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Today's talk

Let
@ F be a p-adic field,
@ G be a reductive group over F,
@ A be the maxmal F-split torus of the center of G,
e 7 be an irreducible square integrable representation of G(F).

Then, the formal degree deg m is a positive real number satisfying

T N o 1
/G(F)/A(F)(W(g)w, w)(r(g)vs, va) dg = degﬁ(vl’ v3)(v2, va).

Here, (, ) is a non-zero G(F)-invariant Hermitian pairing of the
space of .



I will talk about the following topics.

@ The formal degree conjecture of Hiraga-lchino-lkeda, which
describes deg 7 in terms of the Langlands parameter (¢, 7).

@ The local Langlands correspondence for the non-split inner
forms of Sp,, GSp,, which is established by using the local
theta correspondence.

@ The formal degree conjecture for them.

@ The behavior of the formal degrees under the local theta
correspondence.
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§1

§1 Quaternionic unitary groups and similitude groups

Let

@ F be a non-Archimedean local field of characteristic 0,
@ D be the division quaternion algebra over F,

o Vi1 = D? be the two-dimensional right Hermitian space over
D on which the Hermitian form

X1 X2 * *
, =X =+ X
(<y1> <y2> )1,1 12 o)

@ Gy be the unitary group of Vp 1,

is defined,

o Gy be the similitude group of V4 1.

Then, Gy 1, 61,1 are the (unique) non-split inner form of Sp,, GSp,
respectively.



Moreover, we consider

the skew-Hermitian space Wy 1 = D? on which the
skew-Hermitian form

((x1,51), 2, y2))11 = X y2 — X1

is defined,

the skew-Hermitian space W39 = D3 on which the
skew-Hermitian form

(X1, ¥1,21), (%2, ¥2, 22))3,0 = X[ X2 + y; Bys + z; affzn

is defined, (Here, a, 3 are elements of D* such that
o = —a, f* = -4, and pfa = —af.)

the unitary groups Hy 1, H3 o of Wi 1, W3 respectively,
and the similitude groups ;/1,1, FI370 of Wy 1, Wz respectively.



Then,
@ Hiy 1 is the inner form of SO» 5,
@ Hs is the inner form of SO3 3.
Moreover, there are accidental isomorphisms
o Hi1 2 D* x GLy(F)/{(a,a 1) | ae F*},
° I’:I370 ~ DS x F*/{(a,a"2) | a€ F*}.
Here, D, denotes a central division algebra over F with
[Ds : F] = 16.
Note that the local Langlands correspondence and the formal
degree conjecture has been estab|~ished for~FX, D>, GLo(F), D;".
Thus, they are also available for H;; and H3 .



§2

§2 Local theta correspondence

Setup
@ ¢ = +1: fixed sign,
e D: division quaternion algebra over F with the canonical
involution x,
@ V: m-dimensional right e-Hermitian space over D equipped
with the non-degenerate e-Hermitian form (, ), i.e.
e V is an m-dimensional right D-vector space, and
o (,):V xV —= Disa non-degenerate pairing satisfying
(xa, yb + zc) = a*(x,y)b + a*(x, z)c
(y,x) = e(x,¥)"
for x,y,z€ V and a,b,c € D,
e G(V): the unitary group of V,
e W: n-dimensional left (—e)-Hermitian space over D equipped
with the (—e¢)-Hermitian form (, ),
e G(W): the unitary group of W.



Then, (G(V), G(W)) consists a reductive dual pair,
=2n—2m — ¢,

W := V ®@p W with Symplectic form ((, )) given by

T(3(, ) (. )*) where T is the reduced trace of D,

1 F — C*: a non-trivial additive character of F,

wy,: the Weil representation realized on the space S(X) where
W =X@Y is a polar decomposition,

For an irreducible representation m of G(W), denote

@w(ﬂ', V) = (w¢ & ﬂ'V)G(W)

the G(W)-coinvariant space.

denote by 6y (7, V) the maximal semisimple quotient of
O©y(m, V) if it is non-zero (put by (7, V) =0 if

©y(m, V) =0). It is known to be irreducible if it is non-zero
((a part of) Howe duality: (Waldspurger'90, Gan-Sun'17)).



Local theta correspondence for similitude groups

For an irreducible representation 7 of Gy 1, we can define
irreducible representations

qu(%, V171), and 97/}(%, ngo)

of FlLl and ITI3,0. They satisfy

e for a irreducible constituent 7 of 7|¢, ,,
Oy(m.V) # 0 & 0y(7, V) #0,
o if 7|g,, is of the form (&!_;7;), then, we have

0u(7, V) = (Bf_10y(mi, V)"



§3

§3 Local Langlands correspondence

Notations:
@ F: a non-Archimedean local field with ch(F) =0,

@ G: a connected reductive group over F,
(However, we consider orthogonal groups as exceptions.)

@ MN(G(F)): the set of the irreducible smooth admissible
representations of G(F).

The local Langlands correspondence (= LLC) is a classification
theory of the irreducible representations M(G(F)) of G(F), which
is still conjecture in general. Let m € M(G(F)). Roughly speaking,
LLC asserts that m is characterized by its L-parameter ¢, and an
irreducible representation 7, of a certain finite group §(E;)



Classification by L-parameters

An L-parameter for G is a conjugacy class by G of homomorphisms
¢ : L — LG

satisfying some properties. Here,
o Wk denotes the Weil group of F,
@ Lr = WEg x SLy(C) is the local Langlands group,
o LG denotes the L-group of G,
o G denotes the Langlands dual group of G.

We denote by ®£(G) the set of all L-parameters for G. Then, LLC
asserts that there is a finite-to-one map

L :T(G(F)) — &p(G).

For ¢ € ®£(G), we put My(G(F)) := L71(¢). It is called the
L-packet for G associated with ¢.



Classification of an L-packet
Let ¢ € ®£(G). Then, there is a bijection

N4(G(F)) = Trr(S5(G), C6)-

Here,
° C¢(a) is the centralizer of Im(¢) in G,
o G the simply connected cover of a/ZA,
° §¢(E) is the preimage of C¢(a)Za/Za C E/Za in Gy,
@ S4(G) is the component group mo(S4(G)) of Sg(G),
@ (¢ is a character of Z(Gy.) associated with G, (It is not
necessarily canonical.)

° Irr(8¢( ), () is the set of irreducible representations of
S¢(G) whose restriction to Z(GSC) is the scalar multiplication

by (-



Known cases:

@ the general linear group GL, by Harris-Taylor'01, by
Henniart'00, and by Scholze'13,

@ the quasi-split special orthogonal groups SO(2n + 1),
SO(2n, x) by Arthur'13,

@ the symplectic group Sp(2n) by Arthur'13,
@ quasi-split unitary groups U(n) by Mok'15,

@ (non-quasi-split) unitary groups U(W) by
Kaletha-Minguez-Shin-White'14.



Langlands parameters for 51,1

Theorem (Gan-Tantono'14)

Let 7 be an irreducible representation of 6171, then the exactly one
of Oy (7, V1,1) # 0 or 6y (7, V30) # 0 occurs. Moreover,

o if0#6y(m, Vi1) = pXr, then
¢% = ¢p D ¢T7
e if0=# Qw(%, \/3’0) =X u, then

o7 = on.

Put 5 = ¢z. Then, the irreducible representation 73 is also given
case by case. We note that the component group 5(; is Abelian.




Langlands parameters for Gy 1

p—

Denote by p : 51,1 — 51\1 the standard projection. We call an
irreducible representation 7 of Gy ;1 the case S if (7, V1,1) #0
and ¢z = ¢1 ® (¢1 ® x) for some quadratic character ¢.

Theorem (Choiy'17)

Let w be an irreducible representation of Gy 1, and let ™ be an
irreducible representation of Gy 1 so that w|g,, D m. Then,

Gx =P o P5.

Moreover, if k denotes the multiplicity of 7 in 7, then we have

o Ldimn, (CaseS) .
dimn,  ( otherwise )

We do not write down the definition of 7;.



84 Formal degree conjecture

Notations
e F: non-Archimedean local field of ch(F) =0, O /wFr =Fy,
e G: connected reductive group /F,
@ A: maximal F split torus of the center of G,
@ 7 square integrable irreducible representation of G,
@ (, ): non-zero G(F)-invariant Hermitian form on .

The formal degree of 7 is a non-zero constant deg 7 satisfying

[, @, (&) d = o, 02 )

for all xq,...,x4 € .



Haar measures

Fix a non-trivial additive character ) of F. We choose the Haar
measure dg on G/A by using the motive of G (Gan-Gross'99). It
depend only on G and 9. For example:

@ Suppose that G is unramified and A = 1. Then the Haar
measure dg is normalized so that

1G(OF)| = g~ M #G(Fy).
@ The Haar measure dg on Gy 1 is given by
|GLiNGLa(Op) =q (1 —q (1 +q 1)
@ The Haar measure dg on H3 is given by

|Haol =297 °(1+q 1)1+ ¢72).



Formal degree conjecture
Let

@ A be the maximal split torus of the center of G,

o C,=C;N(G/A),

o Z'(G) = Z(G) N (G/A).
Put Sy := C¢/Z(a)r. Here I is the absolute Galois group of F.
Then, we have S, = ccg,/Z’(E;)r.

Conjecture (Hiraga-Ichino-lkeda'08)

Let w be a square-integrable irreducible representation of G and let
(¢.m) be its Langlands parameter. Then #C} < oo, and

dimn




Here,
o Ad: LG — GL(Lie(}G)) is the Adjoint representation of .G,
@ Y(s,Ad o ¢,v) is the Adjoint ~-factor. It has an expression

L(1—s,Ado¢Y)
L(s,Ado®)

The conjecture is refined by Gross-Reeder’10.

v(s,Ad o ¢, 1)) := (s, Ad o ¢, 7).




Known cases

@ Archimedean cases (Hiraga-lkeda-Ichino'08),
Inner forms of GL,(F) (Hiraga-lkeda-Ichino'08),
SO2p+1(F) (Ichino-Lapid-Mao'16),
Mp,,(F) (Ichino-Lapid-Mao'16),
Un(E) (Beuzart-Plessis'18),
Spa(F) (Gan-Ichino'14).

Moreover, we have

The formal degree conjecture holds for Gi 1 and 61,1.




§5 Outline of the proof

For a while, we discuss in the general setting. Let V' be an
m-dimensional e-Hermitian space, and let W be an n-dimensional
(—e€)-Hermitian space. Suppose that / = 1.

Theorem 2 (K.)

Let  be a square integrable irreducible representation of G(W),
and let 0 = 0,(m, V). Suppose that o # 0. Then o is also
square-integrable. Moreover, we have

QT — oV, W) (1) - 7¥(0.0 B xw, )

deg o

where vV (s, o X xy, 1) is the standard ~y-factor defined by the
doubling method, and

(—1)"xv(-1)e(3, xv,¥) (—e=1),
Sxw(=De(3, xw, ¥) (—e = —1).

a(V,W) = {




Remarks

o The factor vY(s,0 X x,) is defined as a factor appearing in
the local functional equation

ZY(M*(s,x,¥)fs, €) =7V (s, 0 K x) ZY (£, €)

where £ is a matrix coefficient of o, f5 € Indg(vu)(xs o A),
ZV(f;,€) is a zeta integral

ZV(f6) = / f(2)é(g) de.

G(V)

M*(s, x,%) is a normalized intertwining operator. Then, we
can prove that vV (s, o X x, 1)) satisfies some notable
properties which is expected to characterize the standard
~-factor (Yamana'l4, K.'20). In particular, the above theorem
is stated unconditionally.



@ A similar result has been established by Gan-Ichino for the
following reductive dual pairs:

(SPam(F), O2mi2(F)),
(O2m(F), Spam(F)).
(Sp2m( ) O2m+1( )),
(O2m+1(F ) Spom(F)),
(Um(F), Um(F)),
(Um(F), Unta(F)).
@ The proof of Theorem 2 differs from that of the result of
Gan-Ichino'14.
e First, we deduce Theorem 2 to the case where either V or W
is anisotropic.

e Then, we compute the constant by using some explicit local

zeta values.



@ For non-quaternionic classical groups, the behavior of the
Langlands parameter under the theta correspondence of equal
or almost equal rank has been established.

o Unitary dual pairs (Gan-Ichino'16),
e Symplectic-orthogonal dual pairs (Atobe-Gan'17)

@ For quaternionic unitary groups, this has not been formulated
yet. However, Theorem 2 tells us an information of the
dimensions of 71, 7,. We assume ¢, = (¢ ® XQIXW) D xw-
Then, Theorem 2 indicates that

dimn, _ #Cy. {1 (—e=1),

dimn,  #C,, L (—e=-1).

Nl



Now, we prove Theorem 1. Let G be one of Gy 1, Hi 1, H3p, and
let G be one of Gyi 1, Hi1, H3p.

Theorem (Choiy17)

Let ™ be an irreducible representation of G. Then, we have a

decomposition
t
7le = (P )
i=1
where 71, ..., are irreducible representations of G and

K — {% dimn; G = Gi1 and 7 has the L-parameter of Case S,

dim n; otherwise.




Then, we have

Proposition (Gan-Ichino’14)

_#26) Kk
C #2(G) #X(7)

where \ is the similitude norm, and

deg deg 7.

X(7) = {x € Hom(F*,C*) | (x o \)7™ X 7}.

Moreover, if we denote by X(¢) the stabilizer

{a € HY(WE,GLy) | a¢ = ¢ as L-parameters },

we have

Proposition (Chao-Li'14)

S3(G) = S(G) = X(¢) —+ 1




Finally, the reciprocity map of the local class field theory induces
an embedding X (7) — X(¢). Moreover, we have

[X(¢) : X(m)] =

~ 2 G = Gy and 7 has the L-parameter of Case I-(b),
1  otherwise.

Hence, we have

Lemma

Let w be a square integrable irreducible representation of G, let
(¢,m) be its Langlands parameter, let T be an irreducible
representation of G so that its restriction T|c to G contains w, and
let (¢,m) be the Langlands parameter of . Then, we have

imi #Cy(G
deg%_dlmn.# 6(G)

= — =~ . degm, and Ado ¢ = Ado ¢.
dimn #C;’Z(G) 2 ¢ ¢




Then, the proof of Theorem 1 goes as follows:

Theorem?2

FDC for H171, H370 ———— FDC for 6171 .
Lemma Lemma

FDC for FIL]_, F/3’0 FDC for 6171



Now, we prove Theorem 2. Consider
e X, X': right vector space over D with dim X = dim X/,
o V/ =X+ V + X': an e-Hermitian space containing V,

e Y, Y’ left vector space over D with
dimY =dim Y’ =dim X,

e W =Y+ W+ Y" a(—¢)-Hermitian space containing W.

Suppose that either V or W is anisotropic. Then, as in
Gan-Ichino’14, we have

Proposition

a(V', W) = a(V, W)

@ The proof of this proposition uses a result of Plancherel
formula of Hiereman'04.



Minimal case

@ It remains to determine either a(V, W) in the following types
of cases
e Minimal case (I): e =1, and V is a (unique) isotropic 2
dimensional e-Hermitian space, W is a (unique) anisotropic 3
dimensional (—e)-Hermitian space;
o Minimal case (Il): the case where V is anisotropic.

o Let S(V, W) be the proportional constant appearing in the
local Siegel-Weil formula. Then, it is known that a(V, W) is
expressed by S(V, W). In our study, we relate 5(V, W) to
local zeta values in the “minimal case”, which we can compute
in enough cases. In this way, we have a formula of a(V, W).



Remark: the local Siegel-Weil formula

@ The Weil representation ws of the reductive dual pair

(G(WP), G(V)) is realized on S(V @ W*). It is known that
there is a G(W")-invariant map

1
S(Ve Wh) - /W(—i,xv) s Fy

given by Fy(g) = [w,(g)¢](0).
o Consider the map

I:S(VeoWw?)eS(Ve Ws)—C
by
(6, ¢') = /G IO

where (, ) is the L2-inner product of S(V ® W*).



o For ¢ € S(V @ W%), we can take F; € IY(3,xv) so that
MV*(SaX,AmWF(Z = F4 (Yamana'll).

@ Consider the map
E:S(VeaWwr)eS(Ve W)= C
given by
£(0.) = [ Fi(e. 1)) Fol(e. 1) e
e Denoting AG(W) the diagonal subgroup of

G(W) x G(W) c G(W"), both Z and £ are
AG(W) x G(V)?-invariant maps.

Theorem (Gan-Ichino'14)

There is a constant B(V, W) such that T = g(V, W) - E.




A key lemma

Lemma

Let 7 be a Weyl element of G(W") so that 7(W*) = WV, and
T(WV) = W?. Then, for f € I(p,1), we have

/ f((g,1)) dg = C(r) - / f(ru) du
G(W)

u(wa)

where C(T) is a constant depending only on the Weyl element .

e We can compute C(7) by taking f as a special test function.

@ Thus, we deform £ to an integral over U(WV).
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