Twisted endoscopic character relation for Kaletha's regular supercuspidal *L*-packets

Masao Oi

Kyoto University (Hakubi center)

RIMS conference "Automorphic forms, Automorphic representations, Galois representations, and its related topics" (January 29, 2021)

Local Langlands correspondence

- *F*: a *p*-adic field.
- G: a connected reductive group over F ($G := \mathbf{G}(F)$).
- $\Pi(\mathbf{G}) := \{ \text{irreducible admissible representations of } G \} / \sim$,
- $\Phi(\mathbf{G}) := \{L\text{-parameters of } \mathbf{G}\}/\sim.$

Local Langlands correspondence (LLC)

There exists a natural map with finite fibers:

$$LLC_{\mathbf{G}} \colon \Pi(\mathbf{G}) \to \Phi(\mathbf{G}).$$

In other words, there exists a natural partition of the set $\Pi(\mathbf{G})$ into subsets (which are finite, called *L*-packets) parametrized by *L*-parameters:

$$\Pi(\mathbf{G}) = \bigsqcup_{\phi \in \Phi(\mathbf{G})} \Pi_{\phi}^{\mathbf{G}} \quad (\Pi_{\phi}^{\mathbf{G}} := \mathrm{LLC}_{\mathbf{G}}^{-1}(\phi)).$$

LLC is still conjectural in general, but a number of results have been obtained.

Motivation: comparison of different constructions

Approach 1: Specialize the group. For example,

- GL_N ; Harris–Taylor
- quasi-split classical groups (Sp $_{2n}$, SO $_N$, U $_N$); Arthur, Mok

Approach 2: Specialize the class of representations. For example,

 regular supercuspidal representations; Kaletha (works for tamely ramified groups) (he dropped the regularity recently; arXiv:1912.03274)

Q. Do the two approaches give the same LLC (on their "intersection")?

Theorem (O.-Tokimoto, 2019)

We assume that $p \neq 2$. Kaletha's and Harris–Taylor's LLC coincide for regular supercuspidal representations of GL_N .

Q. Kaletha's LLC = Arthur's (Mok's) LLC?

Key: Arthur's LLC is characterized by the twisted endoscopic character relation.

Twisted endoscopic character relation (TECR)

- $\theta \curvearrowright \mathbf{G}$: a "twist" (i.e., rational automorphism preserving a pinning) • \mathbf{H} : an endoscopic group for (\mathbf{G}, θ)
 - = a quasi-split connected reductive group ${\bf H}$ over F equipped with
 - $\hat{\xi} \colon {}^{L}\mathbf{H} \hookrightarrow {}^{L}\mathbf{G} \text{ such that } \hat{\xi}(\hat{\mathbf{H}}) = \hat{\mathbf{G}}^{\mathrm{Int}(s)\circ\hat{\theta},0} \text{ for } s \in \hat{\mathbf{G}}.$
- \blacksquare The existences of ${\rm LLC}_{{\bf H}}$ and ${\rm LLC}_{{\bf G}}$ induces a lifting of ${\it L}\mbox{-packets}$:

Twisted endoscopic character relation = an identity between (twisted) characters of representations in $\Pi_{\phi}^{\mathbf{G}}$ and $\Pi_{\phi}^{\mathbf{H}}$, which characterizes the map $\Pi_{\phi}^{\mathbf{H}} \mapsto \Pi_{\phi}^{\mathbf{G}}$

Goal of my ongoing project

Kaletha's LLC for regular supercuspidal representations satisfies the TECR.

Masao Oi (Kyoto Univ.)

Regular supercuspidal representations

- Assume: G is tamely ramified and $p \gg 0$.
- In 2001, Yu constructed a certain wide class of supercuspidal representations.
- Kaletha reparametrized "regular" Yu-data by "tame elliptic regular pairs"; (\mathbf{S}, ϑ) consists of
 - $\mathbf{S} \subset \mathbf{G}$: a tamely ramified elliptic maximal torus defined over F,
 - $\vartheta \colon \mathbf{S}(F) \to \mathbb{C}^{\times}$: a "regular" character.

Construction of *L*-parameters/*L*-packets

• (\mathbf{S}, ϑ) : a tame elliptic regular pair of \mathbf{G} .

Construction of an L-parameter ϕ

- LLC for **S** gives $\phi_{\vartheta} \colon W_F \to {}^L \mathbf{S}$.
- Langlands–Shelstad construction gives ${}^{L}j_{\chi} \colon {}^{L}\mathbf{S} \hookrightarrow {}^{L}\mathbf{G}$.
- Then we get an *L*-parameter ϕ of **G** ("regular supercuspidal *L*-parameter"): $\phi: W_F \xrightarrow{\phi_{\vartheta}} {}^L \mathbf{S} \xrightarrow{{}^L j_{\chi}} {}^L \mathbf{G}.$

Construction of an *L*-packet $\Pi_{\phi}^{\mathbf{G}}$

 \blacksquare Put $\mathcal{J}^{\mathbf{G}}$ to be the stable G-conjugacy class of the embedding $\mathbf{S} \hookrightarrow \mathbf{G}$ and

$$\mathcal{J}_G^{\mathbf{G}} := \{ j \in \mathcal{J}^{\mathbf{G}} \mid \text{defined over } F \} / G \text{-conj.}$$

 \rightsquigarrow for each $j \in \mathcal{J}_G^{\mathbf{G}}$, we get a tame elliptic regular pair $(j(\mathbf{S}), \vartheta_j)$ of **G**. ■ Put

$$\Pi_{\phi}^{\mathbf{G}} := \{ \pi_j \mid j \in \mathcal{J}_G^{\mathbf{G}} \}, \quad \pi_j := \pi_{(j(\mathbf{S}), \vartheta_j)}.$$

Setting of the problem

- G: a quasi-split connected reductive group with θ over F.
- **H**: an endoscopic group for (\mathbf{G}, θ) .
- Suppose: G and H are tamely ramified and $p \gg 0$.
- ϕ : a "toral" regular supercuspidal *L*-parameter of **G**.
- Assume: ϕ factors through ${}^{L}\mathbf{H} \hookrightarrow {}^{L}\mathbf{G}$.

 $\rightsquigarrow \phi$ is regarded as an *L*-parameter of **H** (again toral).

In
$$\Pi^{\mathbf{G}}_{\phi}$$
 is $heta$ -stable, i.e., $\Pi^{\mathbf{G}}_{\phi}\circ heta=\Pi^{\mathbf{G}}_{\phi}$ as sets.

Precise statement of main result

Main result at present (ECR for $\Pi_{\phi}^{\mathbf{G}}$ and $\Pi_{\phi}^{\mathbf{H}}$)

For an elliptic strongly regular s-s. element $\delta\in \tilde{G}$ having a norm in H, we have

$$\sum_{\boldsymbol{\tau}\in\Pi_{\phi}^{\mathbf{G}}}\Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\boldsymbol{\pi})\tilde{\Theta}_{\boldsymbol{\pi}}(\boldsymbol{\delta}) = \sum_{\boldsymbol{\gamma}\in H/\mathrm{st}}\frac{D_{\mathbf{H}}(\boldsymbol{\gamma})^{2}}{D_{\tilde{\mathbf{G}}}(\boldsymbol{\delta})^{2}}\Delta_{\mathbf{H},\mathbf{G}}(\boldsymbol{\gamma},\boldsymbol{\delta})\sum_{\boldsymbol{\pi}_{\mathbf{H}}\in\Pi_{\phi}^{\mathbf{H}}}\Theta_{\boldsymbol{\pi}_{\mathbf{H}}}(\boldsymbol{\gamma}).$$

•
$$\Theta_{\pi_{\mathbf{H}}}$$
 is the Harish-Chandra character of $\pi_{\mathbf{H}} \in \Pi_{\phi}^{\mathbf{H}}$.

- Θ
 [¬]
 [¬]
- $\Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi) \in \mathbb{C}$ is an explicit constant ("spectral transfer factor"). $(\Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi) \neq 0$ if and only if π is θ -stable)
- γ runs over stable conjugacy classes of norms of δ in H.
- $D_{\mathbf{H}}$ and $D_{\tilde{\mathbf{G}}}$ denote the Weyl discriminants.
- $\Delta_{\mathbf{H},\mathbf{G}}(\gamma,\delta)$ is the Langlands–Shelstad–Kottwitz transfer factor.

Strategy: imitate Kaletha's proof in the standard case (i.e., $\theta = id$).

Rough outline of Kaletha's proof

- Adler–DeBacker–Spice formula describes the characters in terms of a descended group G' (or H').
- \blacksquare Langlands–Shelstad descent gives $({\bf G}', {\bf H}')$ a structure of endoscopy.
- \blacksquare Waldspurger–Ngô transfer gives a comparison between Lie algebras of ${\bf G}'$ and ${\bf H}'.$ For this, we need
 - Kaletha's descent lemma, and
 - Kaletha's refinement of ADS formula.

Adler-DeBacker-Spice character formula

- Let (\mathbf{S}, ϑ) be a toral tame elliptic regular pair of depth $r \in \mathbb{R}_{>0}$.
- \blacksquare Let $\delta \in G$ be an elliptic strongly regular semisimple element.
- Take a normal *r*-approximation $\delta = \delta_{< r} \cdot \delta_{\ge r}$;
 - $\delta_{< r}$: "p-adically shallower than r"-part of δ ,
 - $\delta_{\geq r}$: "p-adically deeper than r"-part of δ .
 - $\delta_{\geq r} \in \mathbf{G}_{\delta < r} := \operatorname{Cent}_{\mathbf{G}}(\delta_{< r})^{\circ}.$

Prop (1st form of ADS formula)

$$\Theta_{\pi_{(\mathbf{S},\vartheta)}}(\delta) = \sum_{\substack{g \in S \setminus G/G_{\delta_{< r}} \\ g\delta_{< r}g^{-1} \in S}} \Theta_{\sigma}(g\delta_{< r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X^{*}g}^{\mathbf{G}_{\delta < r}}(\log(\delta_{\geq r}))$$

π_(S,ϑ) = c-Ind^{G(F)}_{K_σ} σ for certain open compact (mod-center) subgroup K_σ.
 X* ∈ (Lie S)* is an element representing ϑ|_{S_r}.

• $\hat{\mu}_{g^{-1}X^*g}^{\mathbf{G}_{\delta < r}}$ is the Fourier transform of the orbital integral on Lie $\mathbf{G}_{\delta < r}$. (with respect to the $\mathbf{G}_{\delta < r}(F)$ -orbit of $g^{-1}X^*g$)

Langlands–Shelstad descent & reduction to Lie algebras

Recall:

$$\begin{split} \Pi_{\phi}^{\mathbf{G}} & \stackrel{1:1}{\longleftrightarrow} \mathcal{J}_{G}^{\mathbf{G}} := \{ j \in \mathcal{J}^{\mathbf{G}} \mid j \colon \mathbf{S} \hookrightarrow \mathbf{G} \colon \text{defined over } F \} / \sim_{G}, \\ \Pi_{\phi}^{\mathbf{H}} & \stackrel{1:1}{\longleftrightarrow} \mathcal{J}_{H}^{\mathbf{H}} := \{ j_{\mathbf{H}} \in \mathcal{J}^{\mathbf{H}} \mid j_{\mathbf{H}} \colon \mathbf{S}_{\mathbf{H}} \hookrightarrow \mathbf{H} \colon \text{defined over } F \} / \sim_{H}. \end{split}$$
For each $j \in \mathcal{J}_{G}^{\mathbf{G}}$ and $j_{\mathbf{H}} \in \mathcal{J}_{H}^{\mathbf{H}}$, we have
 $\mathbf{G}\text{-side:} \ \Theta_{\pi_{j}}(\delta) = \sum \Theta_{\sigma_{j}}(g\delta_{< r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X_{j}^{*}g}^{\mathbf{G}}(\log(\delta_{\geq r}))$
 $\mathbf{H}\text{-side:} \ \Theta_{\pi_{j_{\mathbf{H}}}}(\gamma) = \sum \Theta_{\sigma_{\mathbf{H},j_{\mathbf{H}}}}(h\gamma_{< r}h^{-1}) \cdot \hat{\mu}_{h^{-1}X_{\mathbf{H},j_{\mathbf{H}}}^{\mathbf{H}\gamma_{< r}}h(\log(\gamma_{\geq r}))$

The Langlands–Shelstad descent gives an endoscopic structure on $(\mathbf{H}_{\gamma_{< r}}, \mathbf{G}_{\delta_{< r}})$.

Waldspurger-Ngô transfer on Lie algebras

Waldspurger–Ngô transfer (= Lie algebra version of SECR)

$$\gamma(\mathfrak{g}')\sum_{X'^*\sim_{\mathrm{st}}X^*}\Delta_{\mathbf{H}',\mathbf{G}'}(Y^*,X'^*)\hat{\mu}_{X'^*}^{\mathbf{G}'}(X)$$

$$=\gamma(\mathfrak{h}')\sum_{Y/\mathrm{st}}\Delta_{\mathbf{H}',\mathbf{G}'}(Y,X)\sum_{Y'^*\sim_{\mathrm{st}}Y^*}\hat{\mu}_{Y'^*}^{\mathbf{H}'}(Y)$$

• index sets: G' (resp. H')-conj. classes in a G' (resp. H')-conj. class.

Recall: G-side of SECR

$$\sum_{j \in \mathcal{J}_{G}^{\mathbf{G}}} \Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi_{j}) \Theta_{\pi_{j}}(\delta) = \sum_{j \in \mathcal{J}_{G}^{\mathbf{G}}} \Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi_{j}) \sum_{\substack{g \in j(S) \backslash G/G' \\ g \delta_{< r}g^{-1} \in j(S)}} \Theta_{\sigma_{j}}(^{g} \delta_{< r}) \cdot \hat{\mu}_{X_{j}^{*,g}}^{\mathbf{G}'}(\log(\delta_{\geq r}))$$

 \rightsquigarrow We need to consider a descent and transfer of index sets!

Transfer of index sets; Kaletha's descent lemma

The index set of ADS formula is understood as

$$\mathcal{J}_{G'}^G(j) := \{k \in j \mid k \colon \mathbf{S} \hookrightarrow \mathbf{G}' \subset \mathbf{G} \colon \text{defined over } F\} / \sim_{G'}.$$

 $\{g \in j(S) \backslash G/G' \mid g\delta_{< r}g^{-1} \in j(S)\} \stackrel{1:1}{\longleftrightarrow} \mathcal{J}_{G'}^G(j) \colon g \mapsto \operatorname{Int}(g^{-1}) \circ j$

• Combine $\mathcal{J}_G^{\mathbf{G}}$ with $\mathcal{J}_{G'}^G$ and divide it again via stable \mathbf{G}' -conjugacy.

• Kaletha's descent lemma relates $\mathcal{J}_{\mathbf{G}'}^{\mathbf{G}}$ to $\mathcal{J}_{\mathbf{H}'}^{\mathbf{H}}$.

• The Waldspurger–Ngô transfer relates $\mathcal{J}_{G'}^{\mathbf{G}'}$ to $\mathcal{J}_{H'}^{\mathbf{H}'}$.

Masao Oi (Kyoto Univ.)

Computation of the contributions of shallow parts

1st form of ADS formula

$$\Theta_{\pi_j}(\delta) = \sum_{\substack{g \in j(S) \setminus G/G' \\ g \delta_{< r}g^{-1} \in j(S)}} \Theta_{\sigma}(g \delta_{< r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X_j^*g}^{\mathbf{G}'}(\log(\delta_{\geq r})).$$

- Adler–Spice ('09) computed Θ_{σ} explicitly.
- DeBacker-Spice ('18) sophisticated it based on a root-theoretic language.
- Kaletha ('19) rewrote it via endoscopic invariants such as transfer factors.

ADS formula rewritten by Kaletha

$$\Theta_{\pi_j}(\delta) = \frac{e(\mathbf{G})}{e(\mathbf{G}')} \cdot \frac{\varepsilon(\mathbf{T}_{\mathbf{G}} - \mathbf{T}_{\mathbf{G}'^*})}{D_{\mathbf{G}}(\delta)}$$
$$\sum_{\substack{g \in j(S) \setminus G/G'\\g\delta < rg^{-1} \in j(S)}} \Delta_{\mathrm{II}}^{\mathbf{G},\mathrm{abs}}(g\delta_{< r}g^{-1}) \cdot \vartheta \circ j^{-1}(g\delta_{< r}g^{-1}) \cdot \hat{\iota}_{g^{-1}X_j^*g}^{\mathbf{G}'}(\log(\delta_{\geq r})).$$

 \rightsquigarrow Finally, by putting $\Delta^{\text{spec}}_{\mathbf{H},\mathbf{G}}(\pi_j) := \langle \text{inv}(j_{\mathfrak{w}},j),s \rangle$, we get SECR.

Twisted version of the Adler-DeBacker-Spice formula

- Let $\delta \in \tilde{G}$ be an elliptic strongly regular semisimple element.
- Suppose: δ has a norm γ ∈ H.
 → By transferring γ = γ_{<r} · γ_{≥r} from H to G̃, get δ = δ_{<r} · δ_{≥r}. (Note: δ_{<r} ∈ G̃ and δ_{≥r} ∈ G_{δ_{<r}})

1st form of twisted ADS formula

$$\tilde{\Theta}_{\pi_{(\mathbf{S},\vartheta)}}(\delta) = \sum_{\substack{g \in S \setminus G/G_{\delta_{\leq r}} \\ {}^{g}\delta_{\leq r} \in \tilde{S}}} \tilde{\Theta}_{\sigma}(g\delta_{\leq r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X^{*}g}^{\mathbf{G}_{\delta_{\leq r}}}(\exp^{-1}(\delta_{\geq r})).$$

• This is completely parallel to the standard case!

 \rightsquigarrow can imitate Kaletha's proof if we have a twisted version of LS descent...?

twisted version of Langlands–Shelstad descent

= Waldspurger's framework "l'endoscopie tordue n'est pas si tordue".

L'endoscopie tordue n'est pas si tordue

- Waldspurger constructed another connected reductive group $\bar{\mathbf{H}}$ relating $\mathbf{G}_{\delta_{< r}}$ to $\mathbf{H}_{\gamma_{< r}}$ via standard and non-standard endoscopy.
- Then he proved that
 - \blacksquare Fourier transforms of orbital integrals are transferred between ${\bf H}_{\rm SC}'$ and $\bar{{\bf H}}_{\rm SC}$,
 - transfer factor for $(\mathbf{H}, \tilde{\mathbf{G}})$ is descended to $(\bar{\mathbf{H}}, \mathbf{G}'_{\mathrm{SC}})$.

Twisted version of Kaletha's descent lemma

• In the standard case, a map $\mathcal{J}_{\mathbf{H}'}^{\mathbf{H}} \to \mathcal{J}_{\mathbf{G}'}^{\mathbf{G}}$ of Kaletha's descent lemma was constructed via admissible isomorphisms (in the sense of LSK):

Unfortunately, we cannot simply imitate this construction in the twisted case.

 \rightsquigarrow We need to "rigidify" admissible isomorphisms in some way.

Masao Oi (Kyoto Univ.)

Waldspurger's "diagram"

• We utilize Waldspurger's notion of a diagram: $(\mathbf{T}^{\flat}, \mathbf{T}_0, \mathbf{T}^{\diamondsuit}, \mathbf{T}_{\natural}, h, g_0, g_1)$.

- A diagram encodes information about how an admissible isomorphism is given by conjugation (i.e., h, g₀, g₁).
- We can formulate a twisted version of Kaletha's descent lemma (which relates $\mathcal{J}_{H'}^{H}$ to $\mathcal{J}_{G'}^{G}$) via diagrams.

```
\rightsquigarrow get a comparison of index sets
```

Computation of the contributions of shallow parts

1st form of twisted ADS formula

$$\tilde{\Theta}_{\pi_{(\mathbf{S},\vartheta)}}(\delta) = \sum_{\substack{g \in S \setminus G/G_{\delta_{\leq r}} \\ {}^{g}\delta_{\leq r} \in \tilde{S}}} \tilde{\Theta}_{\sigma}(g\delta_{\leq r}g^{-1}) \cdot \hat{\mu}_{g^{-1}X^{*}g}^{\mathbf{G}_{\delta_{\leq r}}}(\exp^{-1}(\delta_{\geq r})).$$

- The contribution of the head is eventually reduced to a computation of twisted characters of Weil representations of finite Heisenberg groups.
- We upgrade it to "twisted ADSK" by looking at the definition of Δ in the twisted case carefully.

Proposition (twisted version of ADSK formula)

$$\tilde{\Theta}_{\pi_j}(\delta) = \frac{e(\mathbf{G}_{\theta})}{e(\mathbf{G}')} \cdot \frac{\varepsilon(\mathbf{T}_{\mathbf{G}_{\theta}} - \mathbf{T}_{\mathbf{G}'^*})}{D_{\tilde{\mathbf{G}}}(\delta)}$$
$$\Delta_{\mathrm{II}}^{\tilde{\mathbf{G}},\mathrm{abs}}(g\delta_{< r}g^{-1}) \cdot \tilde{\vartheta} \circ \tilde{j}^{-1}(g\delta_{< r}g^{-1}) \cdot \hat{\iota}_{g^{-1}X_j^*g}^{\mathbf{G}'}(\log(\delta_{\geq r})).$$

 $g \in j(S) \setminus G/G'$ $g \delta_{< r} g^{-1} \in \tilde{S}_{\tilde{i}}$

·)

Spectral transfer factors in twisted endoscopy

$$\sum_{\pi \in \Pi_{\phi}^{\mathbf{G}}} \Delta_{\mathbf{H},\mathbf{G}}^{\mathrm{spec}}(\pi) \tilde{\Theta}_{\pi}(\delta) = \sum_{\gamma \in H/\mathrm{st}} \frac{D_{\mathbf{H}}(\gamma)^{2}}{D_{\tilde{\mathbf{G}}}(\delta)^{2}} \Delta_{\mathbf{H},\mathbf{G}}(\gamma,\delta) \sum_{\pi_{\mathbf{H}} \in \Pi_{\phi}^{\mathbf{H}}} \Theta_{\pi_{\mathbf{H}}}(\gamma),$$

We put

$$\Delta_{\mathbf{H},\mathbf{G}}^{\text{spec}}(\pi_j) := \Delta_{\text{I,III}} \left(\gamma_{< r} \cdot \exp(X_{\mathbf{H},j\mathbf{H}}^*), \delta_{< r} \cdot \exp(X_j^*) \right) \cdot \frac{\vartheta_{\mathbf{H}} \circ j_{\mathbf{H}}^{-1}(\gamma_{< r})}{\tilde{\vartheta} \circ \tilde{j}^{-1}(\delta_{< r})}$$

 $\stackrel{\text{$\sim $}}{\to} \ \text{In fact, } \Delta^{\text{spec}}_{\mathbf{H},\mathbf{G}}(\pi) \ \text{depends only on } \pi. \\ \texttt{$= $ standard case: } \Delta^{\text{spec}}_{\mathbf{H},\mathbf{G}}(\pi) = \langle \text{inv}(j_{\mathfrak{w}},j),s \rangle \ \text{by Kaletha}$

Remark. I borrowed this idea from the argument of Mezo in his proof of the twisted ECR for *L*-packets of real reductive groups (constructed by Langlands).