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Abstract

Cohomological rigidity theorems (with Banach coefficients) for some matrix groups
G over general rings are obtained. Main examples of these groups are (finite index
subgroups of) universal lattices SLy,(Z|x1, ..., zx]) for m at least 3 and symplectic
universal lattices Spy,, (Z[z1, . .., xy]) for m at least 2 (where k is finite). The results
includes the following for certain large m:

(1) The first group cohomology vanishing with any isometric L? or p-Schatten co-
efficients, where p is any real on (1,00). This is strictly stronger than having
Kazhdan’s property (T).

(2) The injectivity of the comparison map in degree 2 from bounded to ordinary
cohomology, with coefficients as in item (1) not containing trivial one.

As a corollary, homomorphim rigidity (, namely, the statement that every homo-
morphism from G has finite image) is established with the following targets: circle
diffeomorhisms with low regularity; mapping class groups of surfaces; and outer
automorhisms of free groups. These results can be regarded as a generalization of
some previously known rigidity theorems for higher rank lattices (Bader—Furman—
Gelander-Monod; Burger-Monod; Farb-Kaimanovich-Masur; Bridson-Wade) to
the case of certain general matrix group cases, which are not realizable as lattices in
algebraic groups. Note that G above does not usually satisfy the Margulis finiteness
property.

Finally, quasi-homomorphims are studied on special linear groups over euclidean
domains. This concept has relation to item (2) above for trivial coefficient case,
and to the conception of the stable commutator length. In particular, a question of
M. Abért and N. Monod, which was for instance stated at ICM 2006, is answered
for large degree case, and a new example of groups with the following intriguing
features is provided: having infinite commutator width; but the stable commutator
length vanishing.
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Chapter 0

Notation and convention

Unless otherwise stating, we always assume that all topological groups in this paper
are locally compact and o-compact (our definition of the compactness contains being
Hausdorff). Throughout this thesis, we also assume all rings are associative and
unital, all representations and actions of a topological group on Banach spaces are
strongly continuous, and all subsets and subgroups of a topological group are closed.
We use the terminology representations for linear representations. We basically use
the symbol I'; G, H, N, and A for topological groups; S for a subset of a topological
group; p for a representation on a Banach space; 7 for a unitary representation;
B, E and for Banach spaces; $ for a Hilbert space; C for a class of Banach spaces;
A and R for rings.
We use the following symbols, which are standard in mathematical literatures:

o Zlxy,...,xx): the (commutative) polynomial ring of £ independent generators
over Z (, as a discrete ring);
Z{x1,...,x): the noncommutative polynomial ring of k independent genera-
tors over Z (, as a discrete ring)
(for k£ a natural number)

e F,: the finite field of order ¢ (for ¢ a positive power of a prime)
(E): the unit sphere;

(E): the unit ball;
(E): the Banach algebra of all bounded linear operators;

O E T W

(E): the group of linear isometries on E;
E*: the dual Banach space
(for a Banach space F)

e U(9H): the group of unitaries (for a Hilbert space )

T — T*: the adjoint operation B($)) — B(H) (for a Hilbert space )

x1
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BP(@): the subspace in B of p(G)-invariant vectors (for a Banach representation
(p, B) of a group G)

|S]: a number (for a finite set S)

ls: a word length G — Z>( (for a group and a symmetric generating subset

S)

diam(X): the diameter of X, namely, the maximum of distances between two
vertices in X

(for a finite connected graph X)
p: a (nonzero) left Haar measure (for a group G)

lg: trivial representation (for a group G) (therefore for a G-representation
(B, p), the condition of p O 1 means B*(&) #£ ().

Ag: left regular representation on LP(G) = LP(G, u) (for a group G and p in

(1,00))

Unless otherwise stating, we consider the case of p = 2.
AAB: symmetric deference, := (A\ B) U (B \ A) (for a set A and B)
G: the unitary dual of G (for a group G)

7 = 1g: the weak containment of 14 (in the Fell topology on CAJ), equivalently,
7 having almost invariant vectors (for a unitary representation (m,$)) of a
group G)

K(G;S): the Kazhdan constant (for a group G and a compact subset .S)

K(G,N;S) the relative Kazhdan constant (for a group G, N < G and a
compact subset S of G)

¢ — &*: the duality mapping S(B) — S(B*) (for a uniformly smooth Banach
space B)

p': the contragredient representation G — B(B*) (for a Banach G-representation
(0, B))

eq (or simply, e): the group unit of G;
1 (or simply, 1): the ring unit of R

lim,,: ultralimit (of bounded sequences), or ultraproduct (of sequences of met-
ric spaces with base points) (for a fixed non-principal ultrafilter w)
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M,,.(R): the ring of m X m matrices;

I,,: the ring unit of M,,(R);

GL,,(R): the multiplicative group of invertible matrices in M,,(R)
(for m > 2 and a ring R)

W — 'W: the transpose map on M,,(A) (for m > 2 and a commutative ring
A)

SL.(A): the multiplicative group of matrices in M,,,(A) of determinant 1 (for
m > 2 and A a commutative ring)

E..(R): the elementary group inside GL,,(R);
E; j(r): the elementary matrix in M,,(R) with the (7, j)-th entry r
(for form > 2 and aring R;and 1 <i<m, 1 <j<m,i# j,and r € R)

U, (R): the normal subrgoup of GL,,(R) generated by all unipotent matrices
in GL,.(R)

E..(R) x R™> R™: these groups are respectively identified with

{(Ig ?):WeEm(R),fueRm} > {(I(’)" ?):UER’”}

(for m > 2 and a ring R)

En(R) < E(R), SL,v(A) < SL,,,(A): by these we mean the inclusions are
respectively realized as the subgroups sit in the left upper corner. Namely, for
instance we realize E,,,,(R) < E,,(R) as

{(Vg Im?mo ) ‘WGEmo(R)} < En(R).

(For m > mgy > 2, aring R, and a commutative ring A)
St (R): the Steinberg group (for a ring R and m > 3)

C,: the space of p-Schatten class operators (for p) (although the space itself
is defined also for p = 1,00, we always assume p € (1,00), as mentioned in
below).

H*(G;p, B), Hy(G; p, B): respectively, group cohomology and group bounded
cohomology with Banach coefficient (for a discrete group G and a Banach
G-representation (p, B))

H*(G), H3(G): respectively, group cohomology, and group bounded cohomol-
ogy with the trivial real coefficient (R, 1) (for a discrete group G)
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H:(G;p,B), H3(G;p,B): respectively, continuous group cohomology, and
continuous group bounded cohomology with Banach coefficient (for a topolog-
ical group G and a Banach G-representation (p, B))

H(G;p,B) — H*(G;p,B), H3,(G; p, B), H(G; p, B): the comparison maps
in degree o (for a dicrete/topological group G and a Banach G-representation
(p, B));

H?(G) — H*(G): the comparison map in degree o, with the trivial real coef-
ficient (for a discrete group G)

QH(G): the (R-vector) space of quasi-homomorphisms;
QH(G): the actual (R-vector) space of quasi-homomorhisms
(for a discrete group G)

HQH(G): the (R-vector) space of homogeneous quasi-homomorphisms;
HQH(G): the actual (R-vector) space of homogeneous quasi-homomorhisms
(for a discrete group G)

lg,h]: a single commutator, := ghg~'h™! (for g.h € G and a group G)

[G, G]: the commutator subgroup;

cl C[G,G] = Zxy), scl (|G, G] — Rsp): respectively the commutator length
and the stable commutator length on [G, G]

(for a discrete group G)

S': the unit circle on R?, identified with [—7, )

Diff}ﬁo‘(sl): the group of orientation preserving circle homeomorphisms which
are (1 + a)-Holder diffrentiable

Y,, 4.0 acompact oriented connected surface respectively of genus g (closed),
and of genus g and punctures [ (for g,l > 0) (therefore ¥, =3, );
MCG(X): the mapping class group, as a discrete group (for a surface X3)

F,: the free group of rank n;

Aut(F,), Out(F,): respectively the automorphism group and the outer auto-
morphism group of F},, as discrete groups

(for n > 2 finite)

L x L': the free product (for groups L and L’)

IA,: the kernel of Out(F,) — GL,(Z) (for n > 2)

The following notation, convention and uses of symbols in this thesis may not

be standard:
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For a simple algebraic group G over a local field, by rank we mean the local
rank of GG, namely, the dimension of maximal split torus in GG
(for example, for any m > 1 the group Sp,, ; is of rank 1 in our definition).

By a totally higher rank (algebraic) group, we mean a group of the following
form: G = 17", G;(k;), where k; are local fields, G;(k;) are k;-points of Zariski
connected simple k;-algebraic groups (with finite center), and each simple fac-
tor G;(k;) has rank > 2.

By a totally higher rank lattice, we mean a lattice in a totally higher rank
algebraic group.

By a higher rank lattice, we mean a lattice I' in a group the form G =
117", G;(k;) where k; are local fields and G;(k;) are k;-points of Zariski con-
nected simple k;-algebraic groups with finite center and with ) . rankG;(k;) >
2, which satisfies the following condition: for every ¢ such that rankG;(k;) = 1,
the image of I' by the projection G — G;(k;) is dense in G;(k;).

Note that essential examples of higher rank lattices which may not be of to-
tally higher rank are irreducible lattices in a higher rank algebraic group. Here
a higher rank algebraic group is a group of the form G = II7* | G;(k;) above
with ) .rankG;(k;) > 2, and a lattice I" in G is irreducible if each image of I'
by the projection into G;(k;) is dense.

For instance, SLy(Z[v/2]) is a higher rank lattice (can be realized as an irre-
ducible lattice in SLy(R) x SLy(R)), but not a totally higher rank lattice. And
even though SLy(Z) x SLy(Z) is a lattice in the group SLy(R) x SLy(R) of rank
2, this is not a higher rank lattice in our definition.

Let p represent any real in (1, 00) (it is important in this thesis that we exclude
the case of p=1 and p = 00).

Let k represent any natural number (for & = 0, we mean by Z[xy, ..., zy] the
ring of integers Z).

Let H denote the class of all Hilbert spaces.

Let [H] denote the class of all Banach spaces which admit compatible norms
to those of Hilbert spaces.

The symbol K is used for a local field (we allow archimedean local fields as
well).

For a real M > 1, let H,; denote the class of all Banach spaces which admit
compatible norms to those of Hilbert spaces with the norm ratio < M.



XVi

CHAPTER 0. NOTATION AND CONVENTION

Here for two norms || - ||y and || - ||2 on a Banach space, the norm ratio between
| - |1 and || - ||2 is defined by the following formula:

e aup L2 o Lo
p sup :

220 [|7ll2" 220 |7/

(-,-): the duality B x B* — C (for a Banach space B)
(-|-): the inner product $ x $ — C (for a Hilbert space §)

S~1: the set of all elements of the form s™' with s € S (for a subset S of a
group G)

S™: the set of all elements of the form g = s; -+ s, with s1,...,s, € S (for a
subset S of a group G, and n > 1)
also we set S := {eq}.

For p, let £, denote the class of all L? spaces on any (o-additive) measure.

p = lg: p having almost invariant vectors (for a Banach G-representation

(p, B))

lpl: = supyei [p(g9)| (for uniformly bounded representation of a group G)

dj.|, r|1.: respectively, the modulus of convexity (0,2) — Rx¢, and the modulus
of smoothness R.g — R>( (for a Banach space (B, || - ||))

B;( ny: the natural complement of BPWN) | as defined in (for a uniformly smooth
Banach space B, an isometric G-representation (B, p), and N < G)

K(G,N; S, p): the relative Kazhdan constant for property (Tg) (for N < G,
a compact subset S of GG, and a isometric Banach G-representation (p, B))

K(G ,N;S; M): the generalized relative Kazhdan constant for uniformly bounded

representation (for N < G, a compact subset S of G, and M a real > 1)

Cay(G; S): a Cayley graph (for a finitely generated group G and a finite
generating set S). In this thesis, we connect edges on Cay(G;S) by right
multiplication of s € S, and consider the isometric left G-action on Cay(G; S).

dg: displacement function (for a finite subset S of a group G, and an isometric
action of G' on a metric space X)

QH.(G; B, p): the (vector) space of continuous quasi-cocycles (with Banach
coefficient);

@\f{C(G;B,p): the actual (vector) space of continuous quasi-cocycles (with
Banach coefficient)

(for a topological group G and a Banach G-representation (B, p))
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e QH(G; B, p): the (vector) space of quasi-cocycles (with Banach coefficient);
QH (G; B, p): the actual (vector) space of quasi-cocycles (with Banach coeffi-
cient)

(for a discrete group G and a Banach G-representation (p, B))

e sr(R): the stable range (for a ring R)

NOTE: there is an inconsistency of +1 in the definition of stable range in
literatures.

e J,,: the alternating matrix

in My, (for m > 1)

e Sp,,,(A): the multiplicative group of symplectic matrices in My, (A) associated
with the alternating matric Jy,, :={g € Map(A) : tgJmg = Jm};
Ep,,,(A): the elementary symplectic group inside Sp,,,(A) associated with the
alternating matriz J,,
(for m > 1 and A a commutative ring)
Note that the choice of the alternating matrix (, namely, J,,,) is not a standard
one in studies of symplectic groups.

® Spy,,, (A) < Spy,,(A) (or, Spy,y,, (A) = Spy,,(A)): by this we mean the inclu-
sion is realized as

P 0 Q 0
0 Ip—m, O 0 P Q

: < ;
p e 0 (R 2 espm < spaia
0 0 0 o—me

SLyn (A) < Spy,, (A) (or, SLyy, (A) < Sps,,(A)): by this we mean the inclusion
is realized as

w 0 0 0

0 ILn_m 0 0

0 0 ’ thl 0 : W € SLmo (A) < Sp2m(A)
0 0 0 I,

(for m > mg > 1 and A a commutative ring)

o S"*(A™): the additive group of all symmetric matrices in M,,(A) (for m > 2
and A a commutative ring)
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o E,,(A) x S™(A™)> S™(A™): these groups are respectively identified with

{(VOV tv;_l):WeEm(A),vesm*(Am)} > {(I(’)” ;;):UGS’”*(Am)}

(for m > 2 and a commutative ring A)

e U, R; L, R: the subgroups of E,,(R) respectively consisting of all unit upper
triangle matrices; all unit lower triangle matrices (for a ring R and m > 2)

Finally, we shall define the following properties in terms of B:

e property (Tg) (for a group G)
[Definition 3.2.2],
relative property (Tp) (for a group pair N < G)
[Definition 3.2.2[;

property (Fp) (for a group G)

[Definition 3.2.4],

relative property (Fpg) (for a group pair N < G)
[Definition 3.2.4];

the Shalom property for (Fg) (for a discrete group G)
[Definition 5.3.1];

property (FFg) (for a group G)

[Definition 7.1.3],

relative property (FFp) (for a group pair N < G , or a pair @ C G)
[Definition 7.1.3];

property (FFg)/T (for a group G)

[Definition 8.1.1],

relative property (FFg)/T (for a group pair N < G, or a pair @ C G)
[Definition 8.1.1, Definition 8.1.6],

property (TT)/T (for a group G)

[Definition 8.1.1, Definition 8.3.4],

relative property (TT)/T (for a group pair N < G, or a pair @ C G)
[Definition 8.1.1, Definition 8.1.6, Definition 8.3.4].

When letting (Pp) represent any of these properties, we define the property () in
terms of a class C of Banach spaces as follows: having (F¢) denotes having (Pg) for
all B € C.



Chapter 1

Introduction and main results

The special linear group G = SL,,(Z|[x1, ..., zx]) over the commutative polynomial
ring with k variables over Z (where m > 3) is called the universal lattice by Y.
Shalom in [Shal]. Here in this thesis the symbol k is used for representing any finite
natural number (usually k£ > 1. We state if we allow £ = 0). It was a long standing
problem to determine whether this group satisfies a property so-called Kazhdan’s
property (T).

Kazhdan’s property (T), which was first introduced in a paper [Kaz] of D. Kazh-
dan in 1967, represents certain forms of rigidity of a group, and now plays an impor-
tant role in wide range of mathematical fields (we will see in Chapter 2 the definition,
basic properties, and some examples of applications). The original definition of prop-
erty (T) is stated in terms of weak containment of the trivial representation. The
celebrated Delorme—Guichardet theorem [Del], [Gui] states that for locally compact
and o-compact groups, property (T) is equivalent to a property so-called property
(FH), which is defined as follows: a group G is said to have property (FH) if every
(continuous) affine isometric action of G' on a Hilbert space has a global fixed point.
This definition of property (FH) is identical to the condition of first (continuous)
group cohomology vanishing with any unitary coefficient. Therefore as we mentioned,
property (T) represents extreme rigidity of groups.

We go back to the question we raised in above. In Kazhdan’s original paper
[Kaz| of property (T), he shown that any “totally higher rank algebraic group” (we
refer to Chapter 0 for the definition: roughly speaking, rank means local field rank,
and totally means each simple factor has rank at least 2) and “totally higher rank
lattices” enjoy this property. For instance, the special linear group SL,,(Z) has
property (T) for m > 3 because it is a lattice in a simple algebraic group SL,,(R)
of real rank m — 1(> 2). The special linear group SL,,(Z[v/2]) also enjoys property
(T) for m > 3 because this group can be realized as a lattice in SL,,(R) x SL,,(R).
However, Kazhdan’s proof is deeply based on representation theory of semisimple
algebraic groups, and it gives no information whether the special group SL,,>3(Z[z])
enjoys property (T). This is one background of the question to determine whether

1
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universal lattices have property (T). Around 2006 and 2007, finally Shalom and L.
Vaserstein answered this question affirmatively:

Theorem 1.0.1. (Shalom [Shab], Vaserstein [Vas2]; Theorem 5.4.1 in this thesis)
The universal lattice, namely, the group G =SLp,>3(Z[x1, ..., xx]) has property (T).
This means: for any unitary representation © of G, one has

HY(G;7) = 0.

We have more words on the motivation to focus on this problem. It is easy
to see by definition that property (T) passes to group quotients. Therefore once
Theorem 1.0.1 has been proved, this then immediately implies that groups such as
SL>3(Z[1/p]) (here p is a prime number); SL,,>3(Z[v/2,v/3]); SLys3(F,[z]) (F, is
the field of order ¢ and ¢ is a positive power of a prime); and SL,,>3(Z[t,t~!]) have
property (T). Note that in four examples above, all but last one are totally higher
rank (hence arithmetic (or S-arithmetic)) lattices, and Kazhdan’s theorem applies.
However, the last one in the examples above cannot be realized as an arithmetic
lattice, and property (T) for this group had not been obtained before the Shalom—
Vaserstein theorem. In general, Theorem 1.0.1 implies property (T) for elementary
groups Ep,>3(A) over any commutative and finitely generated ring (we always as-
sume that rings are associative and unital). Here the elementary group E,,(A) is
defined as the multiplicative group of m x m matrices generated by elementary ma-
trices (for details, we will see in Chapter 4. In the examples above, the groups should
be elementary groups, but they coincide in these case). Therefore, property (T) for
universal lattices can be regarded as the universal result for elementary groups over
a commutative finitely generated rings, which includes special linear groups over
a ring of integers. This is the reason why groups SL,,>3(Z[x1,...,xx]) are called
universal lattices: they are universal for lattices of the form SL,,(O).

As we mentioned in above, the group SL,,>3(Z[t,t7!]) (and a universal lattice
itself) cannot be realized as a lattice in semi-simple algebraic group. This follows
from the following argument: on an (irreducible) higher rank lattice, there is an
extremely strong constraint, which is called the Margulis finiteness property:

every normal subgroup is either finite or of finite index.

This contradicts the fact that the group above contains an infinite group with
infinite index (we will see in Lemma 4.1.12). Note that by the Margulis arithmeticity
theorem, any (irreducible) higher rank lattice is arithmetic. In these views, The-
orem 1.0.1 can be regarded as a non-arithmetization of extreme rigidity of totally
higher rank lattices (of certain form).

We proceed to the next (but closely related) topic property (Tg) and property
(Fp), where B is a (given) Banach space or a class of Banach spaces. In 2007, Bader—
Furman-Gelander-Monod [BFGM] investigated similar properties to property (T)



(and property (FH))in the broader framework of general Banach spaces B. They
named the Kazhdan type property and the fixed point property respectively property
(Tg) and property (Fp) (we will see the precise definitions in Section 3). Property
(Fp) is a straight generalization of property (FH), and defined as first (continuous)
group cohomology vanishing with any isometric coefficient on B. The classes of
Banach spaces of our main interest are the class £, (p € (1,00) is given) and
[#]. Here the former denotes the class of all L” spaces on any measure spaces;
and the latter denotes the class of all Banach spaces which have compatible norms
to ones of Hilbert spaces. The reason why we are interested in these cases is,
then property (Fp) is strictly stronger than Kazhdan’s property (T), and hence it
represents even much more extreme rigidity of groups. Indeed, there are plenty
of groups with property (T) which are known to fail to have property (Fp) for
above class. For instance, P. Pansu [Pan] shown the group Sp,,; of real rank 1,
which is known to have property (T) if m > 2, fails to have property (F.,) as
soon as p > 4m + 2 (therefore fore instance, property (F. ) with (co >)p > 10
is no longer equivalent to property (FH)=property (F,)). Moreover G. Yu [Yu2]
shown that for every (Gromov-)hyperbolic group H (we will give the definition
in Subsection 2.6.4), including of wide range of groups with property (T), it has
corresponding p > 2 such that H admits a (metrically) proper cocycle on an ¢P-
space. If a cocycle is a coboundary, then it is bounded (we are considering isometric
coefficients). Therefore, existence of proper (which means, “diverging at infinity”)
cocycle represents strong negation of property (F,), hence, soft (or, well-deformed)
feature of groups. On property (Fpz;), Shalom has shown in his unpublished work,
that every rank 1 groups, including Sp,, ;, fails to have this property.

On the other hand, in [BFGM], Bader-Furman—Gelander-Monod proved the
following theorem and revealed that (Fp) is stronger than (Tg) in general, but that
totally higher rank groups and lattices remain to have property (F.,) and (Fpy)
(the assertion in item (4ii) for property (Fpz) is due to Shalom):

Theorem 1.0.2. ([BFGM]) Let G be a locally compact and o-compact group.
(i) For any Banach space B, property (Fg) implies property (Tp).

(71) Property (T) is equivalent to property (Tr ), where p € (1,00). It is also
equivalent to property (Fr ), where p € (1,2].

(i4i) Any totally higher rank groups G and any totally higher rank lattices ' have
property, in the sense in Chapter 0 possess property (Fr ) for 1 <p < oo and

property (Fizg).

Therefore, it is now natural to ask the following questions:

Do universal lattices have property (Fr») (1 < p < 00) and property (Fry)?
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Also, specially property (F.,) has application to group actions on the circle. We
will come back to this point later in this introduction.

The first part of this thesis gives the answer to this question, with some (slight)
degree condition. The answer is affirmative, and the following is the precise state-
ment:

Theorem A. ([Miml]; Theorem 6.3.1 in this thesis) Let p € (1,00). If m > 4,
then for any p (and any k) the universal lattice G = SL,,(Z[z1, ..., xy]) possesses
property (Fr,) and property (Fpy) in the sense in Definition 3.2.4. This means:
for any p, an isometric G-representation on an LP space or a uniformly bounded
G-representation on a Hilbert space, one has

H'(G;p) = 0.

It may be reasonable to expect that Theorem A remains true in the case of
m = 3. However at the present the author has no idea how to settle this problem.
As we will see in Chapter 4 and Chapter 5, in the proof of Theorem 1.0.1 Shalom
employs the equivalence of property (T) and property (FH), and deduces property
(FH) from a certain “relative version” of property (T). However in our setting
(B = L,, [H]), as we have seen in above, property (Tg) does not imply property
(Fp). This means, an easy imitation of the proof of Theorem 1.0.1 does not provide
with Theorem A. We need some idea which overcomes the gap from property (Tg)
to property (Fp). We will examine this in Section 6.3.

Secondly, we consider a quasification of property (Fp): it means we consider
maps which are cocycle up to bounded error. This conception has natural connection
to the concept of bounded cohomology [Grol], [Monl]. Here bounded cohomology is
defined by restricting each cochains to be bounded. We will see in Chapter 7. By
naming after so-called property (TT) of N. Monod (which states any quasi-cocycle
into unitary representation is bounded), we define a notion of property (FFpg) by
strengthening property (Fp). We note the following: since there is a natural injection
from bounded cochains to ordinary cochians, this map induces a natural map from
(continuous) bounded to (continuous) ordinary group cohomology (with isometric
Banach coefficient (p, B) of a group G),

ey He (G p, B) — HZ (G p, B).

This map is called the comparison map, and in general it is neither injective nor
surjective. Property (FFpg) for a group G specially implies that for any isometric
G-representation p, the comparison map degree 2

U3, H3(Gsp, B) = HZ (G p, B)
is imjective.
We examine whether universal lattice has some confined property of property
(FFp), which we name “property (FFg)/T.”



Theorem B. ([Miml]; Theorem 8.1.10 and Theorem 8.3.5 in this thesis) Let G =
SLn(Z[xy, ..., zk]) be universal lattice. Let p € (1, 00).

(i) Ifm > 4, then for any p, G possesses property (F¥ . ) /T and property (FFy)/T
i the sense in Definition 8.1.1. In particular the following hold: for any
p, an isometric G-representation on an LP space or a uniformly bounded G-
representation on a Hilbert space, if moreover p 2 1g, then one has

(a) both H(G;p) =0,
b) and the comparison map in degree 2 : H2(G; p) — H?(G; p) is injective.
b

(i7) Form >3, G possesses property (TT)/T (, that is, property (FF3)/T).

As the statement of above theorem suggests, “(FFg)/T” means “property (FFp)
modulo the trivial linear part.”

In the third part of this thesis, we consider the case of B = C),, which denotes the
space of p-Schatten class operators acting on a separable Hilbert space. This can be
seen an analogy to property (Fr,) (or (FF,,)) in noncommutative LP-setting. Some
properties on commutative LP space are no longer true in noncommutative setting,
and one of them is crucial to establish property (Fr,). Explicitly, the conditional
negative definiteness of the kernel on LP space with p € [1,2] is not valid for C,.
However, by extending a previous work of M. Pushnigg [Pus| for totally higher rank
groups and lattices, we show the following:

Theorem C. ([Mim3]; Theorem 8.2.6 in this thesis) If m > 4, then for any p €
(1,00), any finite index subgroup I' of SLy,(Z[x:, ..., xi]) has property (FF¢,)/T.
In particular, I' above has property (Fc,). Here C), denotes the space of p-Schatten
class operators on a separable Hilbert space.

For any p, any totally higher rank algebraic group and any lattice therein has

property (Fe,).

In the proof of this theorem, we state criteria on a class of Banach spaces for
which universal lattice (with degree> 4) has property (FFg)/T and property (Fp).
The class (or a single Banach space) fulfilling these criterion contains the cases of
L,, [H], and C,. We hope this will provide with further study on rigidity theory for
universal lattices.

In the fourth part of this thesis, we consider the symplectic version of universal
lattice, namely, the group Sp,,(Z[x1, ..., zx]) (m > 2), and call it symplectic unver-
sal lattice. As is often in various fields of mathematics, the bahavior of symplectic
group is more complicated than that of special linear group. However, by employing
a result of a work [EJK] in progress of Ershov, Jaikin-Zapirain, and Kassabov (of
property (T) for symplectic universal lattices), we obtain the following theorem:
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Theorem D. ([Mim4]; Theorem 9.4.1 and Theorem 9.3.1 in this thesis) Let G =
SPom(Z[x1, ..., xk]) be a symplectic universal lattice.

(i) Ifm > 3, then for anyp € (1,00), G possesses property (F¥ ) /T and property
(FF¢,)/T. In particular, G has property (Fr,) and property (Fc,).

(17) Form > 2, G possesses property (TT)/T.
Specially, property (TT)/T (this in particular implies that the comparison map
®: HX(G;7) — H*(G; )

is injective for any unitary representation which satisfies m 2 1) plays a significant
role in application, as we shall see in below. We also note that property (TT)/T (as
well as property (T)) passes to group quotients and finite index subgroups. Thus we
obtain property (TT)/T for any finite index subgroups in the elementary symplectic
group Ep,,. (A) over a finitely generated commutative ring (we will see for details in
Chapter 9).

In the fifth part of this thesis, we consider quasi-cocycles with trivial (real) coeffi-
cient, which are called quasi-homomorphisms. Recall that property (FFg)/T means
“modulo the trivial lienar part.” Hence, in studies above, we escape from dealing
with quasi-homomorphisms, which are turned out to be in fact the most tough
types of quasi-cocyles for universal lattices. At the moment, we have not succeeded
in establishing vanishing results of qusai-homomorphisms on universal lattices. Nev-
ertheless, we have obtained the following result (Theorem E) on elementary groups
over euclidean domains (then in fact elementary groups coincide with special linear
groups). This result covers, for instance, SL,,>¢(K[z]) for K being an arbitrary
(commutative) field, and has interesting application. On quasi-homomorphisms, or
equivalently in some sense, on the kernel of comparison map

U2 HY(G) — H*(Q),

(here coefficients are the trivial real coefficients) the following result is known as
Bavard’s duality theorem:

Theorem 1.0.3. (Bavard [Bav]) Let G be a discrete group. Then the following are
equivalent:

(i) The comparison map HE(G) — H*(G) is injective.
(27) The stable commutator length scl: [G, G] — Rsq, which is defined as

|G,G] 3 g scl(g) := lim el ),

n—oo n

vanishes identically.



If the commutator length on [G, G| is bounded, then by the definition above,
the stable commutator length vanishes identically (on [G, G]). M. Abért has asked
whether there exists a counterexample of the converse, and Monod stated this ques-
tion in his ICM invited lecture [Mon2]. This question is now known as a question of
Abért and Monod, and our theorem provides with a natural class of counterexamples
of the converse:

Theorem E. ([Mim2]; Theorem 10.5.1 in this thesis) Let A be a euclidean domain.
Then for m > 6, G = SL,,(A), as a discrete group (possibly uncountable), fulfills
the following: the comparison map

H}(Gi 16, R) — H*(G; 16, R)

15 ingective.  Equivalently, the stable commutator length vanishes identically on
G, Gl(=G).

In particular, if K is a (commutative) field of infinite transcendence degree over
its subfield (for instance, K = C), then for m > 6 the group G = SL,,(K[x]) enjoys
the following two properties:

(1) The commutator width of G(= [G, G]) is infinite; namely,

supcl(g) = oc.
geG

(17) The stable commutator length vanishes identically on [G,G] (= G); namely,
for any g € G,

i SH9")

im ——=

n— 00 n

= 0.

We note that A. Muranov [Mur| has shown there exists a 2-generated simple
group with infinite commutator width and with the stable commutator length van-
ishing. He employs small cancellation theory, and it has completely different back-
ground to our one.

We also note that there exists a countable field K satisfying the assumption of
the latter part of Theorem E. We will examine these topics in Chapter 10.

In the final part of this thesis, we apply our theorems to group actions. There are
two applications. One is to group actions on the circles. By combining a theorem
of A. Navas [Navl], [Nav2] with our property (F., ) result, we obtain the following
theorem:

Theorem F. ([Miml], [Mim4|; Theorem 11.1.2 in this thesis) Let " be a finite index
subgroup either of SL,,(Z[z1,...,xx]) (m > 4) or of Spa,,(Z[x1,...,zx]) (m > 3).
Then for any o > 0, every homomorphism

' — Diff:+*(S")
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has finite image. Here the symbol Difffa(sl) means the group of orientation pre-
serving (1 + «)-differentiable (in the sense of Holder continuity) diffeomorphisms on
the unit circle.

Note that by a lemma of A. Selberg, in both cases there exists such I" which is
torsion free.

The next and final application is to homomorphism rigidity into mapping class
groups of surfaces and into (outer) automorphism groups of free groups. Those
objects have strong connection to group actions on low dimensional manifolds (here
by homomorphism rigidity we mean the property that every homomorphism from
the group into a target group has finite image). We note that for higher rank
lattices, homomorphism rigidity into those groups are respectively obtained by Farb
and Masur [FaMas| (into mapping class groups); and Bridson-Wade [BrWa] (into
automorphsim groups of free groups). We note that in their proof, the Margulis
finiteness property for higher rank lattices plays a key role. However, as we have
mentioned in above, this property is not valid for universal lattices or symplectic
universal lattices. Also, we mention the following: Bridson-Wade [BrWa] have
shown that if a group is Z-averse, then homomrphism rigidity into the groups above
holds. Here a group is said to be not Z-averse if there exists finite index subgroup
which has a normal subgroup mapping onto Z. We have, however, universal lattices
and symplectic universal lattices are not Z-averse (see Lemma 11.2.26). Therefore,
the following result is a new result:

Theorem G. ([Mimd]; Theorem 11.5.1 in this thesis) Let ' be a finite index sub-
group either of SL,,(Z[x1, ... ,xx]) (m > 3) or of Spy,, (Z[x1, ..., xx]) (m > 2). Then
for any g > 0 and n > 2, every homomorphism

¢: I' = MCG(E,)

and every homomorphism

U: T — Out(F,)

have finite image. Here ¥, denotes a compact closed connected oriented surface of
genus g and MCG(X,) denotes the mapping class group. The symbol F,, denotes the
free group of rank n (here n is finite) and Out(F,) denotes the outer automorphism
group of F,,.

For the proof of Theorem G, property (TT)/T for universal and symplectic
universal lattices is one key. Counterpart are the study of quasi-cocycles on MCG(X)
and Out(F,); and subgroup classification for these groups. By combining our results
with deep results of U. Hamenstéddt [Ham]|, Bestvina-Bromberg-Fujiwara [BBF];
and McCarthy-Papadopoulos [McPa|, and Handel-Mosher [HaMo], we establish
the theorem.



In Theorem G, the restriction on m is optimal. Also, the case of Out(F;,) targets
implies homomorphism rigidity with Aut(F},) targets; and with MCG(X,;) targets.
Here ¥,; denotes a compact oriented surface with g genus and [ punctures, and here
we assume [ > 1. This is because these groups inject into Out(F,,) for sufficiently
large n’. See Subsection 11.2.1.

It is worth making a remark that Theorem G for universal lattice cases can be
deduced from much easier argument. In fact, we have the following theorem along
that shortcut argument:

Theorem H. ([Mim4]; Theorem 11.6.4 in this thesis) Let I' be a finite index sub-
group of noncommutaive universal lattice E,,(Z{x1, ... ,x)) (m > 3). Then for any
g >0 andn > 2, every homomorphism ®: I' - MCG(X,) and every homomorphism
U: ' = Out(F,) have finite image.

However at the moment, there seems to be a gap to extend the proof of Theo-
rem H to symplectic universal lattice cases.

Therefore, Theorem G for symplectic universal lattices can be regarded as the
high-end of this thesis. Theorem G together with Theorem H is non-arithmetization
of Farb-Masur and Bridson-Wade theorems. Specially, in [FaSh], Farb and Shalen
appealed to homomorphism rigidity for higher rank lattices with Out(F},) target in
order to obtain rigidity results on group actions on a 3-dimensional manifold. It
may be possible our theorems give some extension of their results beyond arithmetic
lattice groups.

Finally, in Appendix, we make an estimation of a generalization of relative Kazh-
dan constant to uniformly bounded representation cases (on Hilbert spaces) as fol-
lows:

Proposition I. ([Mimd]; Proposition 1.0.5 in this thesis) Let Ay = Z[z1, ..., xx]
and set G = Ey(Ag) x AZ and N = A2 < G. Set S be the set of all unit elementary
matrices in G (C SL3(Ag)) in the sense in Definition 4.1.13. Let M > 1 be a positive
real. Then there is an inequality

K(G,N;S; M) > (15k + 100)"* M ~°.

In the case of k = 0, one has K(SLy(Z) x Z2,72; F; M) > (21M%)~1. Here the
symbol KK(G, N; S; M) denotes the generalized relative Kazhdan constant for uniformly
bounded representations, which is defined in Definition 3.5.2.

Organization of this paper: Chapter 2 is for basic and fundamental facts
on property (T) of Kazhdan. If the reader is familiar with this topic, this chap-
ter can be omitted. Chapter 3 is on property (Tp) and property (Fp) of Bader—
Furman-Gelander-Monod, and the reader also consult the original paper [BFGM].
In Chapter 4, we define elementary groups over rings, and universal lattices. Also
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we see a celebrated argument by Shalom to prove property (T) from bounded gen-
eration [Shal]. Vaserstein’s bounded generation [Vas2|, stated there, is a powerful
tool throughout this thesis. In Chapter 5, we introduce another effective tool, called
Shalom’s machinery [Shab], [Mim1]. To obtain this machinery, examine ultraprod-
ucts of metric spaces and that of isometric actions. This study has important appli-
cation to reduced group cohomology. Chapter 6 is devoted to study of property (Fp)
for universal lattices, in which Theorem A is proven. In Chapter 7, we introduce
property (FFpg), which is a generalization of property (TT), and see connection to
bounded cohomology. In chapter 8, we introduce a notion of property (FFg)/T, and
prove Theorem B. Moreover we prove Theorem 8.1.7, which is a quite strong tool
in deducing Property (FFg)/T (, although the proof is very elementary). We show
Theorem C with the aid of this. Chapter 9 is utilized for definitions of elementary
symplectic groups, and symlectic universal lattices. There we prove Theorem D,
with use of Theorem 8.1.7. In Chapter 10, we consider quasi-homomorphisms and
stable commutator lengths. We prove Theorem E. Chapter 11 is devoted for the
proofs of Theorem F and Theorem G. The proof of Theorem G is involved and
requires a number of deep facts on mapping class groups and automorphism groups
of free groups. We briefly see them and complete the proof of Theorem G. We also
verify Theorem H. In Appendix, we give a proof of Proposition I.

Hereafter, unless otherwise stating, we use and keep the notation and convention
as in Chapter 0.



Chapter 2

Kazhdan’s property (T)

In this chapter, we collect basic facts on property (T) of D. A. Kazhdan [Kaz]. One
main goal is to show the Delorme-Guichardet theorem, which states Kazhdan’s
property (T) is equivalent to a certain cohomological property called property (FH)
for locally compact and o-compact groups. First, we give definitions of those two
properties and see some permanence properties, including heredity to lattices. The
other goal is to show totally higher rank groups and lattices, such as SL3(R) and
SL3(Z), enjoy property (T). Main references of this chapter are Chapter 1, Chapter2,
Appendix C, and Appendix E in a book of Bekka-de la Harpe—Valette [BHV].

2.1 Original definition

Kazhdan’s property (T) has two famous formulations, namely, the original definition
of (T), and the definition of property (FH). In this section, we state the original
definition of Kazhdan, and see some properties of groups with (T).

2.1.1 Definition

We say a bounded operator U on a Hilbert space $) is a unitary if U has a bounded
inverse and if U preserves the inner product (, namely, for any &£,n € § (U&|Un)=
(&|n)). Equivalently, if U*U = UU* = I, where I is the identity operator on .
The set U($) of all unitary operators on $) becomes a group with composition. A
unitary representation of a group G is a group homomorphism G — U($)) on some
Hilbert space $). Recall from Chapter 0 that we always assume a group G are locally
compact and o-compact, and a representation 7 is strongly continuous, namely, for
every £ € §), the map G — $; g — m(g)§ is continuous.

Definition 2.1.1. Let (7, $) be a unitary representation of a group G.
(1) For a subset S C G and k > 0, a vector £ € $ is said to be (5, k)-invariant if

sup € = w(s)¢]] < €]

11
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(1) We say m has almost invariant vectors if for any compact subset S C G and
Kk > 0, there exists an (.5, k)-invariant vector.

(17i) We write m = 1g and say m weakly contains trivial representation if 7 has
almost invariant vectors.

Remark 2.1.2. (i) The zero vetor 0 is not (S, k)-invariant for any S C G and
x> 0 by definition.

(17) Let S € G and k > 0 and n > 2. Then if £ is (9, k)-invarinant for a unitary
representation (7, $)), then & is (S U S—1, k)-invariant and (S™, k/n)-invariant
for 7. (Here we refer to Chapter 0 for the definition of S™.) Indeed, the first
assertion is trivial because for any g € G and n € 9 [|[n—7(g)n||= |7 (g~ )n—nl|
holds. The second assertion follows from the following argument, for instance
for n = 2: for any ¢1,9, € G and any n € §,

In —7(g1g2)nll = (0 — 7(g1)n) + (7(g1)n — 7(g192)n) |
<|ln = w(g)nll + |7 (g1)n — 7(g1)m(g2)nl = |n — 7 (gi)nll + | — 7(g2)n.

Here recall 7(g;) is a unitary.

From this point, we use this argument without mentioning. Note that this is
available in a more general setting, in the case of (p, B) being an isometric
representation on a Banach space.

We state the following basic observation, which is trivial in the case of discrete
groups. We say a subset S of a group G is generating (or, S generates G) if | J,, o (SU
S = G. We say S is symmetric if S = S™!. We say a group G is compactly
generated (respectively, finitely generated) if there exists a compact (respectively
finite) generating set.

Lemma 2.1.3. Let G be a compactly generated group. Then there exists a symmetric
compact generating set S containing the group unit e. Moreover, for any compact
subset K C G there exists m € N such that K C S™.

Proof. By assumption, there exists a compact generating set S. Hence one can
set S = SUS-TUe. For the second assertion, observe that G = Unen S™. With
recalling that we always assume G is locally compact (with the Hausdorff property),
we apply the Baire category theorem. Therefore there exists n € N such that S™
contains an open neighborhood U of e. By considering the open covering K C
UgeK gU, we obtain a finite subcovering K C (J,;; ;U (for some [ € N). For each
1 <7 <[ there exists n; € N such that g; € S, Therefore, if one sets m as the
maximum of n; (1 <i <) and n, then this m works. O

By combining Lemma 2.1.3 and item (i¢) of Remark 2.1.2; we obtain the following
corollary.



2.1. ORIGINAL DEFINITION 13

Corollary 2.1.4. Suppose a group G is compactly generated and let S be a compact
generating set. Then for any unitary G-representation (mw, ), © has almost invariant
vectors if and only if for every k > 0 there exists (S, k)-invariant vectors.

We shall see in Theorem 2.2.1 that every group with property (T) (see in Defi-
nition 2.1.5) is compactly generated.

Recall that we write 7 O 1g (and say 7 contains trivial representation) if 1¢ is
a subrepresentation of 7, equivalently, if () = 0 (namely, there exists a non-zero
7(G)-invariant vector). For any unitary representation 7, there is an implication

7

“m O lg=m = 1g.” We make a remark the converse “m = 1lg=m O 15" is usually
false for an infinite dimensional unitary representation 7, as we will see in Exam-

ple 2.1.6.

Definition 2.1.5. A group G is said to have Kazhdan’s property (T) if for any
unitary representation m of G, m > 1g implies @ O 1g. Equivalently, if for any
unitary representation 7 of (G, whenever 7 has almost invariant vectors, m has a
non-zero G-invariant vector.

Groups with (T) are also called Kazhdan groups.

Example 2.1.6. The group Z is not Kazhdan. More precisely, we claim Az > 17,
here Az denotes the left regular representation Z — U(¢*(Z)) (, namely, for m € Z
and f € (*(Z), \(m)(f(n)) := f(—=m + n).) Indeed, take a sequence of subsets

Sy :=[—n,n] NZ indexed by n € N. Then it is easy to see that for any m € Z,
i 107 )25 _
n—00 |Sn|

Here m- means the left action of m as an element of the additive group Z (, namely,
“m+"), /A means the symmetric difference, and | - | means the number of sets. This
means, for any finite set S and k > 0, there exists n € N such that for a unit vector
€:=(|S.])7YV2 - xg, in 2(Z) satisfies

sup [Aa(m)é — €] < r,
mesS

where y is the characteristic function. This shows the claim. On the other hand, it
is immediate that Az 2 1z.

This argument can be extended to the case of (locally compact) amenable groups,
including all abelian groups, nilpotent groups, and solvable groups. For details of
amenable groups, see Subsection 2.5.2.

2.1.2 Kazhdan constant

In the definition of Kazhdan’s property (T), the choice of pairs (S, <) may a priori
depend on the choices of unitary representations 7. The following lemma states one
can take (5, k) universal for 7’s: all unitary representations.
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Lemma 2.1.7. For a group G, the following are equivalent:
(i) The group G has (T).

(i1) There exist a compact subset S C G and k > 0 such that the following holds:
for any unitary G-representation (m,%)), whenever m has an (S, k)-invariant
vector, m O 1g holds.

Proof. Condition (4i) implies condition () is trivial by definition. For the converse,
we use a direct-sum argument. Suppose G does not satisfy condition (ii). Let [
be the set of all pairs p = (5, k), where S C G is compact and x > 0, such that
there exists a unitary G-representation (,,$),) with 7, 2 1g which has a unit
(S, k)-invariant vector &,. Set (m,9) = (B,c; T, D,c; Hyu) be the 2-sum of the
unitary representations. Then we claim that 7 > 1 but that 7 2 1. Indeed, the
first assertion follows from &, € $,, being (S, k)-invariant. For the second assertion,
suppose 1 = €D,