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Today’s talk

Let

F be a p-adic field,

G be a reductive group over F ,

A be the maxmal F -split torus of the center of G ,

π be an irreducible square integrable representation of G (F ).

Then, the formal degree deg π is a positive real number satisfying∫
G(F )/A(F )

(π(g)v1, v2)(π(g)v3, v4) dg =
1

deg π
(v1, v3)(v2, v4).

Here, ( , ) is a non-zero G (F )-invariant Hermitian pairing of the
space of π.



§1 §2 §3 §4 §5

I will talk about the following topics.

The formal degree conjecture of Hiraga-Ichino-Ikeda, which
describes deg π in terms of the Langlands parameter (ϕ, η).

The local Langlands correspondence for the non-split inner
forms of Sp4, GSp4, which is established by using the local
theta correspondence.

The formal degree conjecture for them.

The behavior of the formal degrees under the local theta
correspondence.
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§1 Quaternionic unitary groups and similitude groups

Let

F be a non-Archimedean local field of characteristic 0,

D be the division quaternion algebra over F ,

V1,1 = D2 be the two-dimensional right Hermitian space over
D on which the Hermitian form

(

(
x1
y1

)
,

(
x2
y2

)
)1,1 = x∗1y2 + x∗2y1

is defined,

G1,1 be the unitary group of V1,1,

G̃1,1 be the similitude group of V1,1.

Then, G1,1, G̃1,1 are the (unique) non-split inner form of Sp4,GSp4
respectively.
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Moreover, we consider

the skew-Hermitian space W1,1 = D2 on which the
skew-Hermitian form

⟨(x1, y1), (x2, y2)⟩1,1 = x∗1y2 − x∗2y1

is defined,

the skew-Hermitian space W3,0 = D3 on which the
skew-Hermitian form

⟨(x1, y1, z1), (x2, y2, z2)⟩3,0 = x∗1αx2 + y∗1βy2 + z∗1αβz2

is defined, (Here, α, β are elements of D× such that
α∗ = −α, β∗ = −β, and βα = −αβ.)
the unitary groups H1,1, H3,0 of W1,1, W3,0 respectively,

and the similitude groups H̃1,1, H̃3,0 of W1,1, W3,0 respectively.
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Then,

H1,1 is the inner form of SO2,2,

H3,0 is the inner form of SO3,3.

Moreover, there are accidental isomorphisms

H̃1,1
∼= D× × GL2(F )/{(a, a−1) | a ∈ F×},

H̃3,0
∼= D×

4 × F×/{(a, a−2) | a ∈ F×}.
Here, D4 denotes a central division algebra over F with
[D4 : F ] = 16.

Note that the local Langlands correspondence and the formal
degree conjecture has been established for F×, D×, GL2(F ), D

×
4 .

Thus, they are also available for H̃1,1 and H̃3,0.
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§2 Local theta correspondence

Setup

ϵ = ±1: fixed sign,

D: division quaternion algebra over F with the canonical
involution ∗,
V : m-dimensional right ϵ-Hermitian space over D equipped
with the non-degenerate ϵ-Hermitian form ( , ), i.e.

V is an m-dimensional right D-vector space, and
( , ) : V × V → D is a non-degenerate pairing satisfying

(xa, yb + zc) = a∗(x , y)b + a∗(x , z)c

(y , x) = ϵ(x , y)∗

for x , y , z ∈ V and a, b, c ∈ D,

G (V ): the unitary group of V ,

W : n-dimensional left (−ϵ)-Hermitian space over D equipped
with the (−ϵ)-Hermitian form ⟨ , ⟩,
G (W ): the unitary group of W .
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Then, (G (V ),G (W )) consists a reductive dual pair,

l = 2n − 2m − ϵ,

W := V ⊗D W with Symplectic form ⟨⟨ , ⟩⟩ given by
T (12( , ) · ⟨ , ⟩

∗) where T is the reduced trace of D,

ψ : F → C×: a non-trivial additive character of F ,

ωψ: the Weil representation realized on the space S(X) where
W = X⊕ Y is a polar decomposition,

For an irreducible representation π of G (W ), denote

Θψ(π,V ) := (ωψ ⊗ π∨)G(W )

the G (W )-coinvariant space.

denote by θψ(π,V ) the maximal semisimple quotient of
Θψ(π,V ) if it is non-zero (put θψ(π,V ) = 0 if
Θψ(π,V ) = 0). It is known to be irreducible if it is non-zero
((a part of) Howe duality: (Waldspurger’90, Gan-Sun’17)).
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Local theta correspondence for similitude groups

For an irreducible representation π̃ of G̃1,1, we can define
irreducible representations

θψ(π̃,V1,1), and θψ(π̃,V3,0)

of H̃1,1 and H̃3,0. They satisfy

for a irreducible constituent π of π̃|G1,1 ,

θψ(π.V ) ̸= 0 ⇔ θψ(π̃,V ) ̸= 0,

if π̃|G1,1 is of the form (⊕t
i=1πi )

k , then, we have

θψ(π̃,V )|H = (⊕t
i=1θψ(πi ,V ))k .
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§3 Local Langlands correspondence

Notations:

F : a non-Archimedean local field with ch(F ) = 0,

G : a connected reductive group over F ,
(However, we consider orthogonal groups as exceptions.)

Π(G (F )): the set of the irreducible smooth admissible
representations of G (F ).

The local Langlands correspondence (= LLC) is a classification
theory of the irreducible representations Π(G (F )) of G (F ), which
is still conjecture in general. Let π ∈ Π(G (F )). Roughly speaking,
LLC asserts that π is characterized by its L-parameter ϕπ and an
irreducible representation ηπ of a certain finite group S̃(Ĝ ).
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Classification by L-parameters

An L-parameter for G is a conjugacy class by Ĝ of homomorphisms

ϕ : LF → LG

satisfying some properties. Here,

WF denotes the Weil group of F ,

LF = WF × SL2(C) is the local Langlands group,
LG denotes the L-group of G ,

Ĝ denotes the Langlands dual group of G .

We denote by ΦF (G ) the set of all L-parameters for G . Then, LLC
asserts that there is a finite-to-one map

L : Π(G (F )) → ΦF (G ).

For ϕ ∈ ΦF (G ), we put Πϕ(G (F )) := L−1(ϕ). It is called the
L-packet for G associated with ϕ.
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Classification of an L-packet
Let ϕ ∈ ΦF (G ). Then, there is a bijection

Πϕ(G (F )) → Irr(S̃ϕ(Ĝ ), ζ ′G ).

Here,

Cϕ(Ĝ ) is the centralizer of Im(ϕ) in Ĝ ,

Ĝsc the simply connected cover of Ĝ/Z
Ĝ
,

S̃ϕ(Ĝ ) is the preimage of Cϕ(Ĝ )Z
Ĝ
/Z

Ĝ
⊂ Ĝ/Z

Ĝ
in Ĝsc,

S̃ϕ(Ĝ ) is the component group π0(S̃ϕ(Ĝ )) of S̃ϕ(Ĝ ),

ζ ′G is a character of Z (Ĝsc) associated with G , (It is not
necessarily canonical.)

Irr(S̃ϕ(Ĝ ), ζ ′G ) is the set of irreducible representations of

S̃ϕ(Ĝ ) whose restriction to Z (Ĝsc) is the scalar multiplication
by ζ ′G .



§1 §2 §3 §4 §5

Known cases:

the general linear group GLn by Harris-Taylor’01, by
Henniart’00, and by Scholze’13,

the quasi-split special orthogonal groups SO(2n + 1),
SO(2n, χ) by Arthur’13,

the symplectic group Sp(2n) by Arthur’13,

quasi-split unitary groups U(n) by Mok’15,

(non-quasi-split) unitary groups U(W ) by
Kaletha-Minguez-Shin-White’14.
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Langlands parameters for G̃1,1

Theorem (Gan-Tantono’14)

Let π̃ be an irreducible representation of G̃1,1, then the exactly one
of θψ(π̃,V1,1) ̸= 0 or θψ(π̃,V3,0) ̸= 0 occurs. Moreover,

if 0 ̸= θψ(π̃,V1,1) ∼= ρ⊠ τ , then

ϕπ̃ = ϕρ ⊕ ϕτ ,

if 0 ̸= θψ(π̃,V3,0) = Π⊠ µ, then

ϕπ̃ = ϕΠ.

Put ϕ̃ = ϕπ̃. Then, the irreducible representation ηπ̃ is also given
case by case. We note that the component group S̃

ϕ̃
is Abelian.
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Langlands parameters for G1,1

Denote by p :
̂̃
G1,1 → Ĝ1,1 the standard projection. We call an

irreducible representation π̃ of G̃1,1 the case S if θψ(π̃,V1,1) ̸= 0
and ϕπ̃ = ϕ1 ⊕ (ϕ1 ⊗ χ) for some quadratic character ϕ.

Theorem (Choiy’17)

Let π be an irreducible representation of G1,1, and let π̃ be an

irreducible representation of Ĝ1,1 so that π̃|G1,1 ⊃ π. Then,

ϕπ = p ◦ ϕπ̃.

Moreover, if k denotes the multiplicity of π in π̃, then we have

k =

{
1
2 dim ηπ ( Case S )

dim ηπ ( otherwise )
.

We do not write down the definition of ηπ.
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§4 Formal degree conjecture

Notations

F : non-Archimedean local field of ch(F ) = 0, OF/ϖF = Fq,

G : connected reductive group /F ,

A: maximal F split torus of the center of G ,

π: square integrable irreducible representation of G ,

( , ): non-zero G (F )-invariant Hermitian form on π.

The formal degree of π is a non-zero constant deg π satisfying∫
G/A

(π(g)x1, x2)(π(g)x3, x4) dg =
1

deg π
(x1, x3)(x2, x4)

for all x1, . . . , x4 ∈ π.
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Haar measures
Fix a non-trivial additive character ψ of F . We choose the Haar
measure dg on G/A by using the motive of G (Gan-Gross’99). It
depend only on G and ψ. For example:

Suppose that G is unramified and A = 1. Then the Haar
measure dg is normalized so that

|G (OF )| = q− dimG#G (Fq).

The Haar measure dg on G1,1 is given by

|G1,1 ∩ GL2(OD)| = q−3(1− q−1)(1 + q−1)2.

The Haar measure dg on H3,0 is given by

|H3,0| = 2q−6(1 + q−1)(1 + q−2).
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Formal degree conjecture
Let

A be the maximal split torus of the center of G ,

C ′
ϕ = Cϕ ∩ (Ĝ/A),

Z ′(Ĝ ) = Z (Ĝ ) ∩ (Ĝ/A).

Put Sϕ := Cϕ/Z(Ĝ )Γ. Here Γ is the absolute Galois group of F .

Then, we have Sϕ = C ′
ϕ/Z

′(Ĝ )Γ.

Conjecture (Hiraga-Ichino-Ikeda’08)

Let π be a square-integrable irreducible representation of G and let
(ϕ, η) be its Langlands parameter. Then #C ′

ϕ <∞, and

deg π =
dim η

#C ′
ϕ

· |γ(0,Ad ◦ ϕ, ψ)|.
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Here,

Ad : LG → GL(Lie(LG )) is the Adjoint representation of LG ,

γ(s,Ad ◦ ϕ, ψ) is the Adjoint γ-factor. It has an expression

γ(s,Ad ◦ ϕ, ψ) := L(1− s,Ad ◦ ϕ∨)
L(s,Ad ◦ ϕ)

· ϵ(s,Ad ◦ ϕ, ψ).

Remark

The conjecture is refined by Gross-Reeder’10.
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Known cases

Archimedean cases (Hiraga-Ikeda-Ichino’08),

Inner forms of GLn(F ) (Hiraga-Ikeda-Ichino’08),

SO2n+1(F ) (Ichino-Lapid-Mao’16),

Mp2n(F ) (Ichino-Lapid-Mao’16),

Un(E ) (Beuzart-Plessis’18),

Sp4(F ) (Gan-Ichino’14).

Moreover, we have

Theorem 1 (K.)

The formal degree conjecture holds for G1,1 and G̃1,1.



§1 §2 §3 §4 §5

§5 Outline of the proof

For a while, we discuss in the general setting. Let V be an
m-dimensional ϵ-Hermitian space, and let W be an n-dimensional
(−ϵ)-Hermitian space. Suppose that l = 1.

Theorem 2 (K.)

Let π be a square integrable irreducible representation of G (W ),
and let σ = θψ(π,V ). Suppose that σ ̸= 0. Then σ is also
square-integrable. Moreover, we have

deg π

deg σ
= α(V ,W ) · σ(−1) · γV (0, σ ⊠ χW , ψ)

where γV (s, σ ⊠ χW , ψ) is the standard γ-factor defined by the
doubling method, and

α(V ,W ) =

{
(−1)nχV (−1)ϵ(12 , χV , ψ) (−ϵ = 1),
1
2χW (−1)ϵ(12 , χW , ψ) (−ϵ = −1).
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Remarks

The factor γV (s, σ ⊠ χ, ψ) is defined as a factor appearing in
the local functional equation

ZV (M∗(s, χ, ψ)fs , ξ) = γV (s, σ ⊠ χ)ZV (fs , ξ)

where ξ is a matrix coefficient of σ, fs ∈ Ind
G(V2)
P (χs ◦∆),

ZV (fs , ξ) is a zeta integral

ZV (fs , ξ) =

∫
G(V )

fs(g)ξ(g) dg ,

M∗(s, χ, ψ) is a normalized intertwining operator. Then, we
can prove that γV (s, σ ⊠ χ, ψ) satisfies some notable
properties which is expected to characterize the standard
γ-factor (Yamana’14, K.’20). In particular, the above theorem
is stated unconditionally.
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A similar result has been established by Gan-Ichino for the
following reductive dual pairs:

(Sp2m(F ),O2m+2(F )),
(O2m(F ),Sp2m(F )),
(Sp2m(F ),O2m+1(F )),
(O2m+1(F ),Sp2m(F )),
(Um(F ),Um(F )),
(Um(F ),Um+1(F )).

The proof of Theorem 2 differs from that of the result of
Gan-Ichino’14.

First, we deduce Theorem 2 to the case where either V or W
is anisotropic.
Then, we compute the constant by using some explicit local
zeta values.
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For non-quaternionic classical groups, the behavior of the
Langlands parameter under the theta correspondence of equal
or almost equal rank has been established.

Unitary dual pairs (Gan-Ichino’16),
Symplectic-orthogonal dual pairs (Atobe-Gan’17)

For quaternionic unitary groups, this has not been formulated
yet. However, Theorem 2 tells us an information of the
dimensions of ηπ, ησ. We assume ϕπ = (ϕσ ⊗ χ−1

V χW )⊕ χW .
Then, Theorem 2 indicates that

dim ηπ
dim ησ

=
#Cϕπ
#Cϕσ

×

{
1 (−ϵ = 1),
1
2 (−ϵ = −1).
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Now, we prove Theorem 1. Let G be one of G1,1, H1,1, H3,0, and

let G̃ be one of G̃1,1, H̃1,1, H̃3,0.

Theorem (Choiy17)

Let π̃ be an irreducible representation of G̃ . Then, we have a
decomposition

π̃|G = (
t⊕

i=1

πi )
⊕k

where π1, . . . , πt are irreducible representations of G and

k =

{
1
2 dim ηi G = G1,1 and π̃ has the L-parameter of Case S,

dim ηi otherwise.
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Then, we have

Proposition (Gan-Ichino’14)

deg π =
#Z ′(

̂̃
G )

#Z (Ĝ )
· k

#X (π̃)
· deg π̃.

where λ is the similitude norm, and

X (π̃) = {χ ∈ Hom(F×,C×) | (χ ◦ λ)π̃ ∼= π̃}.

Moreover, if we denote by X (ϕ̃) the stabilizer

{a ∈ H1(WF , ĜL1) | aϕ̃ = ϕ̃ as L-parameters },

we have

Proposition (Chao-Li’14)

S
ϕ̃
(G̃ ) → Sϕ(G ) → X (ϕ̃) → 1



§1 §2 §3 §4 §5

Finally, the reciprocity map of the local class field theory induces
an embedding X (π̃) → X (ϕ̃). Moreover, we have

[X (ϕ̃) : X (π̃)] =

{
2 G = G1,1 and π̃ has the L-parameter of Case I-(b),

1 otherwise.

Hence, we have

Lemma

Let π be a square integrable irreducible representation of G, let
(ϕ, η) be its Langlands parameter, let π̃ be an irreducible
representation of G̃ so that its restriction π̃|G to G contains π, and
let (ϕ̃, η̃) be the Langlands parameter of π̃. Then, we have

deg π̃ =
dim η̃

dim η
·
#Cϕ(G )

#C ′
ϕ̃
(G̃ )

· deg π, and Ad ◦ ϕ̃ = Ad ◦ ϕ.
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Then, the proof of Theorem 1 goes as follows:

FDC for H1,1,H3,0
Theorem2 +3 FDC for G1,1

Lemma

��

FDC for H̃1,1, H̃3,0

Lemma

KS

FDC for G̃1,1

.
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Now, we prove Theorem 2. Consider

X ,X ′: right vector space over D with dimX = dimX ′,

V ′ = X + V + X ′: an ϵ-Hermitian space containing V ,

Y ,Y ′: left vector space over D with
dimY = dimY ′ = dimX ,

W ′ = Y +W + Y ′: a (−ϵ)-Hermitian space containing W .

Suppose that either V or W is anisotropic. Then, as in
Gan-Ichino’14, we have

Proposition

α(V ′,W ′) = α(V ,W )

The proof of this proposition uses a result of Plancherel
formula of Hiereman’04.
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Minimal case

It remains to determine either α(V ,W ) in the following types
of cases

Minimal case (I): ϵ = 1, and V is a (unique) isotropic 2
dimensional ϵ-Hermitian space, W is a (unique) anisotropic 3
dimensional (−ϵ)-Hermitian space;
Minimal case (II): the case where V is anisotropic.

Let β(V ,W ) be the proportional constant appearing in the
local Siegel-Weil formula. Then, it is known that α(V ,W ) is
expressed by β(V ,W ). In our study, we relate β(V ,W ) to
local zeta values in the “minimal case”, which we can compute
in enough cases. In this way, we have a formula of α(V ,W ).
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Remark: the local Siegel-Weil formula

The Weil representation ω2
ψ of the reductive dual pair

(G (W2),G (V )) is realized on S(V ⊗W△). It is known that
there is a G (W2)-invariant map

S(V ⊗W△) → IW (−1

2
, χV ) : ϕ 7→ Fϕ

given by Fϕ(g) = [ω2
ψ (g)ϕ](0).

Consider the map

I : S(V ⊗W△)⊗ S(V ⊗W△) → C

by

I(ϕ, ϕ′) =
∫
G(V )

(ω2
ψ (h)ϕ, ϕ

′) dh

where ( , ) is the L2-inner product of S(V ⊗W△).
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For ϕ ∈ S(V ⊗W△), we can take F †
ϕ ∈ IW (12 , χV ) so that

MV ∗
(s, χ,A0, ψ)F

†
ϕ = Fϕ (Yamana’11).

Consider the map

E : S(V ⊗W△)⊗ S(V ⊗W△) → C

given by

E(ϕ, ϕ′) =
∫
G
F †
ϕ((g , 1)) · Fϕ′((g , 1)) dg .

Denoting ∆G (W ) the diagonal subgroup of
G (W )× G (W ) ⊂ G (W2), both I and E are
∆G (W )× G (V )2-invariant maps.

Theorem (Gan-Ichino’14)

There is a constant β(V ,W ) such that I = β(V ,W ) · E .
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A key lemma

Lemma

Let τ be a Weyl element of G (W2) so that τ(W△) = W▽, and
τ(W▽) = W△. Then, for f ∈ I (ρ, 1), we have∫

G(W )
f ((g , 1)) dg = C (τ) ·

∫
U(W△)

f (τu) du

where C (τ) is a constant depending only on the Weyl element τ .

We can compute C (τ) by taking f as a special test function.

Thus, we deform E to an integral over U(W▽).
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