Quasi-pullback of certain Siegel modular forms and Borcherds products

Ken-Ichi Yoshikawa

X : Calabi-Yau threefold $F_1^{\rm top}(q)$: generating function of the genus one instanton numbers of X

$$F_1^{\text{top}}(q) = q^{c_2^{\vee}/24} \prod_{\lambda \in H_2(X,\mathbb{Z}) \setminus \{0\}} \left(1 - q^{\lambda}\right)^{n_0(\lambda)/12} \prod_{k \ge 1} \left(1 - q^{k\lambda}\right)^{n_1(\lambda)}$$

where

 $\begin{array}{l} q^{\lambda}=e^{2\pi i \langle \lambda,t\rangle},\,t\in H^2(X,\mathbb{C})\\ n_g(\lambda): \text{ the genus-}g \text{ instanton number of }X\\ c_2^{\vee}: \text{ the Poincaré dual of }c_2(X) \end{array}$

Physicists Bershadsky-Cecotti-Ooguri-Vafa introduced an invariant τ_{BCOV} of Calabi-Yau threefolds, which is called the *BCOV invariant*. (We recall its definition later.)

The BCOV conjecture

Let $\mathcal{X}^{\vee} \to (\Delta^*)^n$, $n = h^{1,1}(X) = h^{1,2}(X^{\vee})$ be a mirror family of X. In the canonical coordinates on $(\Delta^*)^n$, the following equality holds:

$$\tau_{\rm BCOV}(X_s^{\vee}) = C \left\| F_1^{\rm top}(q)^2 \left(\frac{\Xi_s}{\int_{A_0} \Xi_s} \right)^{3+n-\frac{\chi}{12}} \otimes \left(q_1 \frac{\partial}{\partial q_1} \wedge \dots \wedge q_n \frac{\partial}{\partial q_n} \right) \right\|^2$$

Here $n = h^{1,1}(X) = h^{1,2}(X_s^{\vee})$, $\chi = \chi(X)$, $q = (q_1, \ldots, q_n)$ is the system of canonical coordinates on $(\Delta^*)^n$, $\Xi_s \in H^0(X_s^{\vee}, K_{X_s^{\vee}})$, $A_0 \in H_3(X_s^{\vee}, \mathbb{Z})$ is the cycle invariant under the monodromy, and C is a constant.

There is a class of Calabi-Yau threefolds (Borcea-Voisin threefolds), whose BCOV invariant is given by the product of a Borcherds product, a Siegel modular form (pulled back to a domain of type IV via the Torelli map), and the Dedekind η -function.

From the BCOV conjecture for the Borcea-Voisin threefolds, we have

Conjectural Observation

The pullback of a certain Siegel modular form should be expressed as an infinite product of Borcherds type near the cusp of the domains of type IV.

In this talk, we report a result supporting this conjectural observation.

BCOV torsion

 (X, g_X) : compact Kähler manifold $\Box_{p,q} = (\bar{\partial} + \bar{\partial}^*)^2$: Laplacian of (X, g_X) acting on the (p, q)-forms on X $\zeta_{p,q}(s)$: spectral zeta function of $\Box_{p,q}$

$$\zeta_{p,q}(s) := \sum_{\lambda \in \sigma(\Box_{p,q}) \setminus \{0\}} \lambda^{-s} \dim E(\lambda; \Box_{p,q})$$

Fact

 $\zeta_{p,q}(s)$ converges when $\Re s > \dim X$, admits a meromorphic continuation to \mathbb{C} , and is holomorphic at s = 0.

Definition (BCOV torsion)

The BCOV torsion of (X, g_X) is defined by

$$\mathcal{T}_{BCOV}(X, g_X) = \exp[-\sum_{p,q \ge 0} (-1)^{p+q} pq \,\zeta'_{p,q}(0)].$$

Definition (Calabi-Yau manifold)

X: smooth irreducible compact Kähler n-fold is Calabi-Yau \iff

• $K_X = \Omega_X^n \cong \mathcal{O}_X$ • $H^q(X, \mathcal{O}_X) = 0$ (0 < q < n).

When n = 1, 2, Calabi-Yau manifolds are elliptic curves and K3 surfaces. In low dimensions, the moduli space of *polarized* Calabi-Yau manifolds is a locally symmetric variety.

Fact

- If $n \ge 3$, there are many topological types of Calabi–Yau *n*-folds. (It is not known that for a fixed $n \ge 3$, the number of deformation types of Calabi-Yau *n*-folds is finite or not.)
- The global structure of the moduli space of polarized Calabi-Yau manifolds of dimension $n \ge 3$ is not understood in general.

э

Definition (Bershadsky-Cecotti-Ooguri-Vafa, Fang-Lu-Y.)

The BCOV invariant of a Calabi–Yau threefold X is defined by

$$\tau_{\text{BCOV}}(X) = \text{Vol}(X, \gamma)^{-3 + \frac{\chi(X)}{12}} \text{Vol}_{L^2}(H^2(X, \mathbb{Z}), [\gamma])^{-1} \mathcal{T}_{\text{BCOV}}(X, \gamma)$$
$$\times \exp\left[-\frac{1}{12} \int_X \log\left(\frac{\sqrt{-1}\eta \wedge \overline{\eta}}{\gamma^3/3!} \cdot \frac{\text{Vol}(X, \gamma)}{\|\eta\|_{L^2}^2}\right) c_3(X, \gamma)\right]$$

where γ is a Kähler form, $\eta \in H^0(X, \Omega^3_X) \setminus \{0\}$ is a canonical form, $\chi(X)$ is the topological Euler number, $c_3(X, \gamma)$ is the Euler form,

$$\operatorname{Vol}_{L^2}(H^2(X,\mathbb{Z}),[\gamma]) = \operatorname{Vol}(H^2(X,\mathbb{R})/H^2(X,\mathbb{Z}),\langle\cdot,\cdot\rangle_{L^2,\gamma})$$

is the covolume of the lattice $H^2(X,\mathbb{Z})$ w.r.t. the metric induced from γ .

Theorem (Fang-Lu-Y.)

 $\tau_{\rm BCOV}(X)$ is an invariant of X, i.e., it is independent of the choice of γ , η . In particular, $\tau_{\rm BCOV}$ gives rise to a function on the moduli space of Calabi-Yau threefolds.

Remark

Very recently, the BCOV invariant is extended to Calabi-Yau manifolds of higher dimensions by Eriksson-Freixas i Montplet-Mourougane and to certain pairs by Y. Zhang.

We explain the structure of the BCOV invariant for the Borcea-Voisin threefolds.

Definition

A pair (S, θ) consisting of a K3 surface and an involution $\theta \colon S \to S$ is called a 2-elementary K3 surface if $\theta^* = -1$ on $H^0(S, \Omega_S^2)$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Definition (Borcea-Voisin threefolds)

For (S, θ) : 2-elementary K3 surface T : elliptic curve,

$$X_{(S,\theta,T)}:= \text{ crepant resolution of } \frac{S\times T}{\theta\times (-1_T)}$$

is a Calabi-Yau threefold called a Borcea-Voisin threefold. The type of $X_{(S,\theta,T)}$ is defined as the isometry class of the anti-invariant lattice of θ

$$H^{2}(S,\mathbb{Z})_{-} = \{l \in H^{2}(S,\mathbb{Z}); \ \theta^{*}(l) = -l\}$$

Fact (Borcea, Voisin, Nikulin)

The deformation type of X_(S,θ,T) is determined by its type [H²(S, Z)₋].
H²(S, Z)₋ is a primitive 2-elementary sublattices of the K3-lattice L_{K3} := U ⊕ U ⊕ U ⊕ U ⊕ E₈ ⊕ E₈ with signature (2, b⁻), 0 ≤ b⁻ ≤ 19.

< ロ > < 同 > < 回 > < 回 > < 回 >

g	$\delta = 1$		$\delta = 0$
0	$(\mathbb{A}_1^+)^{\oplus 2} \oplus \mathbb{A}_1^{\oplus t}$	$(0 \le t \le 9)$	$\mathbb{U}(2)^{\oplus 2}$
1	$\mathbb{U} \oplus \mathbb{A}_1^+ \oplus \mathbb{A}_1^{\oplus t}$	$(0 \le t \le 9)$	$\mathbb{U}\oplus\mathbb{U}(2)$, $\mathbb{U}(2)^{\oplus 2}\oplus\mathbb{D}_4$,
			$\mathbb{U}\oplus\mathbb{U}(2)\oplus\mathbb{E}_8(2)$
2	$\mathbb{U}^{\oplus 2} \oplus \mathbb{A}_1^{\oplus t}$	$(1 \le t \le 9)$	$\mathbb{U}^{\oplus 2}$, $\mathbb{U}\oplus\mathbb{U}(2)\oplus\mathbb{D}_4$,
			$\mathbb{U}^{\oplus 2} \oplus \mathbb{E}_8(2)$
3	$\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_4 \oplus \mathbb{A}_1^{\oplus t}$	$(1 \le t \le 6)$	$\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_4$, $\mathbb{U} \oplus \mathbb{U}(2) \oplus \mathbb{D}_4^{\oplus 2}$
4	$\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_6 \oplus \mathbb{A}_1^{\oplus t}$	$(0 \le t \le 5)$	$\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_4^{\oplus 2}$
5	$\mathbb{U}^{\oplus 2} \oplus \mathbb{E}_7 \oplus \mathbb{A}_1^{\oplus t}$	$(0 \le t \le 5)$	$\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_8$
6	$\mathbb{U}^{\oplus 2} \oplus \mathbb{E}_8 \oplus \mathbb{A}_1^{\oplus t}$	$(1 \le t \le 5)$	$\mathbb{U}^{\oplus 2} \oplus \mathbb{E}_8$, $\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_4 \oplus \mathbb{D}_8$
7	$\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_4 \oplus \mathbb{E}_8 \oplus \mathbb{A}_1^{\oplus t}$	$(1 \le t \le 2)$	$\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_4 \oplus \mathbb{E}_8$
8	$\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_6 \oplus \mathbb{E}_8 \oplus \mathbb{A}_1^{\oplus t}$	$(0 \le t \le 1)$	
9	$\mathbb{U}^{\oplus 2} \oplus \mathbb{E}_7 \oplus \mathbb{E}_8 \oplus \mathbb{A}_1^{\oplus t}$	$(0 \le t \le 1)$	$\mathbb{U}^{\oplus 2} \oplus \mathbb{D}_8 \oplus \mathbb{E}_8$
10	$\mathbb{U}^{\oplus 2} \oplus \mathbb{E}_8^{\oplus 2} \oplus \mathbb{A}_1$		$\mathbb{U}^{\oplus 2} \oplus \mathbb{E}_8^{\oplus 2}$

Table: Primitive 2-elementary sublattices of \mathbb{L}_{K3} with $b^+ = 2$ (Nikulin)

э

< □ > < □ > < □ > < □ > < □ > < □ >

Period domain for 2-elementary K3 surfaces

Let (S, θ) be a 2-elementary K3 surface. Fix a lattice $\Lambda \subset \mathbb{L}_{K3} = \mathbb{U} \oplus \mathbb{U} \oplus \mathbb{U} \oplus \mathbb{E}_8 \oplus \mathbb{E}_8$ such that

 $\Lambda \cong H^2(S,\mathbb{Z})_-$

 Λ is a 2-elementary lattice with $\operatorname{sign}(\Lambda) = (2, r - 2)$, $r = \operatorname{rk} \Lambda$.

Definition (Domain of type IV)

For a lattice Λ with $\mathrm{sign}(\Lambda)=(2,r-2)=(2,b^-),$ define

$$\begin{split} \Omega_{\Lambda} &= \Omega_{\Lambda}^{+} \amalg \Omega_{\Lambda}^{-} := \{ [\eta] \in \mathbb{P}(\Lambda \otimes \mathbb{C}); \ \langle \eta, \eta \rangle_{\Lambda} = 0, \ \langle \eta, \bar{\eta} \rangle_{\Lambda} > 0 \} \\ &\cong \frac{SO_{0}(2, b^{-})}{SO(2) \times SO(b^{-})} \end{split}$$

 Ω^{\pm}_{Λ} : bounded symmetric domain of type IV of dim $\Omega_{\Lambda} = r - 2$

★個 ▶ ★ 国 ▶ ★ 国 ▶ …

Period of 2-elementary K3 surfaces

 $\begin{array}{l} (S,\theta): \text{ 2-elementary } K3 \text{ surface} \Longrightarrow H^0(S,\Omega_S^2) \subset H^2(S,\mathbb{C})_-\\ (S,\theta): \text{ type } \Lambda \Longrightarrow \exists \; \alpha \colon H^2(S,\mathbb{Z}) \cong \mathbb{L}_{K3} \text{ with} \end{array}$

 $\alpha(H^2(S,\mathbb{Z})_-) = \Lambda$

 ω : nowhere vanishing holomorphic 2-form $\Longrightarrow \alpha(\omega) \in \Lambda \otimes \mathbb{C}$

Definition (Period of 2-elementary K3 surface)

When (S, θ) is of type Λ , its period is defined by

$$\varpi(S,\theta) := [\alpha(\omega)] = \left[\left(\cdots, \int_{\lambda_i} \omega, \cdots \right) \right] \in O^+(\Lambda) \backslash \Omega^+_{\Lambda}$$

where

$$\{\lambda_i\}$$
 is a \mathbb{Z} -basis of $H_2(S,\mathbb{Z})_-$
 $O^+(\Lambda)$ the automorphism group of Λ preserving Ω^+_Λ

・ロト ・ 同ト ・ ヨト ・ ヨト

Theorem

The moduli space of Borcea-Voisin threefolds of type Λ is isomorphic to

$$\mathcal{M}^0_\Lambda imes X(1) = O^+(\Lambda) \setminus (\Omega^+_\Lambda - \mathcal{D}_\Lambda) imes (\mathrm{SL}_2(\mathbb{Z}) \setminus \mathfrak{H})$$

via the period mapping

$$X_{(S,\theta,T)} \mapsto (\varpi(S,\theta), \varpi(T))$$

where

$$\mathcal{D}_{\Lambda} = \bigcup_{d \in \Delta_{\Lambda}} H_d, \quad H_d = \Omega_{\Lambda} \cap d^{\perp}, \quad \Delta_{\Lambda} = \{ d \in \Lambda; \langle d, d \rangle = -2 \}$$

is the discriminant divisor of Ω_{Λ} (Heegner divisor of norm -2-vectors), $\varpi(S, \theta)$ and $\varpi(T)$ are the periods of (S, θ) and T, respectively.

Borcherds products and a formula for au_{BCOV}

To give a formula for the BCOV invariant of the Borcea-Voisin threefolds, we recall Borcherds products.

Recall that the Dedekind $\eta\text{-function}$ and the Jacobi $\theta\text{-series}$ are defined as

$$\eta(\tau) = q^{1/24} \prod_{n=1}^{\infty} (1-q^n), \qquad \vartheta(\tau) = \sum_{n \in \mathbb{Z}} q^{n^2} \qquad (q = e^{2\pi i \tau})$$

Definition

For a 2-elementary lattice $\Lambda,$ define a modular form ϕ_Λ for $\Gamma_0(4)$ by

$$\phi_{\Lambda}(\tau) := \eta(\tau)^{-8} \eta(2\tau)^8 \eta(4\tau)^{-8} \vartheta(\tau)^{12-r(\Lambda)}$$

To construct a Borcherds product for Λ , we lift $\phi_{\Lambda}(\tau)$ to a vector-valued modular form for $Mp_2(\mathbb{Z})$ using the Weil representation $\rho_{\Lambda} \colon Mp_2(\mathbb{Z}) \to GL(\mathbb{C}[\Lambda^{\vee}/\Lambda]).$

Weil representation for 2-elementary lattices

$$\begin{split} &\Lambda: \text{2-elementary lattice, i.e., } \Lambda^\vee/\Lambda = (\mathbb{Z}/2\mathbb{Z})^{\ell(\Lambda)} \\ &\{\mathfrak{e}_\gamma\}_{\gamma\in\Lambda^\vee/\Lambda}: \text{ standard basis of the group ring } \Lambda^\vee/\Lambda \\ &\mathbb{C}[\Lambda^\vee/\Lambda] = \mathbb{C}[(\mathbb{Z}/2\mathbb{Z})^{\ell(\Lambda)}] = \mathbb{C}^{2^{\ell(\Lambda)}}: \text{ the group ring of } \Lambda^\vee/\Lambda \\ &\operatorname{Mp}_2(\mathbb{Z}):= \{(\binom{a\,b}{c\,d}, \sqrt{c\tau+d}); \, \binom{a\,b}{c\,d} \in \operatorname{SL}_2(\mathbb{Z})\} \\ &S, \ T: \text{ standard generator of } \operatorname{Mp}_2(\mathbb{Z}) \end{split}$$

$$S := \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right), \qquad T := \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right)$$

Definition (Weil representation)

The Weil representation $\rho_\Lambda\colon Mp_2(\mathbb{Z})\to GL(\mathbb{C}[\Lambda^\vee/\Lambda])$ is defined by

$$\rho_{\Lambda}(T)\,\mathfrak{e}_{\gamma}:=e^{\pi i\gamma^{2}}\mathfrak{e}_{\gamma},\qquad\rho_{\Lambda}(S)\,\mathfrak{e}_{\gamma}:=\frac{i^{-\sigma(\Lambda)/2}}{\sqrt{|\Lambda^{\vee}/\Lambda|}}\sum_{\delta\in\Lambda^{\vee}/\Lambda}e^{-2\pi i\gamma\cdot\delta}\,\mathfrak{e}_{\delta}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Definition (Vector-valued modular form for 2-elementary lattice)

$$F_{\Lambda}(\tau) := \sum_{\gamma \in \widetilde{\Gamma}_{0}(4) \setminus \operatorname{Mp}_{2}(\mathbb{Z})} (\phi_{\Lambda}|_{\gamma})(\tau) \, \rho_{\Lambda}(\gamma^{-1}) \, \mathfrak{e}_{0}$$

where
$$(f|_{\gamma})(\tau) := (c\tau + d)^{-wt(f)} f(\frac{a\tau+b}{c\tau+d})$$
 for $\gamma = {a \atop c \atop d} b \in SL_2(\mathbb{Z})$

Fact (Modularity of F_{Λ})

 $F_\Lambda(au)$ is a modular form of type ho_Λ of weight $1-b^-(\Lambda)/2$, i.e.,

$$F_{\Lambda}\left(\frac{a\tau+b}{c\tau+d}\right) = (c\tau+d)^{1-\frac{b^{-}(\Lambda)}{2}}\rho_{\Lambda}\left(\binom{a\ b}{c\ d}, \sqrt{c\tau+d}\right) \cdot F_{\Lambda}(\tau)$$

for all $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, $\sqrt{c\tau + d} \in Mp_2(\mathbb{Z})$

- 4 目 ト - 4 日 ト

Borcherds products

Write

$$F_{\Lambda}(\tau) = \sum_{\gamma \in \Lambda^{\vee} / \Lambda} \mathfrak{e}_{\gamma} \sum_{m \in \mathbb{Z} + \gamma^2 / 2} c_{\gamma}(m) q^m$$

For simplicity, assume

$$\Lambda = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \oplus L$$

where L is a 2-elementary Lorentzian lattice $C_L = C_L^+ \amalg C_L^- = \{x \in L \otimes \mathbb{R}; x^2 > 0\}$: positive cone of L

Definition (Borcherds product)

For $z \in L \otimes \mathbb{R} + i \mathcal{W}$ where $\mathcal{W} \subset \mathcal{C}_L^+$ is a "Weyl chamber", define

$$\Psi_{\Lambda}(z,F_{\Lambda}) := e^{2\pi i \langle \varrho, z \rangle} \prod_{\gamma \in L^{\vee}/L} \prod_{\lambda \in L+\gamma, \, \lambda \cdot \mathcal{W} > 0} \left(1 - e^{2\pi i \langle \lambda, z \rangle} \right)^{c_{\gamma}(\lambda^2/2)}$$

The Borcherds product $\Psi_{\Lambda}(z, F_{\Lambda})$ is viewed as a formal function on Ω_{Λ}^+

Fact (Realization of Ω_{Λ} as a tube domain)

• $L\otimes \mathbb{R}+i\,\mathcal{C}_L^+$ is isomorphic to \varOmega_Λ^+ via the exponential map

$$L\otimes \mathbb{R} + i\,\mathcal{C}_L^+
i z \to \exp(z) := \left[\left(1, z, \frac{\langle z, z \rangle}{2}\right)\right] \in \Omega_\Lambda^+$$

• Through this identification, $O^+(\Lambda)$ acts on $L \otimes \mathbb{R} + i \mathcal{C}_L^+$

Theorem (Borcherds)

The infinite product $\Psi_{\Lambda}(z, F_{\Lambda})$ extends to a (possibly meromorphic) automorphic form on $L \otimes \mathbb{R} + i \mathcal{C}_L^+ \cong \Omega_{\Lambda}^+$ for $O^+(\Lambda)$

Theorem (Ma-Y., Y.)

Let $(r, \delta) \neq (12, 0), (20, 0)$. \exists constant C_{Λ} depending only on Λ s.t.

$$\tau_{\mathrm{BCOV}}(X_{(S,\theta,T)})^{2^{g-1}(2^g+1)} = C_{\Lambda} \left\| \Psi_{\Lambda} \left(\varpi(S,\theta), 2^{g-1} F_{\Lambda} \right) \right\|^{2} \\ \times \left\| \chi_{g} \left(\varpi(S^{\theta}) \right)^{8} \right\|^{2} \left\| \eta \left(\varpi(T) \right)^{24} \right\|^{2^{g}(2^{g}+1)}.$$

$$\begin{split} \Lambda &: \text{type of } X_{(S,\theta,T)}, \quad r = \operatorname{rk} \Lambda \\ \delta &\in \{0,1\} : \text{ parity of the discriminant form } q_{\Lambda} \colon \Lambda^{\vee} / \Lambda \to \mathbb{Q} / 2\mathbb{Z} \\ g &= g(\Lambda) : \text{ total genus of } S^{\theta} \\ \chi_g^8 : \text{ Siegel modular form on } \mathfrak{S}_g \text{ of weight } 2^{g+1}(2^g+1) \\ \chi_g(T)^8 &:= \prod_{(a,b) \text{ even }} \theta_{a,b}(T)^8, \quad T \in \mathfrak{S}_g \\ \varpi(S^{\theta}) \in \mathfrak{S}_g : \text{ period of the fixed-curve } S^{\theta} = \{x \in S; \ \theta(x) = x\}. \end{split}$$

The structure of the invariant : Case $(r, \delta) = (12, 0)$

Theorem (Ma-Y., Y.)

Let $(r, \delta) = (12, 0)$. \exists constant C_{Λ} depending only on Λ s.t.

$$\tau_{\mathrm{BCOV}}(X_{(S,\theta,T)})^{(2^{g-1}+1)(2^g-1)} = C_{\Lambda} \left\| \Psi_{\Lambda} \left(\varpi(S,\theta), (2^{g-1}+1)F_{\Lambda} \right) \right\|^{2} \\ \times \left\| \Upsilon_{g} \left(\varpi(S^{\theta}) \right) \right\|^{2} \\ \times \left\| \eta \left(\varpi(T) \right)^{24} \right\|^{2(2^{g-1}+1)(2^{g}-1)}$$

 \varUpsilon_g : Siegel modular form of degree g and weight $2(2^g-1)(2^g+2)$

$$\Upsilon_g(T) := \chi_g(T)^8 \sum_{(a,b) \text{ even}} \theta_{a,b}(T)^{-8}$$

elementary symmetric polynomial of degree $(2^g-1)(2^{g-1}+1)$ in the even theta constants $\theta_{a,b}(T)^8$

The structure of the invariant : Case $(r, \delta) = (20, 0)$

Theorem (Ma-Y., Y.)

Let $(r, \delta) = (18, 0)$. \exists constant C_{Λ} depending only on Λ s.t.

$$\tau_{\mathrm{BCOV}}(X_{(S,\theta,T)})^{(2^{g-1}+1)(2^g-1)} = C_{\Lambda} \left\| \Psi_{\Lambda} \left(\varpi(S,\theta), 2^{g-1}F_{\Lambda} + f_{\Lambda} \right) \right\|^{2} \\ \times \left\| \Upsilon_{g} \left(\varpi(S^{\theta}) \right) \right\|^{2} \left\| \eta \left(\varpi(T) \right)^{24} \right\|^{2(2^{g-1}+1)(2^{g-1})}$$

 f_Λ : $\mathbb{C}[\Lambda^ee/\Lambda]$ -valued elliptic modular form

$$f_{\Lambda}(au) := rac{ heta_{\mathbb{E}_8}(au)}{\eta(au)^{24}} \qquad (\Lambda = \mathbb{U} \oplus \mathbb{U} \oplus \mathbb{E}_8 \oplus \mathbb{E}_8)$$

$$\begin{split} f_{\Lambda}(\tau) &:= 8 \sum_{\gamma \in \Lambda^{\vee}/\Lambda} \left\{ \eta \left(\frac{\tau}{2}\right)^{-8} \eta(\tau)^{-8} + (-1)^{\gamma^2} \eta \left(\frac{\tau+1}{2}\right)^{-8} \eta(\tau+1)^{-8} \right\} \mathfrak{e}_{\gamma} \\ &+ \eta(\tau)^{-8} \eta(2\tau)^{-8} \mathfrak{e}_{0} \qquad (\Lambda = \mathbb{U} \oplus \mathbb{U}(2) \oplus \mathbb{E}_{8} \oplus \mathbb{E}_{8}) \end{split}$$

Definition

The Hodge line bundle on the Siegel modular variety

$$\mathcal{A}_g = \operatorname{Sp}_{2g}(\mathbb{Z}) \backslash \mathfrak{S}_g$$

is the line bundle $\mathcal{F}_g = \mathrm{Sp}_{2g}(\mathbb{Z}) \setminus (\mathfrak{S}_g \times \mathbb{C})$ associated to the automorphic factor

$$\operatorname{Sp}_{2g}(\mathbb{Z}) \ni {AB \choose CD} \mapsto \det(C\tau + D) \in \mathcal{O}(\mathfrak{S}_g)$$

A section of $\mathcal{F}_{g}^{\otimes q}$ is identified with a Siegel modular form of weight q.

Fact (Baily-Borel)

 \mathcal{F}_g extends to an ample \mathbb{Q} -line bundle on the Satake compactification \mathcal{A}_a^*

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

The Torelli map

Recall that
$$\mathcal{M}^0_{\Lambda} = O^+(\Lambda) \setminus (\Omega^+_{\Lambda} - \mathcal{D}_{\Lambda}).$$

Definition (Torelli map)

The Torelli map $J_\Lambda\colon \mathcal{M}^0_\Lambda o \mathcal{A}_g$ is defined by

$$J_{\Lambda}(S,\theta) = [\operatorname{Jac}(S^{\theta})] = [\varpi(S^{\theta})]$$

where

 $(S, \theta) \in \mathcal{M}^0_{\Lambda}$: 2-elementary K3 surface of type Λ , i.e., $H^2(S, \mathbb{Z})_- \cong \Lambda$ S^{θ} : fixed curve of $\theta \colon S \to S$ $[\operatorname{Jac}(S^{\theta})]$: isomorphism class of the Jacobian variety of S^{θ} $[\varpi(S^{\theta})] \in \mathcal{A}_g$: the period of S^{θ} .

The Torelli map is identified with the $O^+(\Lambda)$ -equivariant map

$$J_{\Lambda} \colon \Omega_{\Lambda}^{+} - \mathcal{D}_{\Lambda} \to \mathcal{A}_{g}$$

э

・ロト ・四ト ・ヨト ・ヨト

Fact (Borel, Kobayashi-Ochiai)

The Torelli map extends to an $O^+(\Lambda)$ -equivariant holomorphic map

$$J_{\Lambda} \colon \Omega_{\Lambda}^+ \setminus \operatorname{Sing} \mathcal{D}_{\Lambda} \to \mathcal{A}_g^*$$

In particular, J_{Λ} is a rational map from \mathcal{M}_{Λ} to \mathcal{A}_q^*

Let $d \in \Delta_{\Lambda}$, i.e., $d \in \Lambda$ and $\langle d, d \rangle = -2$. Then

$$H_d = \Omega_{\Lambda}^+ \cap d^{\perp} = \{ [\eta] \in \Omega_{\Lambda}^+; \, \langle \eta, d \rangle = 0 \}$$

is identified with $\Omega^+_{\Lambda\cap d^{\perp}}$. Since $\Lambda\cap d^{\perp}$ is 2-elementary, the Torelli map $J_{\Lambda\cap d^{\perp}}: \Omega^+_{\Lambda\cap d^{\perp}}\setminus \operatorname{Sing} \mathcal{D}_{\Lambda\cap d^{\perp}} \to \mathcal{A}^*_{g'}$ is well defined, where $g' = g(\Lambda \cap d^{\perp})$.

Fact (Compatibility of the Torelli maps)

 $J_{\Lambda}|_{H_d \setminus \operatorname{Sing} \mathcal{D}_{\Lambda}} = J_{\Lambda \cap d^{\perp}}$

The line bundle λ_{Λ}^{q}

 $J^*_{\Lambda}\mathcal{F}^{\otimes q}_g$ is an $O^+(\Lambda)$ -equivariant holomorphic line bundle on $\Omega^+_{\Lambda} \setminus \operatorname{Sing} \mathcal{D}_{\Lambda}$. Let

$$\iota_{\Lambda} \colon \Omega_{\Lambda}^+ \setminus \operatorname{Sing} \mathcal{D}_{\Lambda} \hookrightarrow \Omega_{\Lambda}^+$$

be the inclusion.

Definition

Define λ_{Λ}^q as the trivial extension of $J_{\Lambda}^* \mathcal{F}_g^{\otimes q}$ from $\Omega_{\Lambda}^+ \setminus \operatorname{Sing} \mathcal{D}_{\Lambda}$ to Ω_{Λ}^+

$$\lambda^q_\Lambda := (\iota_\Lambda)_* \mathcal{O}_{\Omega^+_\Lambda \setminus \operatorname{Sing} \mathcal{D}_\Lambda} \left(J^*_\Lambda \mathcal{F}_g^{\otimes q}
ight).$$

Since $J_{\Lambda} \colon \Omega^+_{\Lambda} \dashrightarrow \mathcal{A}^*_g$ is a rational map, one has the following:

Fact

 λ^q_{Λ} is an $O^+(\Lambda)$ -equivariant invertible sheaf on Ω^+_{Λ} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Automorphic forms on Ω^+_{Λ}

Fix a non-zero isotropic vector $\ell_\Lambda \in \Lambda$ Then

$$\Omega_{\Lambda}^+ \cong L \otimes \mathbb{R} + i\mathcal{C}_L^+,$$

where $L = \ell_{\Lambda}^{\perp} / \mathbb{Z} \ell_{\Lambda}$ is a Lorentzian lattice

Define the automorphic factor $j_{\Lambda}(\gamma,\cdot)\in \mathcal{O}^*(\Omega^+_{\Lambda})$, $\gamma\in O(\Lambda)$ by

$$j_{\Lambda}(\gamma, [z]) := \frac{\langle \gamma(z), \ell_{\Lambda} \rangle}{\langle z, \ell_{\Lambda} \rangle} \qquad [z] \in \Omega_{\Lambda}^+.$$

Definition

 $F\in H^0(\Omega^+_\Lambda,\lambda^q_\Lambda)$ is an automorphic form of weight (p,q) if

$$F(\gamma \cdot [z]) = j_{\Lambda}(\gamma, [z])^p \gamma(F([z]))$$

for all $\gamma \in O^+(\Lambda)$ and $[z] \in \Omega^+_\Lambda$

Quasi-pullback of automorphic forms

For a root $d \in \Delta_{\Lambda}$,

$$\frac{\langle z,d\rangle}{\langle z,\ell_\Lambda\rangle},\qquad [z]\in\Omega^+_\Lambda$$

is a holomorphic function on Ω^+_{Λ} with zero divisor $H_d = \Omega^+_{\Lambda} \cap d^{\perp}$.

Definition (Quasi-pullback)

Let $F \in H^0(\Omega_\Lambda, \lambda_\Lambda^q)$ be a section vanishing on H_d of order k.

$$\rho^{\Lambda}_{\Lambda\cap d^{\perp}}(F):=\left.\left.\left.\left(\frac{\langle\cdot,\ell_{\Lambda}\rangle}{\langle\cdot,d\rangle}\right)^{k}\cdot F\right.\right\}\right|_{H}$$

is called the *quasi-pullback* of F to $H_d = \Omega^+_{\Lambda \cap d^{\perp}}$. Hence $\rho^{\Lambda}_{\Lambda \cap d^{\perp}}(F) \in H^0(\Omega^+_{\Lambda \cap d^{\perp}}, \lambda^q_{\Lambda \cap d^{\perp}})$. The case q = 0 is the quasi-pullback in the classical sense.

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

The quasi-pullback of the Siegel modular form χ_q^8

Recall that χ_g is the Siegel modular form on \mathfrak{S}_g defined as

 $\chi_g = \prod_{(a,b) \text{ even }} \theta_{a,b}.$

Main Theorem

Let $d \in \Delta_{\Lambda}$. Set $\Lambda' := \Lambda \cap d^{\perp}$ and $g' := g(\Lambda')$. Assume g' = g - 1 and $(r, \delta), (r(\Lambda'), \delta(\Lambda')) \neq (12, 0), (20, 0)$. Then \exists constant $C_{\Lambda, d}$ s.t.

$$\frac{\rho_{\Lambda'}^{\Lambda}(J_{\Lambda}^{*}\chi_{g}^{8(2^{g'}+1)})}{J_{\Lambda'}^{*}\chi_{g'}^{16(2^{g}+1)}} = C_{\Lambda,d} \left(\frac{\rho_{\Lambda'}^{\Lambda}\left(\Psi_{\Lambda}(\cdot,(2^{g'}+1)2^{g-1}F_{\Lambda})\right)}{\Psi_{\Lambda'}(\cdot,2(2^{g}+1)2^{g'-1}F_{\Lambda'})}\right)^{-1}$$

In particular, $\rho_{\Lambda'}^{\Lambda}(J_{\Lambda}^*\chi_g^{8(2^{g'}+1)})/J_{\Lambda'}^*\chi_{g'}^{16(2^g+1)}$ is a Borcherds product, since $\rho_{\Lambda'}^{\Lambda}\left(\Psi_{\Lambda}(\cdot,(2^{g'}+1)2^{g-1}F_{\Lambda})\right)$ is a Borcherds product by S. Ma.

э

・ 何 ト ・ ヨ ト ・ ヨ ト

Idea of the proof

Set

$$\Phi_{\Lambda} := \Psi_{\Lambda}(\cdot, 2^{g-1}F_{\Lambda}) \otimes J_{\Lambda}^* \chi_g^8.$$

Then $\tau_{\rm BCOV}$ is given as follows:

$$\tau_{\rm BCOV} = C_{\Lambda} \left\| \Phi_{\Lambda}^{\frac{1}{2g-1}(2g+1)} \right\|^2 \|\eta^{24}\|^2.$$

The Main Theorem is a consequence of the following formula, which determines how the BCOV invariants behave under "transition".

Theorem

$$\rho^{\Lambda}_{\Lambda'}\left(\Phi^{2^{g'}+1}_{\Lambda}\right)=C_{\Lambda,d}\,\Phi^{2(2^g+1)}_{\Lambda'}$$

We first prove that the L.H.S. is an automorphic form. Then we prove the above equality by comparing the weights and the divisors of Φ_{Λ} and $\Phi_{\Lambda'}$.