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Introduction

Today, | will talk about the singularities and Kodaira dimension of unitary
Shimura varieties.
e Canonical singularities on unitary Shimura varieties for U(1,n) (n > 4)
e Unitary Shimura varieties of general type for U(1, n)
(9<n<12, F=Q(v/-1) or Q(+/-3))
@ Uniruled unitary Shimura varieties for U(1, n)

(n =3,4,5 F = Q(\/?l)a(@(\/j) or Q(\/j))

We show the canonical singularities by the Reid-Shepherd-Barron-Tai
criterion.

To prove the results on the Kodaira dimension, we follow the strategy of
Gritsenko-Hulek-Sankaran (Invent Math, 2007) and Gritsenko-Hulek (J
Alg Geom, 2014).

We use reflective modular forms on orthogonal groups (Borcherds lifts and
Gritsenko lifts), and their restriction to unitary groups (Hofmann (Math
Ann, 2014)).
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Introduction

@ Normal variety X over C has canonical singularities if 3r > 1,
Je: Y — X resolution of singularities s.t. e.(wy") = Ox(rKx).

e For a smooth variety X over C, let P, := dimc HO(X, K$) (d = 0).
The Kodaira dimension k(X)) is defined to be —co if Py = 0 for all d;
otherwise, x(X) := min{k | Py/d* : bounded}. This is a birational
invariant.

If X is singular, we take a resolution to singularities.

@ An irreducible variety X over C is called uniruled if there exists a
dominant rational map Y x P! --» X where Y is an irreducible
variety over C with dim Y = dim X — 1.

o We call X is of general type if k(X) = dim(X).
@ Uniruled varieties have k(X) = —o0. The converse is conjectured, but
it is not known in dimension > 3.
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© Unitary Shimura varieties
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Unitary Shimura varieties

F:=Q(Vd) (d <0),

{(, ): Lx L— F : Hermitian lattice of sign (1, n) over O (n > 0).
LY :={vel|Trglv,w)€Zfor any we L} : dual latttice of L
U(L) : unitary group of (L,{, ))

U(L) == {geU(L) | glrv/ =1} : discriminant kernel

Dy :={weP(L®¢, C) | {w,w) > 0}
~{(z1,...,z) €C" ||z + - + |z, > < 1}

: Hermitian symmetric domain associated with U(L)(R) = U(1, n).
For a finite index subgroup I' c U(L), we define

Z([) :=T\D (unitary Shimura variety).

This is a quasi-projective variety of dimension n over C.

7/35



Unitary Shimura varieties

For a quadratic lattice M over Z, we define

O(M) := {g € O(M)(Z) | glmv/m = id}
O (M) = O(M) n O (M)(2)

Iy = {weP(M®zC) | (w,w) =0, (w,w)>0}".
(L,{, »):Hermitian lattice of sign (1, n) over OF
(Lo, (', )) : quadratic lattice of signature (2,2n) associated with L over Z.
Here Lq is L considered as a free Z-module and ( , ) := Trg /o, )
We have an embedding

U(L)(R) = U(1,n) — 0" (Le)(R) = O™ (2,2n)

t: D — QLQ.

For r € Lg, we define the reflection with respect to r

7)== 2201 € (L)) (te L)
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Unitary Shimura varieties

For A € L with A = 0, we define the special divisors

H(\) := {we Dy | {w,\) =0} < Dy,
%()\) = {W € ‘@LQ | (W, )\) = 0} c ‘@LQ‘

Then, we have
L(HN)) = (D) n H(N) © D14

We say a quadratic lattice M over Z is 2-elementary if
MY /M = (Z/2Z)"™).

We also define

(M) =

0 ((v,v)€eZforany ve MV)
1 ((v,v) ¢ Z for some ve MY).
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© Main results
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Main results

Let .Z, (') := I'\D_ be the unitary Shimura variety (I' = U(L)).

Theorem (Canonical singularities [M1, arXiv:2008.08095])

Q If n> 4, then .Z#/(I') has canonical singularities at all points.

@ There exists a toroidal compactification .#(I') of .%/(I') which has
canonical singularities over cusps.

Remark
@ (Gritsenko-Hulek-Sankaran, 2007) Similar results for Shimura varieties
of SO(2,n) (n> 8).
@ Our results are generalization of the results of Behrens (2012).

Condition (x)

The above toroidal compactification .% (') has no ramification divisors
through cusps.
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Main results

Theorem (General type [M1, arXiv:2008.08095])

Let F = Q(+/—1) or F = Q(v/=3). (n=dim Dy)
Assume that ILg <> Ih o6 := UP2 D Eg(—1)®3 such that
o r((Le)t) :=#{ve (Lo)* | (v,v) = =2} > 0.
o r((Lg)t) < r((Lg)#) for any r e Lo with —o, € (~)+(LQ), where
(Lg)r :={velg]|(v,r) =0}
o n>(24+r((Le)"))/(#OF).
We assume %, (U(L)) satisfies the condition (). Then .Z.(U(L)) is of
general type.

Remark

Kondo (1993,1999), Gritsenko-Hulek-Sankaran (2007) and Ma (2018)
showed the Kodaira dimension of certain orthogonal Shimura varieties are
non-negative, more generally, some of them are general type.

| A\
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Main results

F=Q(/=T)

Mit, ,, : Hermitian lattice of sign (1,13) defined by A@® B®* where

B T R Y |
2 2 2
=il =
P T A R e e T B
vl oo ' PV S DR |
2 2 2
I N e |
2 2 2

(B : lyanaga's matrix)

Ly, (—1)e2 : Hermitian lattice of sign (0,1) defined by (—1).

L : orthogonal complement of Ly (_1y@2 in My, 5.

Then L satisfies the top three conditions in the Theorem. (The condition

~

(%) has not been proved for .7, (U(L)) yet.)
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Main results

F=Q(v-3)
Nip, .5 - Hermitian lattice of sign (1,13) defined by C @ D®3 where

V=3 V=3

-1 0 3 3

0 -4 s s
Ci=| /= 3 |, D=

5o CRNC

3 o0 A

1 -2
L:= (LA2(_1)®I<)L in My, ,s. Then L satisfies the top three conditions in

~

the Theorem. (The condition (%) has not been proved for .%; (U(L)) yet.)

—2 —1\®
LAZ(,l)@k : Hermitian lattice defined by (_ ) (1< k<4).

v
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Main results

Theorem ([M2, arXiv:2008.13106])

Let (L,{, )) be a Hermitian lattice over OF of signature (1,5) and let
(Lg,(, )) be the associated quadratic lattice over Z of signature (2, 10).
Assume that

Q@ Lg is even 2-elementary, 6(Lg) = 0 and ¢(Lg) < 8. Moreover,
l(Lg) <6if F=Q(v/-3).
@ 2{l,rye OF for any {,r € L with {r,r) = —1.
Then .Z;(U(L)(Z)) is uniruled.

To prove this Theorem, we use reflective modular forms constructed by
Yoshikawa. Using reflective modular forms constructed by
Gritsenko-Hulek, we can give 3 more sufficient conditions for uniruledness
in terms of Hermitian lattices.
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Main results

Theorem (Uniruledness [M2, arXiv:2008.13106])
@ For F = Q(v/—1) or Q(1/—2), there exist Hermitian lattices L over
OF of signature (1,5) such that .%,(U(L)(Z)) are uniruled.

@ For F = Q(+/—1), there exist Hermitian lattices L over OF of
signature (1,4) such that .%;(U(L)(Z)) are uniruled.

@ For F = Q(v/—1) or Q(+/—2), there exist Hermitian lattices L over
OF of signature (1,3) such that .%;(U(L)(Z)) are uniruled.

Gritsenko-Hulek (2014) proved certain orthogonal Shimura varieties are
uniruled.

16 /35



Uniruled unitary Shimura varieties

Example
F=Q(v=2) |
Lygu(2):Hermitian lattice of sign (1,1) defined by ((%) g)

—1 _ 1+4/=2
Lp,:Hermitian lattice of sign (0,2) defined by _1—TM _i )

(Lugue) @ Lp, @ Lp,)@ = U U(2) @ Da(—1) ® Da(-1).
Then Z, (U(L)(Z)) is uniruled for L := Lygu) @ Lp, ® Lp,-
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© Canonical singularities on unitary Shimura varieties
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Canonical singularities on unitary Shimura varieties

V:=C", G < GL(V) : finite group, g € G : order=m

€31 ... &3 : eigenvalues of g acting on V where ¢ = exp(27+y/—1/m) and
0<a<m.

g is called quasi-reflection if a3 = -+ = a,_1 = 0 for some order, and
reflection if the remaining a, is m/2. The age of g is defined by

Theorem (The Reid-Shepherd-Barron-Tai criterion)
Assume every g € G with g # 1 does not act on V as a quasi-reflection.
Then V/G has canonical singularities if and only if A(g) > 1 for any

g #1
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Canonical singularities on unitary Shimura varieties

D; = {weP(L®g C) | {w,w) > 0}
(wle D, W:=Cwc L®g, C
Si=(W+W)-nLand T:=Stc L, then Sc n Te = {0}
We put
G := Stabr([w]) := {g e T | g[w] = [w]}.
To investigate the singularities of .7, (I'), we shall consider the tangent
space of D, at [w] € Dy:

V := Ty D = Home (W, WH).

Since Lc = S¢ @ T¢, we calculate eigenvalues of G on W+ A S¢ and
Wt Te.
Go:={geG|gw=w}

G/Gy = (Z/rZ)* acts on T¢ (for Ir).
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Canonical singularities on unitary Shimura

Lemma
Let g € G. Assume that g does not act on V as a quasi-reflection and
n>3. Then A(g) > 1.

| A

Sketch of Proof.

When ¢(r) > 2, eigenvalues arising from W, ~ T¢ gives A(g) > 1 by
Bertrand’s Postulate.

When ¢(r) < 2, there remains a finite number of cases and Lemma follows
from the direct calculation. To show the claim for this case, we use n > 3.)

Corollary ([M1, arXiv:2008.08095])

Q If n> 3, then .Z,(I") has canonical singularities away from the
ramification divisors of mr: Dy — Z(T).

@ If n > 4, then .Z#/(I') has canonical singularities at all points.
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Canonical singularities on unitary Shimura varieties

Z1(') : a toroidal compactification (Ash-Mumford-Rapoport-Tai)
There exist only 0-dim cusps on .%;(I"). .%(I) is locally isomorphic to
X /G where X is a toric variety and G is a finite group.

Hence the problem is reduced to toric varieties.

Lemma

Let X be an n-dimensional smooth toric variety over C and M be the

character group of X. Assume that a finite group G < GLz(M) acts on

X. Then X/G has canonical singularities.

Theorem

| \

There is a toroidal compactification % (I') of % (') such that .%;(I') has

canonical singularities on the boundary .7, (N\.Z.(I') .

22/35



@ Unitary Shimura varieties of general type
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Unitary Shimura varieties of general type

Theorem (Low weight cusp form trick [GHS])

Let n > 1. Assume that .%,(I) satisfies the condition (). If there exists a
non-zero cusp form Fy € Si(I', x) of weight k < n which vanishes on
ramification divisors, then % (') is of general type.

Proof.

Z1(I') : toroidal compactification of .7, (I') with canonical singularities
and no ramification divisors in the boundary components.
Then we have an injection

| A\

Mio—tgm(T, 1) = HAFLT), (K5)®™), F o> FGTF.

On the other hand, dim¢ M(,_)m(I", 1) grows like m" when m — co.
(The Hirzebruch-Mumford proportionality principle)
Therefore % (') is of general type. O

.
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Unitary Shimura varieties of general type

For r e L with {r,r) = 0 and £ € OF\{1}, we define the reflection
2
Tre(l) == £~ (1— 5)2r, :ir eU(L)(Q) (felL).

Assume n > 3. The ramification divisors of D; — .%;(I") and
D1y — T'\D1,, are defined by

U H(r), U H(r).

reL/{£1}:primitive reLg/{+1}:primitive
3¢, 7r¢€l or —7, c€l o€l or —o,el”’
Proposition
For F = Q(+v/d), assume d = 2,3 (mod4) or d = —3. Then
o U H(r)) c U H(r) nu(Dy).
relL/{£1}:primitive reLg/{*1}:primitive
3¢, 7,6€U(L) or —7,,.€U(L) a€d (Lg) or —ored* (Lg)
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Unitary Shimura varieties of general type

P15 € M12(O* (Il 26), det): the Borcherds lift of A™1.
S : primitive quadratic sublattice of /b 26 of signature (2,s) for s > 1.

RS = {r € ”2,26 | I‘2 = —2, (I’, S) = 0}7 r(Sl) = #RS‘

Let S, = S be the orthogonal complement of r in S. Now we define the
quasi-pullback of ®15 as

ol ®12(2)

reRs/{£1}

Ps.

Assume r(S+) < r(S}) for any r € S satisfying —o, € (~)+(S). Then ®12]s
is a modular form of weight 12 + r(S*)/2 vanishing on the ramification
divisors of Zs — O (5)\Zs. Moreover, if r(S+) # 0, it is a cusp form.
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Unitary Shimura varieties of general type

Theorem (General type [M1, arXiv:2008.08095])

Let F = Q(+/—1) or F = Q(+/—3). Assume that 3Lg < Ik 26 such that
(Lo)* | (v,v) = —2} > 0.

()

~

—~
—~

~

)

co = = /=

—
N~—
Il

~—

<

m

|
D)/ F#OF).
We assume .Z (U(L)) satisfies the condition (+). Then % (U(L)) is of
general type.

Proof.

| A\

We put w := #0607 . The quasi-pullback ®13|;, is a cusp form of weight
12 + r((Lg)"*)/2 vanishing on the ramification divisors. A (w/2)-th root of
1*(®12]1,) is a modular form of weight (24 + r((Lg)*))/w < n vanishing
on the ramification divisors. By the low weight cusp form trick, .Z,(U(L))
is of general type.
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Unitary Shimura varieties of general type

F Q(v-1)
signature of L (1,12) (1,11)
(Lo)* A (-1)®? | Ap(-1)®*
weight of a square root 7 9
Of L*(¢12|LQ)
F Q(v-=3)
signature of L (1,12) (1,11) (1,10) (1,9)
(Lo)" Ap(=1) | Ap(=1)%% | Ap(=1)® [ Ap(-1)%*
weight cif a third root 5 6 7 8
Of L (¢12|LQ>
F Qv-3)
signature of L (1,11) (1,10)
(Lo)* D4(—1) | A2(—1) @ Da(-1)
weight of a third root 8 9
Of L*(cblZ‘LQ)
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© Uniruled unitary Shimura varieties
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Uniruled unitary Shimura varieties

A modular form Fg € My (T, x) on Dy is called reflective if

Supp(div Fy) < U H(r).
reL/{£1}, r is primitive
o€l or —o,€l

A reflective modular form Fy is called strongly reflective if the multiplicity
of each irreducible component of div(F) is 1.
For modular forms on @LQ, we define the notions similarly.

Theorem (Uniruledness criterion [GH])

Let n > 1. Let a, k > 0 be positive integers satisfying k > an. If there
exists a non-zero reflective modular form F, x € My(T, x) of weight k for
which the multiplicity of every irreducible component of div(F; ) is less
than or equal to a, then .Z/(I) is uniruled.

Use the numerical criterion of uniruledness due to Miyaoka and Mori. [
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Uniruled unitary Shimura varieties

Strongly reflective modular forms are very rare. In some special cases, we
can construct strongly reflective modular forms by Borcherds lifts and
Gritsenko lifts.

Theorem

© (Yoshikawa, 2013) Let M; be an even 2-elementary quadratic lattice
over Z of signature (2,10) and §(M;) = 0. There exists a strongly
reflective modular form Wy, of weight w(M;) = 2016=4(M)/2 _ 4 on
Dy, for O (My).

@ (Yoshikawa, 2013) Let M, :=U® U@ Dg(—1) be a quadratic lattice
over Z of signature (2,8). There exists a strongly reflective modular
form Wy, of weight w(Ms) = 102 on 2y, for O (Ma).

© (Gritsenko-Hulek, 2016) Let N := U@ U(2) @ Eg(—2). There exists a
strongly reflective cusp form ®154 of weight 124.

v
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Uniruled unitary Shimura varieties

Theorem ([M2, arXiv:2008.13106])

Let (L,{, )) be a Hermitian lattice over OF of signature (1,5) and let
(Lg,(, )) be the associated quadratic lattice over Z of signature (2, 10).
Assume that

Q Lg is even 2-elementary, 6(Lg) = 0 and ¢(Lg) < 8. Moreover,
l(Lg) <6if F=Q(v-3).
@ 2{l,rye OF for any {,r € L with {r,r) = —1.
Then .Z;(U(L)(Z)) is uniruled.

Proof.

Since Lg is 2-elementary with ¢(Lg) < 8 and 6(Lg) = 0, we have a
strongly reflective modular form W, on 9, constructed by Yoshikawa.

| A\

div(Wi,) = |J (), Alg) :={velq|(v,v)=-2}
red;o/{+1}
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Uniruled unitary Shimura varieties

Put=:={rel| {r,ry = —1}. When F # Q(v/—1) and Q(v/=3), we

have
div(*Wi,) = [ H().
re=/{+1}
For any r € L with {r,r) = —1, we have 2{¢,r) € OF for any ¢ € L. Hence
for such r, we have
2
<€7 r> = ﬁF,

rir)
so H(r) is contained in the ramification divisors of 7y y: Dy — U(L)\Dy.
Therefore .*W, , is a strongly reflective modular form of weight > 12 on
D;. Hence .Z(U(L)) is uniruled. (When F = Q(v/—1) or Q(v/—3),

Theorem is proved in the same way.) O

v
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Uniruled unitary Shimura varieties

Quadratic lattices of sign (2,10) || ¢(Lg) | d(Lg) F
U@ U(2) ® Eg(—2) 10 0 | Q-1
U U Es(-2) 8 0 | QW-1)
U U(2) ®@Dy(—1) ®Dy(-1) 6 0 | QW-2)
UU@Dy(—1) ®Dy(—1) 4 0 Q(v/-1)
UaUeDg(-1) 2 0 | QW-1)
U U@ Eg(-1) 0 0 | QW-1)

Quadratic lattices of sign (2,8) F

U U®Dg(—1) Q(v-1)
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Summary

e Canonical singularities on unitary Shimura varieties for U(1,n) (n > 4)
@ Unitary Shimura varieties of general type for U(1, n)

(9<n<12, F= QK1) or Q(v=3))
@ Uniruled unitary Shimura varieties for U(1, n)

(n=13,4,5 F =Q(/-1), or Q(v/=2))

Problem.

@ The Kodaira dimension of unitary Shimura varieties over
F # Q(v-1), Q(v~2) and Q(v-3).

@ Construction of reflective modular forms on Dy, not using reflective
modular forms on 7,

@ Unitary analogue of the “Arithmetic Mirror Symmetry Conjecture”
(Gritsenko, Ma)
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