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On a cpl. conn. weighted Riem. mfd (M, g, m),
(m = eV vol,)
Ricy, := Ric+ HessV > Kg (K > 0)
J
L:=A, —(VV,V.) on L?(m) has discrete spec.,
1st nonzero e.v. A1 of —L satisfies A\; > K

(e.g. by the log-Sobolev ineq.)
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Rigidity
Q. When does Ay = K happen?
Example 1
(M, g) = (M1 xR, g1 X gr)
V(z,t) = Vi(x) + gtz, Ricy, > Kg; on M,
= A1 = K, u(x,t) = t: eigenfunction

Theorem 1 ([X. Cheng & D. Zhou ’16]))
Ricy, > Kg, K > 0and \; = K

0
EI(Ml,gl) &Vi: M, =5 Rst M isasin Example 1
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A similar result on met. meas. sp. with “Ric > K"?

Obs.
dimM =N &V =0

K N —1
=

N
= A1 2
N K

(Lichnerowicz-Obata theorem)

— Extension to mm sp. with “Ric > K & dim < N"
[Ketterer "15]
% Spherical suspensions appear in the rigidity
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Bochner-Weitzenbock formula

m:= e_Vvolg,
L:=A — (VV,V.): self-adj. on L?(m)
* Ricyy = Ric+ HessV > K

1
5£|Vf|2 —(Vf, VLS)

= || Hess f||%s + Rici (V £, V)
> || Hess f||4s + K(Vf, V)

1
* —Lu=Ku = EAC|Vu|2 > || Hess u||3g

7/20
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Eigenfunction is affine

1
SLIVul > || Hessull%

U / dm

Hessu = 0
= Vu is parallel vector field, |[Vu| = const.
= M; := u1(0) C M totally geodesic, ...
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3. Framework and main result



Infinitesimally Hilbertian mm sp.

(X, d,m): Polish geod. met. meas. sp.
(m: loc.-finite, suppm = X)
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Infinitesimally Hilbertian mm sp.

(X, d,m): Polish geod. met. meas. sp.
(m: loc.-finite, suppm = X)

Cheeger’s L?-energy functional
2Ch( f) := "relaxation” of f |—>/ lip(f)? dm
X
— [ IDfP dm
X

Definition 2 (JAmbrosio, Gigli & Savaré '14])
(X, d, m): infinitesimally Hilbertian
& ch: quadratic form (— generator £/2, P; = ett)

= #(D-, D-),, bilinear s.t. (Df, Df),, = |Df|?

10/20




RCD cond.

RCD (K, 00): infin. Hilb. & either one of the following:
(up to regularity ass.'ns)
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RCD cond.

RCD (K, co): infin. Hilb. & either one of the following:
(up to regularity ass.'ns)

o “Hess Ent,, > K" on (P2(X), W>)
1
o 5£|Df|fu — (Df,DLf)w > K|DFf|? (weakly)

1t Ent, (p) := / plog pdm (if p = pm)
b'e

T Wa(p, v) := inf{||d||z2(x) | 7: coupling of p & v}

* K >0
= m(X) < oo [Sturm '06], \; > K &

L has discrete spec. [Gigli, Mondino & Savaré '15]
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Main result

Theorem 2 ([Gigli, Ketterer, K. & Ohtal)
(X,d,m): RCD(K,0) sp., K >0, A1 = K
= 3(Y,dy, my): RCD(K, c0) sp. s.t.

(X,d,m) ~ (Y,dy, my) X (R, dgr, e K""/2dt)

% The multiplicity of Ay is k
= Splitting occurs k times
Difficulty (in addition to non-smoothness)
@ m may not enjoy the volume doubling property
o X may not be locally compact
o The eigenfunction u ¢ L



4. Sketch of the proof (K = 1)



1st: The lift of eigenfunction is affine

Proposition 3 ([GKKO])
(X,d,m): RCD(1,00) sp., A1 =1, —Lu =u

= U(p) := / wdp: affine along Wo-geod. ()¢
b's

if pe < w U(pe) = (1 — ) U(po) + tU(p1)
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1st: The lift of eigenfunction is affine

Proposition 3 ([GKKO])
(X,d,m): RCD(1,00) sp.,, A1 =1, —Lu =u

= U(p) := / wdp: affine along Wa-geod. (put)+
X

if g L m: U(pe) = (1 — ) U(po) + tU(p1)

> SLIDSI% — (Df, DLF)
> || Hess f|lfs + (D f, D) [Gigli]
= Hessu = 0 m-a.e.
* L|Du|? =0 = |Dul, = const.(= 1) m-ae.
& wu: 1-Lipschitz
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(via Ent,)
o my = e “*m =(X,dy, my): RCD(a?2K, c0)
(via Bochner ineq.)

1
o Enty, = Enty, +—U
(87

“a — 0" = U: (0-)convex on (P3°(X), W>)
% Require a cut-off of u (".- uw & L)
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2nd: gradient flow of u

Goal: Construct a “nice” gradient flow of —u

(cf. the proof of nonsmooth splitting thm [Gigli])
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Overview of the 2nd step

t —tu—t2/2

m':=e m solves the conti. eq. <> —u:

d

—/ fdmt—l—/ (Df, Du)dm® =0

dt Jx X

Construct a “regular Lagrangian flow of —Vu"

F :R X X — X (use [Ambrosio & Trevisan '14])

(F}) .« solves the O-evolution variational eq. of U:

d W3((Fy).p,v)
=Uu — U((F})+
— it (v) = U((F).m)
= F; preserves W

Modify F to an isometry F, (W ~» d) = (1)(2)
F,(x) solves 0-eve of u & |Dul, = 1 = (3)
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3rd: Isometric splitting
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5. Questions



Questions

o Rigidity for the log-Sobolev inequality?
o Rigidity for the Gaussian isoperimetric inequality?

@ Almost splitting?
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Questions

o Rigidity for the log-Sobolev inequality?
o Rigidity for the Gaussian isoperimetric inequality?

o Almost splitting?
(pbm: lack of compactness of {RCD(K, c0) sp.’s)
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