with explicit formulas for derivatives and socles, one can compute $\hat{\tau}$ by induction on n.

Example

We have
$$Z_{\rho}[y,x]^{\widehat{}} = \Delta_{\rho}[x,y]$$
 since
 $L^{(1)}_{\rho|\cdot|^{x}}(\Delta_{\rho}[x,y]) = \Delta_{\rho}[x-1,y], \quad R^{(1)}_{\rho|\cdot|^{x}}(Z_{\rho}[y,x]) = Z_{\rho}[y,x-1].$

- The idea to use derivatives for an algorithm to compute $\hat{\tau}$ is due to Jantzen (2007).
- There are three explicit formulas for the highest derivatives and socles given by Janzten (2007), Mínguez (2009), and Lapid–Mínguez (2016).
- We will use the explicit formula of Lapid–Mínguez, which uses the notion of *best matching functions*.

- 1 The Zelevinsky–Aubert duality
- **2** The case for $GL_n(F)$
- 3 The case for classical groups

From now, let $G = \operatorname{Sp}_{2n}(F)$ or $G = \operatorname{SO}_{2n+1}(F)$. Fix an irreducible supercuspidal representation ρ of $\operatorname{GL}_d(F)$.

Definition

The k-th ρ -derivative of π is a semisimple representation $D_{\rho}^{(k)}(\pi)$ satisfying

$$[\operatorname{Jac}_{P_{dk}}(\pi)] = \rho^k \boxtimes D_{\rho}^{(k)}(\pi) + \sum_i \tau_i \boxtimes \pi_i,$$

where P_{dk} is a parabolic of G with Levi $\operatorname{GL}_{dk}(F) \times G_0$, and $\tau_i \boxtimes \pi_i \in \operatorname{Irr}(\operatorname{GL}_{dk}(F) \times G_0)$ such that $\tau_i \not\cong \rho^k$.

If $D_{\rho}^{(k)}(\pi) \neq 0$ but $D_{\rho}^{(k+1)}(\pi) = 0$, call $D_{\rho}^{(k)}(\pi)$ the highest ρ -derivative.

As in the GL_n -case, derivatives are compatible with the Aubert duality.

Proposition

We have

$$D_{\rho}^{(k)}(\hat{\pi}) = D_{\rho^{\vee}}^{(k)}(\pi)^{\widehat{}}.$$

Here, ρ^{\vee} denotes the contragredient of $\rho.$

To obtain an algorithm for $\hat{\pi}$, we want to solve the following questions:

- Is the highest derivative $D_{\rho}^{(k)}(\pi)$ irreducible?
- Can we establish an explicit formula for $D_{\rho}^{(k)}(\pi)$?
- Can π be recovered from $D_{\rho}^{(k)}(\pi)$?

Proposition (Jantzen 2018, Lapid-Tadić 2020, A.-Mínguez)

Suppose that ρ is **not self-dual**. Let π be irreducible representation of G.

- The highest derivative $D_{\rho}^{(k)}(\pi)$ is irreducible.
- The socle $\operatorname{soc}(\rho^r \rtimes \pi)$ is irreducible.
- They are related as

$$\pi = \operatorname{soc}\left(\rho^k \rtimes D_{\rho}^{(k)}(\pi)\right).$$

Hence, we want explicit formulas for $D_{\rho}^{(k)}(\pi)$ and for $\operatorname{soc}(\rho^r \rtimes \pi)$.

From now, fix an irreducible **self-dual** supercuspidal representation ρ of $\operatorname{GL}_d(F)$, and consider $\rho| \cdot |^x$ -derivative $D_{\rho|\cdot|^x}^{(k)}(\pi)$ for $x \in \mathbb{R}$.

As a parametrization of Irr(G), we will use the Langlands classification.

Theorem (Langlands, Arthur)

Any $\pi \in Irr(G)$ can be written as

$$\pi = L(\Delta_{\rho_1}[x_1, y_1], \dots, \Delta_{\rho_r}[x_r, y_r]; \pi_{\text{temp}})$$

$$\coloneqq \text{soc} \left(\Delta_{\rho_1}[x_1, y_1] \times \dots \times \Delta_{\rho_r}[x_r, y_r] \rtimes \pi(\phi, \eta)\right),$$

where

- ρ_i is unitary supercuspidal, and $x_1 + y_1 \leq \cdots \leq x_r + y_r < 0$;
- $\pi(\phi,\eta)$ is an irreducible tempered representation.
- (ϕ, η) is the tempered *L*-parameter for $\pi(\phi, \eta)$.

Jantzen (2018) suggested an algorithm to compute the highest $\rho|\cdot|^x$ -derivative of π for $x \neq 0$. The first step is to rewrite

$$\pi = \operatorname{soc}\left(\tau \rtimes \pi_A\right),\,$$

where

•
$$\tau = \operatorname{soc}(\Delta_{\rho_1}[x_1, y_1] \times \cdots \times \Delta_{\rho_r}[x_r, y_r])$$
 with $[x_i, y_i]_{\rho_i} \neq [x - 1, -x]_{\rho}$
for any i ;
• $\pi_A = L(\Delta_{\rho}[x - 1, -x]^t; \pi(\phi, \eta))$ with $t \ge 0$.

Explicit formula for the highest derivatives

•
$$\pi = \operatorname{soc}(\tau \rtimes \pi_A)$$
 with $\pi_A = L(\Delta_{\rho}[x-1, -x]^t; \pi(\phi, \eta)).$

• Use the best matching functions for $R^{(a)}_{\rho|\cdot|^{-x}}(\tau)$ and $L^{(k)}_{\rho|\cdot|x}(\tau)$.

• Use an *A-parameter* for
$$D_{\rho|\cdot|x}^{(k_A)}(\pi_A)$$
.

By combining them with Jantzen's algorithm, we have:

Theorem (A.–Mínguez)

Assume that $\rho|\cdot|^x$ is **not self-dual**. Let $\pi \in \operatorname{Irr}(G)$. Then we have explicit formulas for the highest $\rho|\cdot|^x$ -derivative $D_{\rho|\cdot|^x}^{(k)}(\pi)$ and for the socle $\operatorname{soc}((\rho|\cdot|^x)^r \rtimes \pi)$ in terms of the *best matching functions* and *A-parameters*.

We can now state the first step of our algorithm.

Algorithm: Step 1

Let π be an irreducible representation of G. If there exist ρ and $x \in \mathbb{R}$ such that $\rho|\cdot|^x$ is **not self-dual** and $\pi_0 \coloneqq D_{\rho|\cdot|^x}^{(k)}(\pi) \neq 0$ for k > 0, then use

$$\hat{\pi} = \operatorname{soc}\left((\rho|\cdot|^{-x})^k \rtimes \hat{\pi}_0\right)$$

to reduce the computation of $\hat{\pi}$ to the one of $\hat{\pi}_0$.

Step 1 reduces the problem to the case where π is irreducible such that

$$D^{(1)}_{\rho}(\pi) \neq 0 \implies \rho \text{ is self-dual.}$$
 (*)

From now, assume that ρ is **self-dual**. In this case, the ρ -derivatives $D_{\rho}^{(k)}(\pi)$ is difficult, and π cannot be recovered from $D_{\rho}^{(k)}(\pi)$ in general.

Example

If σ is supercuspidal such that $\rho \rtimes \sigma = \pi_+ \oplus \pi_-$. Then

$$D_{\rho}^{(1)}(\pi_{+}) = D_{\rho}^{(1)}(\pi_{-}) = \sigma.$$

But it is easy to see that $\hat{\pi}_+ = \pi_-$ by definition (Aubert).

As in this example, we can compute $\hat{\pi}$ if π is tempered.

Proposition (A.–Mínguez)

Suppose that $\pi = \pi(\phi, \eta)$ is tempered and satisfies (*). Set $\{\rho \subset \phi \mid \text{even mult.}\} = \{\rho_1, \dots, \rho_r\}$ and $y_i = \max\{\frac{d_i-1}{2} \mid \rho_i \boxtimes S_{d_i} \subset \phi\}$. Assume that $y_1 \geq \dots \geq y_t > 0 = y_{t+1} = \dots = y_r$. Then

$$\hat{\pi} = L(\Delta_{\rho_1}[0, -y_1], \dots, \Delta_{\rho_t}[0, -y_t]; \pi(\phi', \eta')),$$

where

$$\phi' = \phi - \bigoplus_{i=1}^{t} \rho_i \boxtimes (S_1 \oplus S_{2y_i+1})$$

and $\eta'(\rho \boxtimes S_d) \neq \eta(\rho \boxtimes S_d) \iff \rho \in \{\rho_1, \dots, \rho_r\}.$

The remaining case is that π is non-tempered and satisfies (*). The key idea to deal with this case is *to define new derivatives*.

Definition (A.-Mínguez)

Define the k-th $\Delta_{\rho}[0, -1]$ -derivative $D^{(k)}_{\Delta_{\rho}[0, -1]}(\pi)$ and the k-th $Z_{\rho}[0, 1]$ -derivative $D^{(k)}_{Z_{\rho}[0, 1]}(\pi)$ as semisimple representations satisfying

$$\begin{aligned} [\operatorname{Jac}_{P_{2dk}}(\pi)] &= \Delta_{\rho}[0, -1]^{k} \boxtimes D_{\Delta_{\rho}[0, -1]}^{(k)}(\pi) \\ &+ Z_{\rho}[0, 1]^{k} \boxtimes D_{Z_{\rho}[0, 1]}^{(k)}(\pi) + (\operatorname{others}) \end{aligned}$$

One can define the notions of the highest $\Delta_{\rho}[0, -1]$ -derivatives and the highest $Z_{\rho}[0, 1]$ -derivatives.

Properties

These derivatives are substitute for the ρ -derivatives.

Proposition (A.–Mínguez)

Suppose that π is irreducible and satisfies (*).

- 1 The highest $\Delta_{\rho}[0, -1]$ -derivative $D^{(k)}_{\Delta_{\rho}[0, -1]}(\pi)$ (resp. the highest $Z_{\rho}[0, 1]$ -derivative $D^{(k)}_{Z_{\rho}[0, 1]}(\pi)$) is irreducible.
- 2 The socles $\operatorname{soc}(\Delta_{\rho}[0,-1]^r \rtimes \pi)$ (resp. $\operatorname{soc}(Z_{\rho}[0,1]^r \rtimes \pi)$) is irreducible.

3
$$\pi \cong \operatorname{soc}(Z_{\rho}[0,1]^k \rtimes D_{Z_{\rho}[0,1]}^{(k)}(\pi))$$

4
$$D_{Z_{\rho}[0,1]}^{(k)}(\hat{\pi}) = D_{\Delta_{\rho}[0,-1]}^{(k)}(\pi)^{\hat{}}.$$

Actually, we only assume a weaker condition than (*).

Moreover:

Theorem (A.–Mínguez)

Suppose that π satisfies (*). Then we have explicit formulas for

- \blacksquare the highest $\Delta_{\rho}[0,-1]\text{-derivatives }D^{(k)}_{\Delta_{\rho}[0,-1]}(\pi);$
- the highest $Z_{\rho}[0,1]$ -derivatives $D_{Z_{\rho}[0,1]}^{(k)}(\pi)$;

• the socle
$$\operatorname{soc}(Z_{\rho}[0,1]^r \rtimes \pi)$$

in terms of matching functions and A-parameters.

Actually, we only assume a weaker condition than (*).

Algorithm: Step 2 and Step 3

Let π be an irreducible representation satisfying that

$$D^{(1)}_{\rho}(\pi) \neq 0 \implies \rho \text{ is self-dual.}$$
 (*)

If π is non-tempered, can find ρ such that $\pi_0 \coloneqq D^{(k)}_{\Delta_{\rho}[0,-1]}(\pi) \neq 0$ for k > 0, and use

$$\hat{\pi} = \operatorname{soc}\left(Z_{\rho}[0,1]^k \rtimes \hat{\pi}_0\right)$$

to reduce the computation of $\hat{\pi}$ to the one of $\hat{\pi}_0$.

If π is tempered, we have an explicit formula for $\hat{\pi}$.

Example

Now we set $\rho = \mathbf{1}_{\operatorname{GL}_1(F)}$, and drop ρ in the notation. Let $\pi(x_1^{\eta_1}, \ldots, x_r^{\eta_r}) = \pi(\phi, \eta)$ with $\phi = \bigoplus_{i=1}^r S_{2x_i+1}$ and $\eta(S_{2x_i+1}) = \eta_i$.

Example

Let us consider $L(\Delta[0,-2];\pi(0^-,0^-,1^+))\in {\rm Sp}_{10}(F),$ which satisfies (*). Hence

$$L(\Delta[0,-2]; \pi(0^{-},0^{-},1^{+})) \\ \downarrow^{D^{(1)}_{\Delta[0,-1]}} \\ L(|\cdot|^{-2}; \pi(0^{-},0^{-},1^{+})) \\ \downarrow^{D^{(1)}_{|\cdot|^{-2}}} \\ \pi(0^{-},0^{-},1^{+}).$$

By the explicit formula, $\hat{\pi}(0^-,0^-,1^+)=L(\Delta[0,-1];\pi(0^+)).$

Example (continued)

Now take socles

$$L(\Delta[0,-1]; \pi(0^{+})) \downarrow_{\text{soc}(|\cdot|^{2} \rtimes -)} L(\Delta[0,-2]; \pi(0^{+})) \downarrow_{\text{soc}(Z[0,1] \rtimes -)} L(\Delta[0,-2]; \pi(0^{-},0^{-},1^{+})).$$

We conclude that $L(\Delta[0,-2];\pi(0^-,0^-,1^+))$ is fixed by the Zelevinsky–Aubert duality.

Remark

- Even if we start at a tempered representation, we need to compute $\Delta_\rho[0,-1]$ -derivatives and the $Z_\rho[0,1]$ -socles in general.
- As an application of Z_ρ[0, 1]-derivatives, one can refine Mœglin's explicit construction of local A-packets (A.).
- In that work, a conjectural "formula" for $\hat{\pi}$ for π of *Arthur type* was formulated.
- Although the explicit formulas for derivatives and for socles are complicated, it would be easy to write a computer program.