Singular modular forms on quaternionic E_8

Aaron Pollack

January 2021

Aaron Pollack Singular modular forms on quaternionic E₈

- 2 Siegel modular forms
- 3 The exceptional group $E_{7,3}$
- 4 Modular forms on exceptional groups
- 5 Singular modular forms on $E_{8,4}$
- 6 Proof of Theorem
- **7** Application of Θ_{min}

A 3 b

Goal

This talk is about: The construction of two very nice automorphic forms on quaternionic E_8

- $E_{8,4}$: real reductive group of type E_8 with split rank four; this is quaternionic E_8
- The symmetric space $E_{8,4}/K$ does not have Hermitian structure, but still possesses automorphic forms that behave **similarly** to classical holomorphic modular forms
- **Similarly**: They have a 'robust' Fourier expansion; called 'modular' forms
- There are two modular forms on $E_{8,4}$ that can write down explicitly
- **Theorem**: These modular forms have all Fourier coefficients in **Q**
- Time permitting: An application to a very interesting automorphic form on $E_{6,4}$

- 2 Siegel modular forms
- 3 The exceptional group $E_{7,3}$
- 4 Modular forms on exceptional groups
- 5 Singular modular forms on $E_{8,4}$
- 6 Proof of Theorem
- **7** Application of Θ_{min}

A 3 b

Siegel modular forms

The symplectic group

•
$$\operatorname{Sp}_{2n} = \{g \in \operatorname{GL}(2n) : {}^{t}g\left({}_{-1_{n}} {}^{1_{n}} \right)g = \left({}_{-1_{n}} {}^{1_{n}} \right)\}$$

•
$$Sp_{2n} \supseteq U(n) \simeq \left\{ \left(\begin{smallmatrix} a & b \\ -b & a \end{smallmatrix} \right) : a + ib \in U(n) \right\}$$

The symmetric space

- $S_n := n \times n$ symmetric matrices
- $\mathcal{H}_n = \{Z = X + iY : X, Y \in S_n(\mathbf{R}), Y > 0\}$ the Siegel upper half-space
- $\mathcal{H}_n \simeq \operatorname{Sp}_{2n}(\mathbf{R})/U(n)$ the symmetric space

 $\operatorname{Sp}_{2n}(\mathbf{R})$ acts on $\operatorname{Sp}_{2n}(\mathbf{R})/U(n)=\mathcal{H}_n$ via

$$g \cdot Z = (aZ + b)(cZ + d)^{-1}$$

if $g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ in $n \times n$ block form.

Siegel modular forms: continued

Siegel modular form of weight $\ell > 0$:

Definition and basic properties

- $f: \mathcal{H}_n \to \mathbf{C}$ holomorphic such that
- f((aZ + b)(cZ + d)⁻¹) = det(cZ + d)^ℓf(Z) for all (^a_c ^b_d) ∈ Γ some congruence subgroup of Sp_{2n}(Z)
- Fourier expansion:

$$f(Z) = \sum_{T \in S_n(\mathbf{Q}), T \ge 0} a_f(T) e^{2\pi i \operatorname{tr}(TZ)}$$

with $a_f(T) \in \mathbf{C}$ and $T \ge 0$ means "*T* is positive semi-definite".

• If n = 1, these are classical modular forms for SL₂ If f a Siegel modular form, can consider $f \in H^0(\Gamma \setminus \mathcal{H}_n, \mathcal{L}^{\ell})$

 \bullet a global section of a holomorphic line bundle \mathcal{L}^ℓ on $\Gamma \backslash \mathcal{H}_n$

$$arphi: \operatorname{Sp}_{2n}(\mathbf{Q})ackslash\operatorname{Sp}_{2n}(\mathbf{A})
ightarrow \mathbf{C}$$
 with

The definition

$$\ \ \, { \ 0 } \ \ \, \varphi(gk)=z(k)^{-\ell}\varphi(g) \ \ \, { for all } \ k\in U(n), \ z: \ U(n) \stackrel{\rm det}{\rightarrow} U(1)\subseteq { \bf C}^{\times}$$

2 $\mathcal{D}_{CR,\ell}\varphi \equiv 0$: φ annihilated by linear differential operator $\mathcal{D}_{CR,\ell}$ so that f_{φ} on \mathcal{H}_n satisfies the Cauchy-Riemann equations

The Fourier expansion

$$\varphi_f\left(\begin{pmatrix}1 & X\\ & 1\end{pmatrix}\begin{pmatrix}Y^{1/2} \\ & Y^{-1/2}\end{pmatrix}\right) = \varphi_f(n(X)m)$$
$$= \sum_{T \in S_n(\mathbf{Q}), T \ge 0} a_{\varphi}(T) e^{2\pi i \operatorname{tr}(TX)} e^{-2\pi \operatorname{tr}(TY)}$$

where $iY = m \cdot i$ in \mathcal{H}_n and $a_{\varphi}(T) \in \mathbf{C}$.

Automorphically

• $\pi = \bigotimes_{\nu} \pi_{\nu}$ with π_{∞} a holomorphic discrete series representation

- 2 Siegel modular forms
- 3 The exceptional group $E_{7,3}$
- 4 Modular forms on exceptional groups
- 5 Singular modular forms on $E_{8,4}$
- 6 Proof of Theorem
- **7** Application of Θ_{min}

A very nice exceptional group

 $E_{7,3}$: has a symmetric space with Hermitian tube structure

- Θ : octonions with positive-definite norm form. This is an 8-dimensional, non-associative **R**-algebra that comes equipped with a quadratic form $\Theta \rightarrow \mathbf{R}$ and an **R**-linear conjugation $*: \Theta \rightarrow \Theta$.
- $J = H_3(\Theta)$: Hermitian 3×3 matrices with elements in Θ .

$$J = \left\{ \begin{pmatrix} c_1 & x_3 & x_2^* \\ x_3^* & c_2 & x_1 \\ x_2 & x_1^* & c_3 \end{pmatrix} : c_i \in \mathbf{R}, x_j \in \Theta \right\}.$$

 $E_{7,3}$ acts on

$$\mathcal{H}_J = \{Z = X + iY : X, Y \in J, Y > 0\}$$

by "fractional linear" transformations.

For an integer $\ell > 0$, $f : \mathcal{H}_J \to \mathbf{C}$ is a holomorphic modular form of weight ℓ if

- *f* is holomorphic, moderate growth
- f(γZ) = j(γ, Z)^ℓf(Z) for all γ ∈ Γ ⊆ E_{7,3} a congruence subgroup

These holomorphic modular forms on $E_{7,3}$ have a Fourier expansion:

$$f(Z) = \sum_{T \in J_{\mathbf{Q}}, T \ge 0} a_f(T) e^{2\pi i \operatorname{tr}(TZ)}$$

with the $a_f(T) \in \mathbf{C}$.

Kim's modular forms on $E_{7,3}$

Rank

Note that $J \supseteq S_3$ the symmetric 3×3 matrices. There is a function $rank : J \rightarrow \{0, 1, 2, 3\}$ extending the rank of symmetric matrices on S_3 .

Theorem 1 (H. Kim)

There exists holomorphic modular forms $\Theta_{Kim,4}$ and $\Theta_{Kim,8}$ for $E_{7,3}$ with the following properties:

- ⊖_{Kim,4} is a weight 4, level 1 modular form with Fourier coefficients in Z. Moreover, the Fourier coefficients a_{⊖Kim,4}(T) are 0 unless rank(T) ∈ {0,1}.
- ^O_{Kim,8} is a weight 8, level 1 modular form with Fourier coefficients in Z. Moreover, the Fourier coefficients a_{⊖_{Kim,8}}(T) are 0 unless rank(T) ∈ {0,1,2}.

The modular forms $\Theta_{Kim,4}, \Theta_{Kim,8}$ are said to be singular.

- 2 Siegel modular forms
- 3 The exceptional group $E_{7,3}$
- 4 Modular forms on exceptional groups
- 5 Singular modular forms on $E_{8,4}$
- 6 Proof of Theorem
- **7** Application of Θ_{min}

Exceptional groups have 'modular forms'

The groups

$G: G_2 \subseteq D_4 \subseteq F_4 \subseteq E_{6,4} \subseteq E_{7,4} \subseteq E_{8,4}$

- $K \subseteq G$ the maximal compact. $K \twoheadrightarrow SU(2)/\mu_2$.
- *G*/*K*: no Hermitian structure

Definition of modular forms on G

Let $\ell \geq 1$ be an integer. A modular form on ${\it G}$ of weight ℓ is

- an automorphic form $\varphi: \Gamma \backslash G \to Sym^{2\ell}(\mathbf{C}^2)$
- satisfying $\varphi(gk) = k^{-1} \cdot \varphi(g)$ for all $g \in G$, $k \in K$
- and $\mathcal{D}_\ell \varphi = 0$ for a certain special linear differential operator \mathcal{D}_ℓ
- Definition due to Gross-Wallach, Gan-Gross-Savin

Theorem 2

The modular forms of weight $\ell \ge 1$ on G have a robust Fourier expansion, normalized over the integers, that is compatible with pullbacks between groups G above.

The theorem means:

- Given a modular φ form of weight ℓ, one can ask the question
 "Are all of φ's Fourier coefficients in some ring R ⊆ C?"
- If ι : G₁ ⊆ G₂ in the above sequence of groups, and if φ is modular form on G₂ of weight ℓ, then the pullback ι*(φ) on G₁ is a modular form of weight ℓ.
- Moreover, the Fourier coefficients of $\iota^*\varphi$ are finite sums of the Fourier coefficients of φ

More precise Fourier expansion

Have

$$G \supseteq P = MN \supseteq [N, N] := Z$$

the Heisenberg parabolic. Set

$$\varphi_{Z}(g) = \int_{Z(\mathbf{Q})\setminus Z(\mathbf{A})} \varphi(zg) \, dz.$$

Can Fourier expand φ_Z along N/[N, N], and via Theorem 2 this Fourier expansion is

Fourier expansion

$$\varphi_{Z}(nm_{f}m_{\infty}) = \sum_{\chi \in (N/Z)^{\vee}} \chi(n)c_{\chi,\varphi}(m_{f})\mathcal{W}_{\chi}(m_{\infty})$$

for certain completely explicit functions $\mathcal{W}_{\chi}: M(\mathbf{R}) \to Sym^{2\ell}(\mathbf{C}^2).$

- The point is that the functions \mathcal{W}_{χ} are independent of arphi
- The functions W_χ are 0 unless χ satisfies a certain positivity condition

Fourier coefficients

If $R \subseteq \mathbf{C}$ is a subring, one says that φ has Fourier coefficients in R if all the functions $c_{\chi,\varphi} : M(\mathbf{A}_f) \to \mathbf{C}$ are in fact valued in R.

 If χ is non-degenerate in a certain sense, these Fourier coefficients were defined by Gan-Gross-Savin, using a multiplicity one result of Wallach.

Motivating question

Fix G and $\ell \ge 1$. Does there exist a basis of the modular forms on G of weight ℓ , all of whose Fourier coefficients are in $\overline{\mathbf{Q}}$?

- 2 Siegel modular forms
- 3 The exceptional group $E_{7,3}$
- 4 Modular forms on exceptional groups
- 5 Singular modular forms on $E_{8,4}$
- 6 Proof of Theorem
- **7** Application of Θ_{min}

Let $P = MN \subseteq E_{8,4}$ be the Heisenberg parabolic subgroup, $M = GE_{7,3}$.

Theorem 3 (Gan, P, Savin)

There exists square integrable automorphic forms Θ_{min} and Θ_{ntm} on $E_{8,4}$ with the following properties.

 Θ_{min} is a weight 4 modular form with all Fourier coefficients in Z. Its constant term along N, Θ_{min,N} is essentially Θ_{Kim,4}.
 Θ_{ntm} is a weight 8 modular form with all Fourier coefficients in Q. Its constant term along N, Θ_{ntm,N} is essentially Θ_{Kim,8}. These modular forms are singular in the sense that many of their Fourier coefficients are 0.

The Fourier coefficients are parametrized by elements in a lattice in $W = (N/[N, N])^{\vee}$. There is a function rank : $W \to \{0, 1, 2, 3, 4\}$.

- The Fourier coefficients $a_{\Theta_{min}}(w)$ of Θ_{min} are 0 unless $\mathrm{rank}(w) \in \{0,1\}$
- The Fourier coefficients $a_{\Theta_{ntm}}(w)$ of Θ_{ntm} are 0 unless $\operatorname{rank}(w) \in \{0, 1, 2\}$

Remarks

- Gross-Wallach constructed unitary representations π₄ and π₈ of the real group E_{8,4} that are small in the sense of GK dimension. The automorphic forms Θ_{min}, Θ_{ntm} should be¹ thought of as globalizations of these representations.
- **②** On **split** E_8 there are analogues of Θ_{min} and Θ_{ntm} . These are completely spherical automorphic forms
 - constructed by Ginzburg-Rallis-Soudry, in the case of the minimal;
 - constructed by Green-Miller-Vanhove, Ciubotaru-Trapa in the case of next-to-minimal;
 - next-to-minimal recently studied by Gourevitch-Gustafsson-Kleinschmidt-Persson-Sahi.
- Gan constructed Θ_{min} as a special value of an Eisenstein series associated to $Ind_P^{E_{8,4}}(\delta_P^{s_{min}})$, proved it's square integrable.

¹Proved by Gan-Savin for Θ_{min} and π_4 . Should be true but not proved for Θ_{ntm} and π_8 .

- 2 Siegel modular forms
- 3 The exceptional group $E_{7,3}$
- 4 Modular forms on exceptional groups
- 5 Singular modular forms on $E_{8,4}$
- 6 Proof of Theorem
- **7** Application of Θ_{min}

Heisenberg Eisenstein series

Suppose $G = E_{8,4}$, P Heisenberg parabolic.

 $\nu: P \to \mathsf{GL}_1$

generating the character group of P. On $G = E_{8,4}$,

$$|\nu(p)|^{29} = \delta_P(p)$$

for $p \in P$. Suppose

- $\ell \geq 1$ even
- $f(g, \ell; s) \in Ind_{P(\mathbf{A})}^{G(\mathbf{A})}(|\nu|^{s})$, certain $Sym^{2\ell}(V_{2})$ -valued section.
- $E(g, \ell; s) = \sum_{\gamma \in P(\mathbf{Q}) \setminus G(\mathbf{Q})} f(\gamma g, \ell; s)$ absolutely convergent for Re(s) > 29.
- If s = ℓ + 1 in range of absolute convergence, E(g, s = ℓ + 1)
 a modular form of weight ℓ for G

Question

Does $E(g, s = \ell + 1)$ have rational Fourier coefficients?

Next to minimal

Motivated by work of Gross-Wallach on continuation of quaternionic discrete series, take $\ell = 8$ and $G = E_{8,4}$.

Proposition

The Eisenstein series $E(g, \ell = 8; s)$ is regular at s = 9 (even though outside the range of absolute convergence), and defines square integrable weight 8 modular form at this point.

Set

$$\theta_{ntm}(g) = E(g, \ell = 8; s = 9)$$

Theorem 4 (Savin)

The spherical constituent of the degenerate principal series $Ind_{P(\mathbf{Q}_{p})}^{G(\mathbf{Q}_{p})}(|\nu|^{9})$ is "small", i.e., many twisted Jacquet modules are 0. Consequently, the rank three and rank four Fourier coefficients of θ_{ntm} are 0.

▲白(マ) ▲ 三 ▶

More on next-to-minimal modular form

Theorem 5

The weight 8 modular form θ_{ntm} has rational Fourier coefficients.

Proof.

- Savin's result gives vanishing of rank three and four Fourier coefficients
- Explicit computation (outside range of abs. convergence) gives rationality of rank 1 and rank 2 Fourier coefficients
- Constant term analyzed using work of H. Kim on weight 8 singular modular form on GE_{7,3}

Explicit computation of θ_{ntm}

- Define special $Sym^{2\ell}(V_2)$ -valued Eisenstein series $E_{\ell}(g)$ on SO(3, 4k + 3)
- Prove that the constant term θ_{ntm} from E_{8,4} down to SO(3,11) is E₈(g)
- Theorem: the E_l(g) have rational Fourier coefficients (in a precise sense)
- The Fourier coefficients of $E_8(g)$ can be identified with rank 1 and rank 2 Fourier coefficients of θ_{ntm} .

To prove the $E_{\ell}(g)$ have rational Fourier coefficients:

Jacquet integral

Explicit computation of certain Archimedean Jacquet integral

$$\int_{V_{2,4k+2}(\mathbf{R})} e^{2\pi i(v,x)} f_{\ell}(wn(x)) \, dx.$$

< ロ > < 同 > < 三 > < 三 >

- 2 Siegel modular forms
- 3 The exceptional group $E_{7,3}$
- 4 Modular forms on exceptional groups
- 5 Singular modular forms on $E_{8,4}$
- 6 Proof of Theorem
- **7** Application of Θ_{min}

A 3 b

A distinguished modular form

Let G be one of the quaternionic exceptional groups, P = MN its Heisenberg parabolic, $W(\mathbf{R}) = (N/[N, N])^{\vee}$. Globally, there is an arithmetic invariant on the orbits of $M(\mathbf{Q})$ on $W(\mathbf{Q})$:

 $q: W(\mathbf{Q})^{rk=4} \to \mathbf{Q}^{\times}/(\mathbf{Q}^{\times})^2 = \{ \text{ quadratic etale extensions of } \mathbf{Q} \}.$

Fact: If *F* a modular form on *G*, $\omega \in W(\mathbf{Q})$ and $q(\omega) > 0$ then $a_F(\omega) = 0$. In other words, only ω corresponding to imaginary quadratic fields can have associated nonzero Fourier coefficients Fix an imaginary quadratic extension E/\mathbf{Q} . Associated to *E*, there is a group G_E over \mathbf{Q} of type $E_{6,4}$.

Theorem 6

There is a weight 4 modular form θ_E on G_E with Fourier coefficients in **Z** such that θ_E has nonzero Fourier coefficients of all ranks and

If ω ∈ W(Q)^{rk=4} and q(ω) ∈ Q×/(Q×)² does not represent E, then the Fourier coefficient a_{θE}(ω) = 0

Proof of Theorem 6:

- **(**) Define G_E , which is simply-connected of type $E_{6,4}$
- 2 Carefully embed G_E in $E_{8,4}$ via $\iota_E: G_E \to E_{8,4}$
- Solution Define $\theta_E = \iota_E^*(\theta_{min})$, the pull-back of the modular form generating the minimal representation on $E_{8,4}$
- The Fourier coefficients of θ_E can then be computed from those of θ_{min}
- θ_{min} only has nonzero Fourier coefficients for the most degenerate ω, those ω of rank 1
- This vanishing of $a_{\theta_{min}}(\omega)$ imposes a strong arithmetic condition on the Fourier coefficients of θ_E .

Thank you for your attention!

3 🕨 🖌 3