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Galois representations

K/Qp finite extension.

GK := Gal(K/K).

R a topological ring.

Is there a moduli space of representations ρ : GK → GLd(R)?



Moduli spaces of Galois representations

There is a good theory over Zl, l 6= p, or even Z[1/p].

Basic point: the action of wild inertia doesn’t deform, and tame
inertia is “easy”. Can work with Weil–Deligne representations and
get finite type lci moduli spaces (Helm,. . . )

Over Zp: doesn’t work.

Mazur: fix ρ : GK → GLd(F), F/Fp finite, and consider lifts of ρ
to ρ : GK → GLd(R), where R is Artin local with residue field F.
Moduli space: Spf Rρ.

How can we let ρ vary?



Existence of the stack

K/Qp finite extension, GK := Gal(K/K).

Theorem

There is a Noetherian formal algebraic stack Xd over Spf Zp, such
that Xd(Spf Zp) is naturally equivalent to the groupoid of
continuous representations GK → GLd(Zp).

The underlying reduced substack Xd,red is an algebraic stack of
finite type over Fp, and is equidimensional of dimension
[K : Qp]d(d− 1)/2.

Similarly for Xd(Fp). Not true for general p-adically complete
Zp-algebras, e.g. Fp[x].

n.b. Xd is not a p-adic formal algebraic stack. It is probably
[K : Qp]d

2-dimensional.



The 1-dimensional case

For simplicity from now, unless otherwise stated: K = Qp.

Characters GQp → F
×
p are of the form λaε

i, 0 ≤ i < p− 1, where
λa is the unramified character taking Frob 7→ a.

X1 has (p− 1) irreducible components, indexed by i.

X1,red is 0-dimensional: one dimension for a, but automorphisms
are Gm.



Definition of the stack

A a finite type Z/paZ-algebra for some a ≥ 1.

Definition

Xd(A) := rank d projective étale (ϕ,Γ)-modules with
A-coefficients.

Extend to general p-adically complete A by taking limits.

Identification of Xd(Zp) with GK → GLd(Zp) is due to Fontaine.



étale (ϕ,Γ)-modules

A a finite type Z/paZ-algebra for some a ≥ 1.

A rank d projective (ϕ,Γ)-module with A-coefficients is: a rank d
projective A((T ))-module M with commuting semilinear actions
of ϕ and Γ.

ϕ : A((T ))→ A((T )) is A-linear, ϕ(1 + T ) = (1 + T )p.

Γ = Gal(Qp(ζp∞)/Qp), ε : Γ→ Z×p cyclotomic character.

γ : A((T ))→ A((T )) is A-linear, γ(1 + T ) = (1 + T )ε(γ),

étale: M = A((T )) · ϕ(M).



Closed points and specializations

Irreducible representations GQp → GL2(Fp) are again discrete up
to unramified twist, and give 0-dimensional substacks of the
1-dimensional algebraic stack X2,red.

Reducible indecomposable representations

(
λaε

i ∗
0 λbε

j

)
with

∗ 6= 0 can specialize to ∗ = 0, so these are not closed points.

Fact: closed points of Xd = semisimple GK → GLd(Fp).



Closed points and specializations

Are there other specializations?

Consider the family of étale ϕ-modules over Fp given by

ϕ =

(
ap −1
T i 0

)
with 1 ≤ i ≤ p− 2 and ap ∈ Fp. (This can be equipped with an
action of Γ).

If ap 6= 0, corresponding GQp → GL2(Fp) is reducible, but if
ap = 0 it is irreducible.

This cannot happen for a literal family of representations!



Irreducible components

Example from the previous slide is a feature, not a bug.

For each 0 ≤ i, j < p− 1 consider

(
λaε

i ∗
0 λbε

j

)
with a, b varying.

The closure of this is a 1-dimensional substack.

In fact if i ≡ j + 1 (mod p− 1) we have an extra irreducible
component with a = b.

Theorem

(K = Qp) X2 has p(p− 1) irreducible components, indexed by i, j
as above.

More generally, the irreducible components of Xd are indexed by
(k1, . . . , kn) with 0 ≤ ki − ki+1 ≤ p− 1, 0 ≤ kn < p− 1.



A coarse moduli space for GL2(Qp)

In general the specialisation relations are complicated and no
obvious coarse moduli space.

For GL2(Qp): the only interesting specialisations are those we
wrote down before.

Fixing determinants, have a 1-dimensional scheme, in fact a chain
of P1s.



A coarse moduli space for GL2(Qp)
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The crystalline/potentially semistable substacks
Fix λ = (λ1 ≥ · · · ≥ λd).

Theorem

There is a unique closed substack X crys,λ
d of Xd which is flat

over Spf Zp, and such that if A/Zp is finite flat, then

X crys,λ
d = {ρ : GQp → GLd(A) |

ρ⊗Qp is crystalline with Hodge–Tate weights λ}.

X crys,λ
d is a p-adic formal algebraic stack.

If λ1 > · · · > λd then (X crys,λ
d )Fp is equidimensional of dimension

equal to dimXd,red.

Analogous result holds for (potentially) semistable representations,
for any K.



The geometric Breuil–Mézard conjecture I

If λ1 > · · · > λd then (X crys,λ
d )Fp is equidimensional of dimension

dimXd,red.

Not necessarily reduced: write Z(λ) = Z((X crys,λ
d )Fp), a formal

sum of irreducible components of Xd,red.

Question (Breuil–Mézard): Which components? What are the
multiplicities?



p-adic local Langlands

Expectation/hope: there is a sheaf M of GLd(K)-representations
on Xd which:

satisfies local-global compatibility for completed cohomology
of locally symmetric spaces.

encodes the weight part of Serre’s conjecture.

answers the question of Breuil–Mézard.

. . .

(p-adic analogue of Hellmann/Ben-Zvi–Chen–Helm–Nadler/Zhu.)

Dotto–Emerton–G. (in progress): holds for GL2(Qp).

Idea: Colmez’s construction of (D �P1)/(D\ �P1) makes sense
on X2.



The weight part of Serre’s conjecture

K = Qp. Let σ be an irreducible Fp-representation of GLd(Fp).

M(σ) := HomGLd(Zp)(M, σ∨)∨.

Expectation: support of M(σ) is a union of irreducible
components of Xd,red.

Z(σ) := Z(M(σ))).

If local-global compatibility holds, the support of Z(σ) exactly
determines the weight part of Serre’s conjecture.

True for modular curves.



The geometric Breuil–Mézard conjecture II

For λ = (λ1 > · · · > λd), set M(λ) := HomGLd(Zp)(M, π∨λ )∨,
where πλ = irreducible algebraic GLd(Zp)-representation of
highest weight (λ1 − (d− 1), . . . , λd−1 − 1, λd).

Expectations imply: Z(M(λ)) = Z(λ) = Z((X crys,λ
d )Fp).

Then we have the geometric Breuil–Mézard conjecture
Z(λ) =

∑
σ nσ(λ)Z(σ), where nσ(λ) = multiplicity of σ

in πλ ⊗Zp Fp.

Known for GL2(Qp) (Kisin, Paškūnas,. . . )

Extends to potentially crystalline/semistable case, using inertial
local Langlands correspondence.

This version can sometimes be proved if λ is small, e.g. G.–Kisin,
Le–Le Hung–Levin–Morra.



Patched modules and deformation rings

No construction is known of M other than for GL1 or GL2(Qp).

However there is a candidate after pulling back to the versal ring
at a fixed ρ : GK → GLd(Fp): the patched module M∞ of
Caraiani–Emerton–G.–Geraghty–Paškūnas–Shin.

Construction via globalisation and Taylor–Wiles patching of
cohomology of unitary Shimura varieties.

The pullback of the geometric Breuil–Mézard conjecture
Z(λ) =

∑
σ nσ(λ)Z(σ) to the versal ring is equivalent to

automorphy lifting theorems (Kisin).

e.g. can use solvable base change to reduce the potentially
crystalline case to the crystalline case (G.–Kisin).


