Zeta morphisms for rank two universal deformations

Kentaro Nakamura

Saga University

January 25, 2021

- *p*: a prime number.
- $\iota_{\infty} \colon \overline{\mathbb{Q}} \hookrightarrow \mathbb{C}, \quad \iota_p \colon \overline{\mathbb{Q}} \hookrightarrow \overline{\mathbb{Q}}_p \colon$ fixed embeddings.
- L: a (sufficiently large) finite extension of \mathbb{Q}_p , $\mathcal{O} = \mathcal{O}_L$, $\varpi \in \mathcal{O}$: a uniformizer, $\mathbb{F} = \mathcal{O}/(\varpi)$.
- $\Gamma = \operatorname{Gal}(\mathbb{Q}(\zeta_{p^{\infty}})/\mathbb{Q}), \quad \Lambda = \mathcal{O}[[\Gamma]]$: the Iwasawa algebra of Γ .
- For a field F, we set $G_F = \operatorname{Gal}(F^{\operatorname{sep}}/F)$.

- $f = \sum_{n=1}^{\infty} a_n q^n \in S_k^{\text{new}}(\Gamma_1(N_f))$: a normalized Hecke eigen cusp newform of level $N_f \ge 1$, weight $k \in \mathbb{Z}_{\ge 2}$.
- $\rho_f \colon G_{\mathbb{Q}} \to \operatorname{GL}_2(\mathcal{O}) \colon$ a Galois representation associated to f, i.e. odd and unramified outside $\Sigma_f = \operatorname{prime}(N_f) \cup \{p\}$ satisfying

 $\operatorname{tr}(\rho_f(\operatorname{Frob}_\ell)) = a_l$

for all $\ell \not\in \Sigma_f$.

• $\mathbf{H}^{i}(\rho_{f}^{*}(1)) := \varprojlim_{k \ge 0} H^{i}(\mathbb{Z}[1/p, \zeta_{p^{k}}], (j_{k})_{*}(\rho_{f}^{*})(1))$: Iwasawa cohomology of $\rho_{f}^{*}(1)$. This is a Λ -module. $(j_{k}: \operatorname{Spec}(\mathbb{Z}[1/\Sigma_{f}, \zeta_{p^{k}}]) \hookrightarrow \operatorname{Spec}(\mathbb{Z}[1/p, \zeta_{p^{k}}])$: the canonical inclusion) Kato defined a non zero Euler system, i.e. a collection of elements

$$z_{np^k} \in H^1(\mathbb{Q}(\zeta_{np^k}), \rho_f^*(1))$$

for $k\geqq 0,\ n\geqq 1$ such that $(n,\Sigma_f)=1$ satisfying the Euler system norm relation, and proved the following :

Theorem (12.4 of Kato (04))

• $\mathbf{H}^2(\rho_f^*(1))$ is a torsion Λ -module.

• $\mathbf{H}^1(\rho_f^*(1))[1/p]$ is a free $\Lambda[1/p]$ -module of rank one.

We can define an element

$$\{z_{p^k}\}_{k\geq 1} \in \mathbf{H}^1(\rho_f^*(1)),$$

but it is not canonical since $\{z_{np^k}\}_{n,k}$ depends on many choices $c, d \ge 2$ such that $(cd, 6pN_f) = 1$, $1 \le j \le k - 1$ and $\alpha \in SL_2(\mathbb{Z})$, etc. appearing in Kato's article. Dividing its dependent factors (and the *L*-factors at the bad primes $\ell \neq p$), he constructed the following map which we call the zeta morphism for ρ_f .

Theorem (12.5 of Kato (04))

There is a canonical $\mathcal{O}\text{-linear}$ map

$$\mathbf{z}(f): \rho_f^* \to \mathbf{H}^1(\rho_f^*(1))[1/p]$$

interpolating, via Bloch-Kato's dual exponentials, all the critical values of

$$L_{\{p\}}(f,\chi,s) = \sum_{n=1,(n,p)=1}^{\infty} \frac{a_n \chi(n)}{n^s}$$

for all the finite characters $\chi \colon \Gamma(\stackrel{\sim}{\to} \mathbb{Z}_p^{\times}) \to \mathbb{C}^{\times}$. If p is odd and $\overline{\rho}_f = \rho_f \pmod{\varpi}$ is absolutely irreducible, one has the inclusion

 $\operatorname{Char}_{\Lambda}(\mathbf{H}^{1}(\rho_{f}^{*}(1))/\Lambda \cdot \operatorname{Im}(\mathbf{z}(f))) \subseteq \operatorname{Char}_{\Lambda}(\mathbf{H}^{2}(\rho_{f}^{*}(1)))$

Conjecture (12.10 of Kato (04), Kato (93))

(1) (Kato main conjecture, KMC)

 $\operatorname{Char}_{\Lambda}(\mathbf{H}^1(\rho_f^*(1))/\Lambda\cdot\operatorname{Im}(\mathbf{z}(f)))=\operatorname{Char}_{\Lambda}(\mathbf{H}^2(\rho_f^*(1)))$

- (2) (Roughly speaking,) Such zeta morphisms exist for all the families of p-adic representations of $G_{\mathbb{Q}}$ which are unramified outside a finite set of primes.
 - \bullet When f is ordinary at p, KMC is equivalent to the usual lwasawa main conjecture, i.e. the equality

 $(p-\text{adic } L-\text{function}) = \text{Char}_{\Lambda}((\text{cyclotomic Selmer group})^{\vee}),$

which is (up to now) formulated only for f whose p-component $\pi_p(f)$ is principal series (B. Mazur, R. Greenberg, S. Kobayashi, Lei-Loeffler-Zerbes).

• We can consider KMC for arbitrary f, e.g. even for f whose $\pi_p(f)$ is supercuspidal.

Zeta morphisms for rank two universal deformations

- Σ : a finite set of primes containing p, $\Sigma_0 = \Sigma \setminus \{p\}$.
- $\overline{\rho} \colon G_{\mathbb{Q}} \to \mathrm{GL}_2(\mathbb{F}) \colon$ odd, absolutely irreducible, unramified outside Σ .
- Comp(O): the category of commutative local Noetherian complete O-algebras with finite residue field.
- $\rho_{\Sigma}^{\text{univ}} \colon G_{\mathbb{Q}} \to \operatorname{GL}_2(R_{\Sigma,\overline{\rho}}) \colon$ the universal deformation for the deformations $\rho \colon G_{\mathbb{Q}} \to \operatorname{GL}_2(A)$ $(A \in \operatorname{Comp}(\mathcal{O}))$ of $\overline{\rho}$ which are unramified outside Σ (no condition at the primes in Σ).
- $\mathfrak{X}_{\Sigma}(\overline{\rho}) = \operatorname{Spec}(R_{\Sigma,\overline{\rho}}[1/p])_0$: the set of closed points.
- $\mathfrak{X}^{\mathrm{mod}}_{\Sigma}(\overline{\rho})$: the subset of modular points.
- For $f \in S_k^{\mathrm{new}}(\Gamma_1(N))$, we set

$$P_{f,\ell}(T) = \det(1 - \operatorname{Frob}_{\ell} \cdot T \mid \rho_f^{I_\ell}) \in \mathcal{O}[T].$$

Theorem (Main Theorem, Nakamura (20))

Assume the following:

(i) $\overline{\rho}|_{G_{\mathbb{Q}(\zeta_p)}}$ is absolutely irreducible, (ii) $p \ge 3$, (iii) $\operatorname{End}_{\mathbb{F}[G_{\mathbb{Q}_p}]}(\overline{\rho}) = \mathbb{F}$, (iv) $\overline{\rho}|_{G_{\mathbb{Q}_p}}$ is not of the form $\begin{pmatrix} \overline{\chi}_p^{\pm 1} & * \\ 0 & 1 \end{pmatrix} \otimes \eta \quad (\eta : G_{\mathbb{Q}_p} \to \mathbb{F}^{\times})$. Then, there exists a $R_{\Sigma,\overline{\rho}}$ -linear map

$$Z_{\Sigma,\overline{\rho}}\colon (\rho_{\Sigma}^{\mathrm{univ}})^* \to \mathbf{H}^1((\rho_{\Sigma}^{\mathrm{univ}})^*(1))$$

satisfying the following: for any $x_f \in \mathfrak{X}^{\mathrm{mod}}_{\Sigma}(\overline{\rho})$, one has

$$x_f^*(Z_{\Sigma,\overline{\rho}}) = \prod_{\ell \in \Sigma_0} P_{f,\ell}(\operatorname{Frob}_\ell) \cdot \mathbf{z}(f)$$

Namely, $Z_{\Sigma,\overline{\rho}}$ interpolates $\prod_{\ell\in\Sigma_0} P_{f,\ell}(\operatorname{Frob}_{\ell}) \cdot \mathbf{z}(f)$ $(x_f \in \mathfrak{X}_0^{\mathrm{mod}}(\overline{\rho}))$ which are related with $L_{\Sigma}(f,\chi,s) = \sum_{n=1,(n,\Sigma)=1}^{\infty} \frac{a_n\chi(n)}{n^s}$.

<u>Related works</u> on the construction of zeta morphisms (or Euler systems) for families.

- Ochiai, Fukaya-Kato: Hida families (of ordinary *p*-adic modular forms).
- Hansen, Ochiai, S. Wan: Coleman-Mazur eigencurves (families of overconvergent of *p*-finite slope modular forms).
- Fouquet, S. Wan: universal deformations.

<u>Remark</u>

Fukaya-Kato generalized the construction of zeta morphisms to Hida families. We construct our zeta morphisms $Z_{\Sigma,\overline{\rho}}$ combining (a generalization of) Fukaya-Kato's method and many deep results in the theory of *p*-adic Langlands correspondence for $\operatorname{GL}_{2/F}$ for $F = \mathbb{Q}, \mathbb{Q}_p, \mathbb{Q}_\ell$ (Colmez (10), Emerton (11), Paškūnas (13), Emerton-Helm (14)).

Application to KMC

For $f_i=\sum_{n=1}^\infty a_n(f_i)q^n\in S^{\rm new}_{k_i}(N_i)$ (i=1,2), we say that f_1 and f_2 are congruent if

$$a_\ell(f_1) \equiv a_\ell(f_2) \,(\operatorname{mod} \varpi)$$

for all but finitely many primes ℓ .

Theorem (Na)

Assume f_1 and f_2 are congruent, $\overline{\rho}_{f_1}$ satisfies all the assumptions in our main theorem, and

 $\mathbf{z}(f_1) \,(\mathrm{mod}\,\varpi) \neq 0.$

Then one also has

 $\mathbf{z}(f_2) \,(\mathrm{mod}\,\varpi) \neq 0.$

Moreover, one has the following equivalence

KMC for f_1 holds \iff KMC for f_2 holds.

• It is expected that the assumption $\mathbf{z}(f_1) \pmod{\varpi} \neq 0$ always holds.

<u>Known results</u> (Assume that $\overline{\rho}_{f_1}$ is absolutely irreducible and $\mu(f_1) = 0$)

- Greenberg-Vatsal (00): congruent elliptic curves E_1 and E_2 with good ordinary reduction at p (i.e. of weight two).
- Emerton-Pollack-Weston (06): congruent eigenforms which are ordinary at p (of arbitrary weights).
- many related results in many related settings · · ·
- Kim-Lee-Ponsinet (19): congruent eigenforms which are of finite slope (not ordinary in general) but with a fixed weight 2 ≤ k ≤ p − 1.
- (Na): all the congruent eigenforms with arbitrary levels and weights.

Therefore, we can compare (under the assumption that $\mathbf{z}(f_1) \mod \varpi \neq 0$)

known IMC (=KMC) for ordinary case (Kato, Skinner-Urban),

or of finite slope case (Kato, X.Wan)

with

unknown KMC, e.g. for supercuspidal case.

Outline of $\[\] Main theorem \Rightarrow Theorem on KMC \]$

• a congruence between f_1 and f_2 and the irreducibility of $\overline{\rho}_{f_1}$ imply $\overline{\rho}_{f_1} \xrightarrow{\sim} \overline{\rho}_{f_2} =: \overline{\rho}$, and we can consider

 $x_{f_1}, x_{f_2} \in \mathfrak{X}_{\Sigma}^{\mathrm{mod}}(\overline{\rho})$ for sufficiently large Σ .

• By our main theorem, one obtains a congruence

$$\prod_{\ell \in \Sigma_0} P_{f_1,\ell}(\operatorname{Frob}_{\ell}) \cdot \mathbf{z}(f_1) \equiv \prod_{\ell \in \Sigma_0} P_{f_2,\ell}(\operatorname{Frob}_{\ell}) \cdot \mathbf{z}(f_2) \,(\operatorname{mod} \varpi).$$

• Kim-Lee-Ponsinet proved that a congruence between zeta morphisms as above implies the equivalence of KMC.

Remark

We can also formulate KMC for arbitrary points in $\mathfrak{X}(\overline{\rho}) = \bigcup_{\Sigma} \mathfrak{X}_{\Sigma}(\overline{\rho})$, and obtain the equivalence of KMC between (almost) all the points in $\mathfrak{X}(\overline{\rho})$.

The proof of the main theorem

We mainly explain how to construct our zeta morphism

$$Z_{\Sigma,\overline{\rho}} \colon (\rho_{\Sigma}^{\mathrm{univ}})^* \to \mathbf{H}^1((\rho_{\Sigma}^{\mathrm{univ}})^*(1)).$$

<u>Notation</u>

0

- For each open compact subgroup K of $\operatorname{GL}_2(\widehat{\mathbb{Z}})$, we set $Y(K)(\mathbb{C}) = \operatorname{GL}_2(\mathbb{Q}) \setminus \mathcal{H}^{\pm} \times (\operatorname{GL}_2(\mathbb{A}_f)/K)$ and $H^1(K) = H^1(Y(K)(\mathbb{C}), \mathcal{O}).$
- For $N \geqq 1$, we set

$$K(N) = \left\{ g \in \operatorname{GL}_2(\widehat{\mathbb{Z}}) \mid g \equiv \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \pmod{N} \right\} \text{ and}$$
$$K_1(N) = \left\{ g \in \operatorname{GL}_2(\widehat{\mathbb{Z}}) \mid g \equiv \begin{pmatrix} * & * \\ 0 & 1 \end{pmatrix} \pmod{N} \right\}.$$
$$\mathbf{G}_{\ell} = \operatorname{GL}_2(\mathbb{Q}_{\ell}), \ \mathbf{G}_{\Sigma} = \prod_{\ell \in \Sigma} \mathbf{G}_{\ell}, \ \mathbf{G}_{\Sigma_0} = \prod_{\ell \in \Sigma_0} \mathbf{G}_{\ell}.$$

Theorem (Fukaya-Kato (12))

For each $N \ge 4$, there exists a canonical Hecke equivariant \mathcal{O} -linear map

 $\mathbf{z}_{1,N} \colon H^1(K_1(N)) \to \mathbf{H}^1(H^1(K_1(N))(1)) \otimes_{\Lambda} \operatorname{Frac}(\Lambda)$

interpolating the operator valued *L*-functions $\sum_{n \ge 1, (n,p)=1} \frac{T_n \cdot \chi(n)}{n^s}$ acting on $H^1(Y_1(N)(\mathbb{C}), \mathbb{C})$.

The set of maps $\{\mathbf{z}_{1,Np^k}\}_{k\geq 0}$ is compatible with the corestrictions $H^1(K_1(Np^{k+1})) \to H^1(K_1(Np^k))$ $(k \geq 0)$, and we can control the denominators of the images, so we can take the limit

 $\mathbf{z}_{1,Np^{\infty}}: \varprojlim_{k \ge 0} H^1(K_1(Np^k)) \to \mathbf{H}^1(\varprojlim_{k \ge 0} H^1(K_1(Np^k))(1)) \otimes_{\Lambda} \mathbf{\Lambda}[1/\lambda]$

for some $\lambda \in \mathbf{\Lambda} = \Lambda[[\varprojlim_{k \ge 1} (\mathbb{Z}/Np^k)^{\times}]]$. Applying Hida's ordinary projection defined using a Hecke operator at p (U_p -operator), we can obtain the zeta morphisms for Hida families. Kentaro Nakamura (Saga) Zeta morphisms January 25, 2021

Strategy for the construction of $Z_{\Sigma,\overline{\rho}}$

- $(\rho_{\Sigma}^{\mathrm{univ}})^*$ appears in $\varprojlim_{k \ge 0} H^1(K(Np^k))$ by (Pontryagin dual of) Emerton's theory of the completed cohomology.
- We generalize Fukaya-Kato's map $\mathbf{z}_{1,N}$ to $H^1(K(N))$.
- (a subtle part) To control denominators, we need to restrict it to the $\overline{\rho}$ -part (non-Eisenstein part).
- Taking its limit, we obtain a equivariant zeta map for the $\overline{\rho}$ -part of $\varprojlim_{k\geq 0} H^1(K(Np^k)).$
- Using deep results in family versions of *p*-adic local Langlands correspondence for G_ℓ (Paškūnas for $\ell = p$, Emerton-Helm for $\ell \in \Sigma_0$), we can factor out the $(\rho_{\Sigma}^{\text{univ}})^*$ -part.
- To compare our zeta morphisms Z_{Σ,p̄} with Kato's ones z(f), we need Paškūnas' another result (Paškūnas (15)). This part is the most technical part of the article, but we omit to explain it in this talk.

A refined local-global compatibility (Emerton)

For each $N_0 \geqq 1$ such that $\operatorname{prime}(N_0) = \Sigma_0$, we set

$$\widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0)) := \varprojlim_{k \ge 0} H^1(K(N_0 p^k))(1)$$

w.r.t. the corestrictions $H^1(K(N_0p^{k+1}))(1) \rightarrow H^1(K(N_0p^k))(1)$ $(k \ge 1)$, and

$$\widetilde{H}_{1,\Sigma}^{BM} := \varinjlim_{N_0} \widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0))$$

w.r.t. the restrictions $\widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0)) \to \widetilde{H}_1^{BM}(K_{\Sigma_0}(N'_0))$ for $N_0|N'_0$. $\widetilde{H}_{1,\Sigma}^{BM}$ is equipped with actions of $G_{\mathbb{Q}}$, G_p and $G_{\Sigma_0} = \prod_{\ell \in \Sigma_0} G_\ell$, and (homological) Hecke actions at the primes $\ell \notin \Sigma$. Using its Hecke actions, one can define its $\overline{\rho}$ -part

$\widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}}$

which is a topological $R_{\Sigma,\overline{\rho}}[G_{\mathbb{Q}} \times G_{\Sigma}]$ -module.

The following is the dual version of Emerton's theorem.

Theorem (A refined local-global compatibility, Emerton (11))

There exists a topological $R_{\Sigma,\overline{\rho}}[G_{\mathbb{Q}} \times G_{\Sigma}]$ -linear isomorphism

$$\widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}} \xrightarrow{\sim} (\Pi_p)^* \otimes_{R_{\Sigma,\overline{\rho}}} (\rho_{\Sigma}^{\mathrm{univ}})^* \otimes_{R_{\Sigma,\overline{\rho}}} \widetilde{\pi}_{\Sigma_0},$$

where

• Π_p is the representation of G_p corresponding to $\rho_{\Sigma}^{\text{univ}}|_{G_{\mathbb{Q}_p}}$,

• π_{Σ_0} is the representation of G_{Σ_0} corresponding to $\{\rho_{\Sigma}^{\text{univ}}|_{G_{\mathbb{Q}_\ell}}\}_{\ell \in \Sigma_0}$ by the family version of *p*-adic local Langlands correspondence defined by Colmez (10) (+many people) for Π_p and Emerton-Helm (14) for π_{Σ_0} .

Theorem (Na)

For each $N_0\geqq 1$ and $k\geqq 1$ as before, there exists a canonical Hecke equivariant $\mathcal O\text{-linear}$ map

$$\mathbf{z}_{N_0p^k,\overline{\rho}} \colon H^1(K(N_0p^k))_{\overline{\rho}}(1) \to \mathbf{H}^1(H^1(K(N_0p^k))_{\overline{\rho}}(2))$$

characterized by a similar interpolation property using the *L*-functions removing its Euler factors at $\ell \in \Sigma$, which is compatible with corestrictions for $k \ge 1$ and restrictions for N_0 .

• (A subtle point) We can define the map $\mathbf{z}_{N_0p^k,\overline{\rho}}$ over Λ (not over $\operatorname{Frac}(\Lambda)$) after taking the $\overline{\rho}$ -part.

By this integrality and the compatibilities, we can define the following maps.

We set

$$\mathbf{z}_{N_0p^{\infty},\overline{\rho}} := \lim_{k \ge 1} \mathbf{z}_{N_0p^k,\overline{\rho}} \colon \widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0))_{\overline{\rho}} \to \mathbf{H}^1(\widetilde{H}_1^{BM}(K_{\Sigma_0}(N_0))_{\overline{\rho}}(1))$$

and

$$\mathbf{z}_{\Sigma,\overline{\rho}} := \varinjlim_{N_0} \mathbf{z}_{N_0 p^{\infty},\overline{\rho}} \colon \widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}} \to \mathbf{H}^1(\widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}}(1)).$$

- All the equivariances for Fukaya-Kato's and our maps follow from the interpolation property, which follows from Kato's very deep result, i.e. the explicit reciprocity law.
- Sharifi-Venkatesh recently studies a different, a motivic approach to define zeta morphisms (for $K_1(N)$). I hope their idea enables us to prove the equivariances more directly.

Factoring out the $(\rho_{\Sigma}^{\text{univ}})^*$ -part from $\widetilde{H}_{1,\Sigma,\overline{\rho}}^{BM}$

Since one has an isomorphism

$$\psi_1 \colon \widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}} \xrightarrow{\sim} (\Pi_p)^* \otimes_{R_{\Sigma,\overline{\rho}}} (\rho_{\Sigma}^{\mathrm{univ}})^* \otimes_{R_{\Sigma,\overline{\rho}}} \widetilde{\pi}_{\Sigma_0},$$

it suffices to remove $(\Pi_p)^*$ -and $\widetilde{\pi}_{\Sigma_0}$ -parts. Removing $\widetilde{\pi}_{\Sigma_0}$ -part: For π a smooth admissible representation of G_ℓ $\overline{(\ell \neq p)}$ defined over $\overline{\mathbb{Q}}_p$, we set $\Psi_\ell(\pi)$ the largest quotient on which $U_\ell = \begin{pmatrix} 1 & \mathbb{Q}_\ell \\ 0 & 1 \end{pmatrix}$ acts by a fixed non-trivial additive character $U_\ell \to \overline{\mathbb{Q}}_p$. Emerton-Helm extended this functor for smooth admissible representations of G_ℓ defined over more general \mathbb{Z}_p -algebras, e.g. for $\widetilde{\pi}_{\Sigma_0}$. We set

$$\Psi_{\Sigma_0}(\widetilde{\pi}_{\Sigma_0}) := \Psi_{\ell_1} \circ \cdots \circ \Psi_{\ell_d}(\widetilde{\pi}_{\Sigma_0})$$

for $\Sigma_0 = \{\ell_1, \cdots, \ell_d\}$. By the characterization property of their correspondence, one has a $R_{\Sigma,\overline{\rho}}$ -linear map

$$\psi_2 \colon \Psi_{\Sigma_0}(\widetilde{\pi}_{\Sigma_0}) \xrightarrow{\sim} R_{\Sigma,\overline{\rho}}$$

(genericity of $\widetilde{\pi}_{\Sigma_0}$).

Removing $(\Pi_p)^*$ -part:

- $\mathfrak{C}(\mathcal{O})$: the category which is the Pontryagin dual of the category of locally admissible G_p -representations on torsion \mathcal{O} -modules (Emerton).
- $\rho_p \colon G_{\mathbb{Q}_p} \to \mathrm{GL}_2(R_p)$: the universal deformation of $\overline{\rho}|_{G_{\mathbb{Q}_p}}$.
- Π_p^{univ} : the representation of G_p over R_p corresponding to ρ_p .

Theorem (Paškūnas (13), a very rough form)

•
$$P := (\Pi_p^{\text{univ}})^*$$
 is a projective object in $\mathfrak{C}(\mathcal{O})$.

•
$$R_p = \operatorname{End}_{\mathfrak{C}(\mathcal{O})}(P).$$

By the universality for $\rho_p,$ one has $R_p \to R_{\Sigma,\overline{\rho}}$ and

$$(\Pi_p)^* \xrightarrow{\sim} P \widehat{\otimes}_{R_p} R_{\Sigma,\overline{\rho}}.$$

Hence, one also has

$$\psi_1 \colon \widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}} \xrightarrow{\sim} P \widehat{\otimes}_{R_p} (\rho_{\Sigma}^{\mathrm{univ}})^* \otimes_{R_{\Sigma,\overline{\rho}}} \widetilde{\pi}_{\Sigma_0}.$$

Definition of $Z_{\Sigma,\overline{\rho}}$

The isomorphisms ψ_1 and ψ_2 induce the following isomorphisms.

Corollary

• One has
$$\Psi_{\Sigma_0}(\widetilde{H}^{BM}_{1,\Sigma,\overline{
ho}})\in \mathfrak{C}(\mathcal{O})$$
, and

$$\operatorname{Hom}_{\mathfrak{C}(\mathcal{O})}(P, \Psi_{\Sigma_0}(\widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}})) \xrightarrow{\sim} (\rho_{\Sigma}^{\operatorname{univ}})^*.$$

• One has
$$\Psi_{\Sigma_0}(\mathbf{H}^1(\widetilde{H}^{BM}_{1,\Sigma,\overline{
ho}}(1))) \in \mathfrak{C}(\mathcal{O})$$
, and

$$\operatorname{Hom}_{\mathfrak{C}(\mathcal{O})}(P, \Psi_{\Sigma_0}(\mathbf{H}^1(\widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}}(1)))) \xrightarrow{\sim} \mathbf{H}^1((\rho_{\Sigma}^{\operatorname{univ}})^*(1)).$$

Applying $\operatorname{Hom}_{\mathfrak{C}(\mathcal{O})}(P,\Psi_{\Sigma_0}(-))$ to the continuous $R_{\Sigma,\overline{\rho}}[G_{\Sigma}]$ -linear map

$$\mathbf{z}_{\Sigma,\overline{\rho}} \colon \widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}} \to \mathbf{H}^{1}(\widetilde{H}^{BM}_{1,\Sigma,\overline{\rho}}(1)),$$

we can finally define

$$Z_{\Sigma,\overline{\rho}} := \operatorname{Hom}_{\mathfrak{C}(\mathcal{O})}(P, \Psi_{\Sigma_0}(\mathbf{z}_{\Sigma,\overline{\rho}})) \colon (\rho_{\Sigma}^{\operatorname{univ}})^* \to \mathbf{H}^1((\rho_{\Sigma}^{\operatorname{univ}})^*(1)).$$

References

P. Colmez (10)

Représentations de $GL_2(\mathbb{Q}_p)$ et (φ, Γ) -modules, Astérisque 330 (2010), 281-509.

M. Emerton (11)

Local-global compatibility in the $\mathit{p}\text{-adic}$ Langlands programme for $\operatorname{GL}_{2/\mathbb{Q}}$, available at http://www.math.uchicago.edu/ emerton/pdffiles/lg.pdf.

M. Emerton, D. Helm (14)

The local Langlands correspondence for GL_n in families, Ann. Sci. Ec. Norm. Super. (4) 47(4) (2014), 655-722.

T. Fukaya, K.Kato (12)

On conjectures of Sharifi, available at https://www.math.ucla.edu/ sharifi/sharificonj.pdf.

K. Kato (93)

Lectures on the approach to Iwasawa theory for Hasse-Weil L-functions via B_{dR} . Arithmetic algebraic geometry, Lecture Notes in Mathematics 1553, Springer-Verlag, Berlin (1993), 50-163.

K. Kato (04)

p-adic Hodge theory and values of zeta functions of modular forms, Astérisque (2004), no. 295, ix, 117-290, Cohomologies p-adiques et applications arithmétiques. III.

K. Nakamura (20)

Zeta morphisms for rank two universal deformations, preprint in arXiv 2006.13647.

V. Paškūnas (13)

The image of Colmez's Montreal functor, Publ. Math. Inst. Hautes Études Sci. 118 (2013), 1-191.

V. Paškūnas (15)

On the Breuil-Mézard conjecture, Duke Math. J. 164 (2015), no. 2, 297-359.