Coupling by reflection of Brownian motions on metric measure spaces with a lower Ricci curvature bound

Kazumasa Kuwada

(Tokyo Institute of Technology)

Stochastic Analysis (Kyoto University) Sept. 7–11, 2015

1. Introduction

Brownian motion ↔ curvature

$m{M}$: manifold

- ullet Riem. met. $g \leftrightarrow {\sf Laplace} ext{-Beltrami op. }\Delta$ \longleftrightarrow Heat semigroup $P_t={
 m e}^{t\Delta}$
 - \leftrightarrow Brownian motion B_t on M
- ullet Shape of $(M,g) \leftrightsquigarrow$ "curvature" of (M,g)
- $\Delta = \operatorname{tr} \mathbf{Hess}$: "averaged (in direction)" 2nd deriv.

Brownian motion ↔ curvature

$m{M}$: manifold

- ullet Riem. met. $g \leftrightarrow {\sf Laplace} ext{-Beltrami op. }\Delta$ \longleftrightarrow Heat semigroup $P_t={
 m e}^{t\Delta}$ \longleftrightarrow Brownian motion B_t on M
- ullet Shape of $(M,g) \leftrightsquigarrow$ "curvature" of (M,g)
- △ = tr Hess: "averaged (in direction)" 2nd deriv.
 " " averaged (in direction) curvature (Ricci curvature)

- ullet Characterizations of " $\mathrm{Ric} \geq K$ " on met. meas. sp.
- Equivalence of characterizations:

```
[Ambrosio, Gigli & Savaré '13-'15]
[Ambrosio, Gigli, Mondino & Rajala '15]
```

```
\begin{cases} \text{Study via optimal transport} \\ [\text{Sturm '06 / Lott \& Villani '09 / } \cdots] \end{cases} \begin{cases} \text{Study via } \boldsymbol{\Delta} \ / \ \boldsymbol{P_t} \\ [\text{Bakry \& Émery '85 / } \cdots] \end{cases}
```

- ullet Extension to " $\mathrm{Ric} \geq K \ \& \ \mathrm{dim} \leq N$ " [Erbar, K. $\& \ \mathrm{Sturm}$ '15]
- Many applications in Geometry & Analysis

- ullet Characterizations of " $\mathrm{Ric} \geq K$ " on met. meas. sp.
- Equivalence of characterizations:

```
[Ambrosio, Gigli & Savaré '13-'15]
[Ambrosio, Gigli, Mondino & Rajala '15]
```

```
\begin{cases} \mathsf{Study\ via\ optimal\ transport} \\ [\mathsf{Sturm\ '06\ /\ Lott\ \&\ Villani\ '09\ /\ \cdots}] \\ \mathsf{Study\ via\ } \boldsymbol{\Delta}\ /\ \boldsymbol{P_t} \\ [\mathsf{Bakry\ \&\ Emery\ '85\ /\ \cdots}] \end{cases}
```

- Extension to " $\mathrm{Ric} \geq K \ \& \ \mathrm{dim} \leq N$ " [Erbar, K. & Sturm '15]
- Many applications in Geometry & Analysis

- ullet Characterizations of " $\mathrm{Ric} \geq K$ " on met. meas. sp.
- Equivalence of characterizations:

```
[Ambrosio, Gigli & Savaré '13-'15]
[Ambrosio, Gigli, Mondino & Rajala '15]
```

```
\begin{cases} \mathsf{Study\ via\ optimal\ transport} \\ [\mathsf{Sturm\ '06\ /\ Lott\ \&\ Villani\ '09\ /\ \cdots}] \\ \mathsf{Study\ via\ } \boldsymbol{\Delta}\ /\ \boldsymbol{P_t} \\ [\mathsf{Bakry\ \&\ Emery\ '85\ /\ \cdots}] \end{cases}
```

- ullet Extension to " $\mathrm{Ric} \geq K \ \& \ \dim \leq N$ " [Erbar, K. & Sturm '15]
- Many applications in Geometry & Analysis

- ullet Characterizations of " $\mathrm{Ric} \geq K$ " on met. meas. sp.
- Equivalence of characterizations:

```
[Ambrosio, Gigli & Savaré '13-'15]
[Ambrosio, Gigli, Mondino & Rajala '15]
```

```
\begin{cases} \mathsf{Study\ via\ optimal\ transport} \\ [\mathsf{Sturm\ '06\ /\ Lott\ \&\ Villani\ '09\ /\ \cdots}] \\ \mathsf{Study\ via\ } \boldsymbol{\Delta}\ /\ \boldsymbol{P_t} \\ [\mathsf{Bakry\ \&\ Emery\ '85\ /\ \cdots}] \end{cases}
```

- Extension to " $\mathrm{Ric} \geq K \ \& \ \mathrm{dim} \leq N$ " [Erbar, K. & Sturm '15]
- Many applications in Geometry & Analysis

3

Couplings of $oldsymbol{B_t}$

3

Couplings of $oldsymbol{B_t}$

Coupling by parallel transport [Sturm]

{

Couplings of $oldsymbol{B_t}$

- Coupling by parallel transport [Sturm]
- Coupling by reflection

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

$$(B_t^{(0)},B_t^{(1)})$$
: coupling by parallel transport of BMs $\Rightarrow d(B_t^{(0)},B_t^{(1)}) \leq \mathrm{e}^{-Kt}d(B_0^{(0)},B_0^{(1)})$

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

$$(au:=\inf\{t\mid {}^{orall}s\geq t,\; B_s^{(0)}=B_s^{(1)}\}$$
: coupling time)

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

 $(B_t^{(0)},B_t^{(1)})$: coupling by reflection of BMs \Rightarrow Estimate of ${I\!\!P}[au>t]$

$$(au:=\inf\{t\mid {}^{orall}s\geq t,\; B_s^{(0)}=B_s^{(1)}\}$$
: coupling time)

 $lackbox{B}_0^{(1)}$

$$\mathbb{R}^{m}$$

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

$$(\tau:=\inf\{t\mid \forall s\geq t,\; B_s^{(0)}=B_s^{(1)}\}$$
: coupling time)

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

$$(au:=\inf\{t\mid {}^{orall}s\geq t,\; B_s^{(0)}=B_s^{(1)}\}$$
: coupling time)

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

$$(au:=\inf\{t\mid {}^{orall}s\geq t,\; B_s^{(0)}=B_s^{(1)}\}$$
: coupling time)

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

$$(au:=\inf\{t\mid {}^{orall}s\geq t,\; B_s^{(0)}=B_s^{(1)}\}$$
: coupling time)

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

$$(au:=\inf\{t\mid {}^{orall}s\geq t,\; B_s^{(0)}=B_s^{(1)}\}$$
: coupling time)

(M,g): Riem. mfd, $\mathrm{Ric} \geq K$

$$(au:=\inf\{t\mid {}^{orall}s\geq t,\; B_s^{(0)}=B_s^{(1)}\}$$
: coupling time)

Coupling by parallel transport/reflection $(B_t^{(0)}, B_t^{(1)})$ on Riem. mfd.:

Coupling of $dB_t^{(0)}\in T_{B_t^{(0)}}M$ & $dB_t^{(1)}\in T_{B_t^{(1)}}M$ by parallel transport/reflection $T_{B_t^{(0)}}M\to T_{B_t^{(1)}}M$ along a minimal geodesic

Coupling by parallel transport/reflection $(B_t^{(0)}, B_t^{(1)})$ on Riem. mfd.:

Coupling of $dB_t^{(0)}\in T_{B_t^{(0)}}M$ & $dB_t^{(1)}\in T_{B_t^{(1)}}M$ by parallel transport/reflection $T_{B_t^{(0)}}M\to T_{B_t^{(1)}}M$ along a minimal geodesic

- Require the notion of parallel transport
- Require a careful modification at cut locus

Coupling by parallel transport/reflection $(B_t^{(0)}, B_t^{(1)})$ on Riem. mfd.:

```
Coupling of dB_t^{(0)}\in T_{B_t^{(0)}}M & dB_t^{(1)}\in T_{B_t^{(1)}}M by parallel transport/reflection T_{B_t^{(0)}}M\to T_{B_t^{(1)}}M along a minimal geodesic
```

- Require the notion of parallel transport
- Require a careful modification at cut locus

```
[Kendall '86 / Cranston '91 / F.-Y. Wang '94,'05 / E.-P. Hsu '03 / von Renesse '04 / K. '10,'12 / Arnaudon, Coulibaly & Thalmaier '09 / Neel & Popescu '15+ / \cdots]
```

How do we extend?

How do we extend?

{

Change the definition:

How do we extend?

{

Change the definition:

From the structure we used for construction to the characteristic property they satisfies

Outline of the talk

1. Introduction

2. Framework

3. Coupling by parallel transport

4. Coupling by reflection

5. Concluding remarks

1. Introduction

2. Framework

3. Coupling by parallel transport

4. Coupling by reflection

5. Concluding remarks

Framework

 (X,d,\mathfrak{m}) : Polish geodesic metric measure sp., \mathfrak{m} : loc. finite, σ -finite, $\operatorname{supp}\mathfrak{m}=X$,

 $P_t = \mathrm{e}^{t\Delta} \leftrightarrow$ Cheeger's L^2 -energy

Framework

 (X,d,\mathfrak{m}) : Polish geodesic metric measure sp., \mathfrak{m} : loc. finite, σ -finite, $\operatorname{supp}\mathfrak{m}=X$,

$$P_t = \mathrm{e}^{t\Delta} \leftrightarrow$$
 Cheeger's L^2 -energy

$$2\mathsf{Ch}(f) := \int_X |
abla f \ |^2 d\mathfrak{m}$$

 (X,d,\mathfrak{m}) : Polish geodesic metric measure sp., \mathfrak{m} : loc. finite, σ -finite, $\operatorname{supp}\mathfrak{m}=X$,

$$P_t = \mathrm{e}^{t\Delta} \leftrightarrow$$
 Cheeger's L^2 -energy

$$\operatorname{\mathsf{J}}_X|
abla f_n:=egin{array}{c} \operatorname{\mathsf{Lip.}} \operatorname{\mathsf{const.}}_{oldsymbol{\mathcal{J}}_X} & f_n: \operatorname{\mathsf{Lip.}} \\ \int_X |
abla f_n|^2 d\mathfrak{m} & f_n o f ext{ in } L^2 \end{array}$$

 (X,d,\mathfrak{m}) : Polish geodesic metric measure sp., \mathfrak{m} : loc. finite, σ -finite, $\operatorname{supp}\mathfrak{m}=X$,

$$P_t = \mathrm{e}^{t\Delta} \leftrightarrow$$
 Cheeger's L^2 -energy

$$\operatorname{\mathsf{2Ch}}(f) := egin{array}{c} \operatorname{\mathsf{loc}}. \ \operatorname{\mathsf{Lip}}. \ \operatorname{\mathsf{const.}}_{oldsymbol{\neg}} \ & \lim_n \int_X |
abla f_n|^2 d\mathfrak{m} & f_n : \ \operatorname{\mathsf{Lip}}. \ & f_n o f \ \operatorname{\mathsf{in}} L^2 \end{array}$$

 (X,d,\mathfrak{m}) : Polish geodesic metric measure sp., \mathfrak{m} : loc. finite, σ -finite, $\operatorname{supp}\mathfrak{m}=X$,

$$P_t = \mathrm{e}^{t\Delta} \leftrightarrow$$
 Cheeger's L^2 -energy

$$\operatorname{\mathsf{2Ch}}(f) := \inf \left\{ egin{array}{l} \operatorname{\mathsf{Lip.}} \operatorname{\mathsf{const.}}, \ |
abla f_n : \operatorname{\mathsf{Lip.}} f_n : \operatorname{\mathsf{Lip.}} f_n \to f \ \operatorname{\mathsf{in}} L^2 \end{array}
ight\}$$

 (X,d,\mathfrak{m}) : Polish geodesic metric measure sp., \mathfrak{m} : loc. finite, σ -finite, $\operatorname{supp}\mathfrak{m}=X$,

$$P_t = \mathrm{e}^{t\Delta} \leftrightarrow$$
 Cheeger's L^2 -energy

$$2\mathsf{Ch}(f) := \inf \left\{ rac{\lim}{n} \int_X |
abla f_n|^2 d\mathfrak{m} \ \middle| \ f_n : \mathsf{Lip.} \ f_n o f \ \mathsf{in} \ L^2 \
ight\} \ = \int_X {}^{\exists} |
abla f|^2_w d\mathfrak{m}$$

 $(|\nabla f|_w$: minimal weak upper gradient)

$$W_2(\mu,
u):=\inf\left\{\|d\|_{L^2(\pi)}\left|egin{array}{c}\pi\colon ext{coupling}\ ext{of }\mu\&
u\end{array}
ight\}$$
 $\operatorname{Ent}(
ho\mathfrak{m}):=\int
ho\log
ho\,d\mathfrak{m}$

Definition 1

$$(X,d,\mathfrak{m})$$
: Riemannian $\mathsf{CD}(K,\infty)$ sp. $(K\in\mathbb{R})$ $\overset{\mathsf{def}}{\Leftrightarrow}$ " $\mathrm{Hess}\,\mathrm{Ent}\geq K$ " on $(\mathcal{P}(X),W_2)$ & Ch : quadratic form $(\Leftrightarrow P_t$: linear)

 (X,d,\mathfrak{m}) : Riemannian $\mathsf{CD}(K,\infty)$ sp. $(K\in\mathbb{R})$ $\overset{\mathsf{def}}{\Leftrightarrow}$ " $\mathrm{Hess}\,\mathrm{Ent}\geq K$ " on $(\mathcal{P}(X),W_2)$ & Ch : quadratic form $(\Leftrightarrow P_t$: linear)

- " $\partial_t(\mu P_t) = -oldsymbol{
 abla} \operatorname{Ent}(\mu P_t)$ " on $(\mathcal{P}(X), W_2)$
- Ch: str. local quasi-reg. Dirichlet form admitting carré du champ (\leadsto Brownian motion $(B(t), \mathbb{P}_x)$)
- " $\frac{1}{2}\Delta|
 abla f|_w^2-\langle
 abla f,
 abla \Delta f\rangle_w\geq K|
 abla f|_w^2$ " (Bakry-Émery's CD cond. $\mathbf{BE}(K,\infty)$)

 (X,d,\mathfrak{m}) : Riemannian $\mathsf{CD}(K,\infty)$ sp. $(K\in\mathbb{R})$ $\overset{\mathsf{def}}{\Leftrightarrow}$ " $\mathsf{Hess}\, \overset{\mathsf{Ent}}{=} \geq K$ " on $(\mathcal{P}(X),W_2)$ & Ch : quadratic form $(\Leftrightarrow P_t$: linear)

- ullet " $\partial_t(\mu P_t) = -oldsymbol{
 abla}\operatorname{Ent}(\mu P_t)$ " on $(\mathcal{P}(X),W_2)$
- Ch: str. local quasi-reg. Dirichlet form admitting carré du champ (\leadsto Brownian motion $(B(t), \mathbb{P}_x)$)
- " $\frac{1}{2}\Delta|\nabla f|_w^2-\langle\nabla f,\nabla\Delta f\rangle_w\geq K|\nabla f|_w^2$ " (Bakry-Émery's CD cond. $\mathsf{BE}(K,\infty)$)

 (X,d,\mathfrak{m}) : Riemannian $\mathsf{CD}(K,\infty)$ sp. $(K\in\mathbb{R})$ $\overset{\mathsf{def}}{\Leftrightarrow}$ " $\mathrm{Hess}\,\mathrm{Ent}\geq K$ " on $(\mathcal{P}(X),W_2)$ & Ch : quadratic form $(\Leftrightarrow P_t$: linear)

- ullet " $\partial_t(\mu P_t) = -oldsymbol{
 abla}\operatorname{Ent}(\mu P_t)$ " on $(\mathcal{P}(X),W_2)$
- Ch: str. local quasi-reg. Dirichlet form admitting carré du champ (\leadsto Brownian motion $(B(t), \mathbb{P}_x)$)
- " $\frac{1}{2}\Delta|\nabla f|_w^2-\langle\nabla f,\nabla\Delta f\rangle_w\geq K|\nabla f|_w^2$ " (Bakry-Émery's CD cond. $\mathsf{BE}(K,\infty)$)

 (X,d,\mathfrak{m}) : Riemannian $\mathsf{CD}(K,\infty)$ sp. $(K\in\mathbb{R})$ $\overset{\mathsf{def}}{\Leftrightarrow}$ " $\mathrm{Hess}\,\mathrm{Ent}\geq K$ " on $(\mathcal{P}(X),W_2)$ & Ch : quadratic form $(\Leftrightarrow P_t$: linear)

- ullet " $\partial_t(\mu P_t) = -oldsymbol{
 abla}\operatorname{Ent}(\mu P_t)$ " on $(\mathcal{P}(X),W_2)$
- Ch: str. local quasi-reg. Dirichlet form admitting carré du champ (\leadsto Brownian motion $(B(t), \mathbb{P}_x)$)
- " $\frac{1}{2}\Delta|\nabla f|_w^2-\langle\nabla f,\nabla\Delta f\rangle_w\geq K|\nabla f|_w^2$ " (Bakry-Émery's CD cond. $\mathsf{BE}(K,\infty)$)

$\mathsf{RCD}(K,\infty) \Rightarrow \mathsf{BE}(K,\infty)$

$$\begin{aligned} & \text{Hess Ent} \geq K \\ & \text{\downarrow} \\ & \text{$W_2(K,\infty)$: $W_2(\mu P_t,\nu P_t) \leq \mathrm{e}^{-Kt}W_2(\mu,\nu)$} \\ & \text{$\downarrow$ [K. '10, '13 / \cdots]$} \\ & \text{$G_2(K,\infty)$: $|\nabla P_t f|_w \leq \mathrm{e}^{-Kt}P_t(|\nabla f|_w^2)^{1/2}$} \\ & \text{$\downarrow$} \\ & \text{$\mathsf{BE}(K,\infty)$: $\frac{1}{2}\Delta|\nabla f|_w^2 - \langle \nabla f, \nabla \Delta f \rangle_w \geq K|\nabla f|_w^2$} \end{aligned}$$

$\mathsf{RCD}(K,\infty) \Rightarrow \mathsf{BE}(K,\infty)$

$$\begin{aligned} & \text{Hess Ent} \geq K \\ & \text{\downarrow} \\ & \text{$W_2(K,\infty)$: $W_2(\mu P_t,\nu P_t) \leq \mathrm{e}^{-Kt} W_2(\mu,\nu)$} \\ & \text{$\downarrow$ [K. '10, '13 / \cdots]$} \\ & \text{$G_2(K,\infty)$: $|\nabla P_t f|_w \leq \mathrm{e}^{-Kt} P_t (|\nabla f|_w^2)^{1/2}$} \\ & \text{$\downarrow$} \\ & \text{$\downarrow$} \\ & \text{$BE(K,\infty)$: $\frac{1}{2} \Delta |\nabla f|_w^2 - \langle \nabla f, \nabla \Delta f \rangle_w \geq K |\nabla f|_w^2$} \end{aligned}$$

1. Introduction

2. Framework

3. Coupling by parallel transport

4. Coupling by reflection

5. Concluding remarks

 ${}^{
abla}\!x_0,x_1\in X$ ${}^{
et}(B_t^{(0)},B_t^{(1)})$: coupling of BMs on X s.t.

- $ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$
- ullet $\mathrm{e}^{Kt}d(B_t^{(0)},B_t^{(1)})\searrow$ a.s.

 ${}^{
abla}\!x_0,x_1\in X$ ${}^{
abla}(B_t^{(0)},B_t^{(1)})$: coupling of BMs on X s.t.

- $ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$
- \bullet $e^{Kt}d(B_t^{(0)}, B_t^{(1)}) \searrow$ a.s. (defining property!)

 ${}^{
abla}\!x_0,x_1\in X$ ${}^{
abla}(B_t^{(0)},B_t^{(1)})$: coupling of BMs on X s.t.

- $ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$
- ullet $\mathrm{e}^{Kt}d(B_t^{(0)},B_t^{(1)})\searrow$ a.s. (defining property!)

Key idea

- Reduce to construction of a coupling of trans. prob.
- Self-improvement of $BE(K, \infty)$ [Savaré '14] $\Rightarrow W_{\infty}(\delta_x P_t, \delta_y P_t) \leq e^{-Kt} d(x, y)$ $\Rightarrow \exists$ a "nice" coupling of trans. prob.

 ${}^{
abla}\!x_0,x_1\in X$ ${}^{
abla}(B_t^{(0)},B_t^{(1)})$: coupling of BMs on X s.t.

- $ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$
- ullet $\mathrm{e}^{Kt}d(B_t^{(0)},B_t^{(1)})\searrow$ a.s. (defining property!)

Key idea

- Reduce to construction of a coupling of trans. prob.
- Self-improvement of $BE(K, \infty)$ [Savaré '14] $\Rightarrow W_{\infty}(\delta_x P_t, \delta_y P_t) \leq e^{-Kt} d(x, y)$ $\Rightarrow \exists$ "nice" coupling of trans. prob.

 ${}^{
abla}\!x_0,x_1\in X$ ${}^{
abla}(B_t^{(0)},B_t^{(1)})$: coupling of BMs on X s.t.

- $ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$
- ullet $\mathrm{e}^{Kt}d(B_t^{(0)},B_t^{(1)})\searrow$ a.s. (defining property!)

Key idea

- Reduce to construction of a coupling of trans. prob.
- Self-improvement of $\mathsf{BE}(K,\infty)$ [Savaré '14] $\Rightarrow W_{\infty}(\delta_x P_t, \delta_u P_t) \leq \mathrm{e}^{-Kt} d(x,y)$
 - ⇒ ∃a "nice" coupling of trans. prob.

$$\mathsf{W}_2(K,\infty)$$
: $W_2(\mu P_t, \nu P_t) \leq \mathrm{e}^{-Kt} W_2(\mu, \nu)$

$$\mathsf{G}_2(K,\infty)\colon |
abla P_t f|_w \leq \mathrm{e}^{-Kt} P_t (|
abla f|_w^2)^{1/2}$$

$$\mathsf{BE}(K,\infty)$$
: $rac{1}{2}\Delta|
abla f|_w^2 - \langle
abla f,
abla \Delta f
angle_w \geq K|
abla f|_w^2$

$$\mathsf{W}_{\mathbf{2}}(K,\infty)$$
: $W_{\mathbf{2}}(\mu P_t, \nu P_t) \leq \mathrm{e}^{-Kt} W_{\mathbf{2}}(\mu, \nu)$

$$\mathsf{G}_2(K,\infty)$$
: $|
abla P_t f|_w \leq \mathrm{e}^{-Kt} P_t (|
abla f|_w^2)^{1/2}$

$$\mathsf{BE}(K,\infty)$$
: $rac{1}{2}\Delta|
abla f|_w^2 - \langle
abla f,
abla \Delta f
angle_w \geq K|
abla f|_w^2$

$$\mathsf{W}_2(K,\infty)$$
: $W_2(\mu P_t, \nu P_t) \leq \mathrm{e}^{-Kt} W_2(\mu, \nu)$

$$\mathsf{G}_2(K,\infty)$$
: $|
abla P_t f|_w \leq \mathrm{e}^{-Kt} P_t (|
abla f|_w^2)^{1/2}$

$$\mathsf{BE}(K,\infty)$$
: $rac{1}{2}\Delta |
abla f|_w^2 - \langle
abla f,
abla \Delta f
angle_w \geq K |
abla f|_w^2$

$$\Downarrow$$

$$\mathsf{G}_{1}(K,\infty)$$
: $|\nabla P_{t}f|_{w} \leq \mathrm{e}^{-Kt}P_{t}(|\nabla f|_{w})$

$$\mathsf{W}_2(K,\infty)$$
: $W_2(\mu P_t, \nu P_t) \leq \mathrm{e}^{-Kt} W_2(\mu, \nu)$

$$\mathsf{G}_2(K,\infty)\colon |
abla P_t f|_w \leq \mathrm{e}^{-Kt} P_t (|
abla f|_w)^{1/2}$$

$$\mathsf{BE}(K,\infty)$$
: $rac{1}{2}\Delta |
abla f|_w^2 - \langle
abla f,
abla \Delta f
angle_w \geq K |
abla f|_w^2$

$$\Downarrow$$

$$\mathsf{G}_1(K,\infty)$$
: $|
abla P_t f|_w \leq \mathrm{e}^{-Kt} P_t(|
abla f|_w)$
 \updownarrow [K. '10, '13 $/\cdots$]

$$\mathsf{W}_{\infty}(K,\infty)$$
: $W_{\infty}(\mu P_t, \nu P_t) \leq \mathrm{e}^{-Kt} W_{\infty}(\mu, \nu)$

1. Introduction

2. Framework

3. Coupling by parallel transport

4. Coupling by reflection

5. Concluding remarks

- Defining property of coupling by reflection: Estimate of coupling probability $\mathbf{P}[au>t]$
- Our strategy:
 Monotonicity of a transportation cost

- Defining property of coupling by reflection: Estimate of coupling probability $\mathbf{P}[au>t]$
- Our strategy:
 Monotonicity of a transportation cost

How do we formulate monotonicity?

- Defining property of coupling by reflection: Estimate of coupling probability $\mathbf{P}[au>t]$
- Our strategy:
 Monotonicity of a transportation cost

How do we formulate monotonicity?

Observe it on Riem. mfd.

X: Riem. mfd., $\mathrm{Ric} \geq K$

X: Riem. mfd., $\mathrm{Ric} \geq K$

 $orall x_0, x_1$, $rac{\exists}{(B_t^{(0)}, B_t^{(1)})}$: coupling of BM's s.t.

$$ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$$

$$ullet d(B_t^{(0)}, B_t^{(1)}) \leq
ho_t^{d(x_0, x_1)} \quad (t < au)$$

where
$$\left\{egin{array}{l} d
ho_t^r=2\sqrt{2}dW_t-K
ho_t^rdt,\
ho_0^r=r \end{array}
ight.$$

X: Riem. mfd., $\mathrm{Ric} > K$

 $orall x_0, x_1$, $rac{\exists}{(B_t^{(0)}, B_t^{(1)})}$: coupling of BM's s.t.

$$ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$$

$$ullet d(B_t^{(0)}, B_t^{(1)}) \leq
ho_t^{d(x_0, x_1)} \quad (t < au)$$

where
$$\left\{egin{array}{l} d
ho_t^r=2\sqrt{2}dW_t-K
ho_t^rdt,\
ho_0^r=r \end{array}
ight.$$

$$\mathbb{P}[au>t] \leq \mathbb{P}\left[\inf_{s\leq t}
ho_s^{d(x_0,x_1)}>0
ight] =: arphi_t(d(x_0,x_1))$$

X: Riem. mfd., $\mathrm{Ric} \geq K$

 $orall x_0, x_1$, $rac{\exists}{(B_t^{(0)}, B_t^{(1)})}$: coupling of BM's s.t.

$$ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$$

$$ullet d(B_t^{(0)}, B_t^{(1)}) \leq
ho_t^{d(x_0, x_1)} \quad (t < au)$$

where
$$\left\{egin{array}{l} d
ho_t^r=2\sqrt{2}dW_t-K
ho_t^rdt,\
ho_0^r=r \end{array}
ight.$$

$$\mathbb{P}[au>t] \leq \mathbb{P}\left[\inf_{s\leq t}
ho_s^{d(x_0,x_1)}>0
ight] =: arphi_t(d(x_0,x_1))$$

X: Riem. mfd., $\mathrm{Ric} \geq K$

 $\bigstar \varphi_{T-t}(\rho_t^r)$: martingale in t

X: Riem. mfd., $\mathrm{Ric} \geq K$

$$\bigstar \varphi_{T-t}(\rho_t^r)$$
: martingale in t

$$\Rightarrow \mathbb{E}[\varphi_s(d(B_t^{(0)}, B_t^{(1)}))] \leq \varphi_{s+t}(d(x_0, x_1)),$$

X: Riem. mfd., $\mathrm{Ric} \geq K$

$$\bigstar \varphi_{T-t}(\rho_t^r)$$
: martingale in t

$$\Rightarrow \mathbb{E}[\varphi_s(d(B_t^{(0)}, B_t^{(1)}))] \leq \varphi_{s+t}(d(x_0, x_1)),$$

Theorem 2 ([K. & Sturm '13])

For
$$c: X imes X o \mathbb{R}$$
,

$$\Rightarrow \mathcal{T}_{\varphi_{T-t}(d)}(\mu P_t, \nu P_t) \searrow \text{in } t \in [0, T]$$

Rem 3 Extension involving "dim $\leq N$ "

X: Riem. mfd., $\mathrm{Ric} \geq K$

$$\bigstar \varphi_{T-t}(\rho_t^r)$$
: martingale in t

$$\Rightarrow \mathbb{E}[\varphi_s(d(B_t^{(0)}, B_t^{(1)}))] \leq \varphi_{s+t}(d(x_0, x_1)),$$

Theorem 2 ([K. & Sturm '13])

For
$$c: X imes X o \mathbb{R}$$
,

Rem 3 Extension involving "dim $\leq N$ "

On Riem. mfd.,
$$\mathcal{T}_{\varphi_{T-t}(d)}(\mu P_t, \nu P_t)$$

Is the same true on **RCD** sp's?

On Riem. mfd.,
$$\mathcal{T}_{\varphi_{T-t}(d)}(\mu P_t, \nu P_t)$$

Is the same true on RCD sp's? Yes!

Theorem 3 ([K.])

On $\mathsf{RCD}(K,\infty)$ sp's, $\mathcal{T}_{\varphi_{T-t}(d)}(\mu P_t, \nu P_t) \searrow$ in t

Theorem 3 ([K.])

On
$$\mathsf{RCD}(K,\infty)$$
 sp's, $\mathcal{T}_{\varphi_{T-t}(d)}(\mu P_t, \nu P_t) \searrow$ in t

Corollary 4 (cf. [K. & Sturm '13])

$$rac{1}{2} \| \delta_{x_0} P_T - \delta_{x_1} P_T \|_{ ext{ iny var}} \leq arphi_T (d(x_0, x_1))$$

(Comparison theorem for total variations)

Theorem 5 ([K.])

On $\mathsf{RCD}(K,\infty)$ sp's, ${}^{\forall}x_0,x_1\in X$,

 $\exists (B_t^{(0)}, B_t^{(1)})$: a coupling of BMs s.t.

$$ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$$

$$ullet$$
 $^{orall} t>0$, $\mathbb{P}[au>t]\leq arphi_t(d(x_0,x_1))$

In particular, $\mathbb{P}[au < \infty] = 1$ if $K \geq 0$

Theorem 5 ([K.])

On $\mathsf{RCD}(K,\infty)$ sp's, ${}^{\forall}x_0,x_1\in X$,

 $^{\exists}(B_t^{(0)},B_t^{(1)})$: a coupling of BMs s.t.

$$ullet (B_0^{(0)}, B_0^{(1)}) = (x_0, x_1)$$

- ullet $\forall t>0$, $\mathbb{P}[au>t]\leq arphi_t(d(x_0,x_1))$
- In particular, $\mathbb{P}[au < \infty] = 1$ if $K \geq 0$

★ "Thm. 2 ⇒ Thm. 4" is simliar to the corresponding argument in coupling by parallel transport

Idea of the proof of Thm 2

Basic idea: modify " $\mathbf{G}_2(K,\infty)\Rightarrow \mathbf{W}_2(K,\infty)$ " (cf. [Bakry, Gentil & Ledoux '15+])

- ullet $\mathsf{W}_\infty(K,\infty)$
- Kantorovich-Rubinstein duality
- Reverse f'nal Gaussian isoperimetric ineq. for P_t $(\Leftarrow \mathbf{G}_1(K,\infty))$

$$egin{aligned} &rac{\mathrm{e}^{2Kt}-1}{K}|
abla P_t f|_w^2 \leq I(P_t f)^2 - P_t(I(f))^2, \ &I:=\Phi'\circ\Phi^{-1}, \ \ \Phi(x):=rac{1}{\sqrt{2\pi}}\int_{-\infty}^x \mathrm{e}^{-y^2/2}\,dy \end{aligned}$$

Idea of the proof of Thm 2

Basic idea: modify " $\mathbf{G}_2(K,\infty)\Rightarrow \mathbf{W}_2(K,\infty)$ " (cf. [Bakry, Gentil & Ledoux '15+])

- ullet $\mathsf{W}_\infty(K,\infty)$
- Kantorovich-Rubinstein duality
- Reverse f'nal Gaussian isoperimetric ineq. for P_t $(\Leftarrow \mathbf{G}_1(K,\infty))$

$$egin{aligned} rac{\mathrm{e}^{2Kt}-1}{K}|
abla P_t f|_w^2 &\leq I(P_t f)^2 - P_t (I(f))^2, \ I:=\Phi'\circ\Phi^{-1}, \ \ \Phi(x):=rac{1}{\sqrt{2\pi}}\int_{-\infty}^x \mathrm{e}^{-y^2/2}\,dy \end{aligned}$$

Idea of the proof of Thm 2

Basic idea: modify " $\mathbf{G}_2(K,\infty)\Rightarrow \mathbf{W}_2(K,\infty)$ " (cf. [Bakry, Gentil & Ledoux '15+])

- ullet $\mathsf{W}_\infty(K,\infty)$
- Kantorovich-Rubinstein duality
- Reverse f'nal Gaussian isoperimetric ineq. for P_t $(\Leftarrow \mathbf{G}_1(K,\infty))$

$$egin{aligned} rac{\mathrm{e}^{2Kt}-1}{K}|
abla P_t f|_w^2 &\leq I(P_t f)^2 - P_t (I(f))^2, \ I := \Phi' \circ \Phi^{-1}, \ \ \Phi(x) := rac{1}{\sqrt{2\pi}} \int_{-\infty}^x \mathrm{e}^{-y^2/2} \, dy \end{aligned}$$

$$2t|\nabla P_t f|^2 \le I(P_t f)^2 - P_t(I(f))^2 \quad (0 \le f \le 1)$$

$$2t|\nabla P_t f|^2 \le I(P_t f)^2 - P_t(I(f))^2 \quad (0 \le f \le 1)$$

$$(\Phi^{-1})' = \frac{1}{I} \Downarrow \text{ (cf. [Bakry, Gentil & Ledoux '15+])}$$

$$\Phi^{-1}(P_t f(x)) \leq \Phi^{-1}(P_t f(y)) + \frac{d(x,y)}{\sqrt{2t}}$$

$$2t|\nabla P_t f|^2 \le I(P_t f)^2 - P_t(I(f))^2 \quad (0 \le f \le 1)$$

$$(\Phi^{-1})' = rac{1}{I} \Downarrow ext{ (cf. [Bakry, Gentil & Ledoux '15+])}$$

$$\Phi^{-1}(P_t f(x)) \leq \Phi^{-1}(P_t f(y)) + \frac{d(x,y)}{\sqrt{2t}}$$

$$egin{aligned} \Rightarrow ``P_t f(x) & \leq \Phi\left(\Phi^{-1}(P_t f(y)) + rac{d(x,y)}{\sqrt{2t}}
ight) \ & \leq P_t f(y) + \Phi\left(rac{d(x,y)}{\sqrt{2t}}
ight) , \end{aligned}$$

$$2t|\nabla P_t f|^2 \le I(P_t f)^2 - P_t(I(f))^2 \quad (0 \le f \le 1)$$

$$(\Phi^{-1})' = \frac{1}{I} \Downarrow \text{ (cf. [Bakry, Gentil & Ledoux '15+])}$$

$$\Phi^{-1}(P_tf(x)) \leq \Phi^{-1}(P_tf(y)) + \frac{d(x,y)}{\sqrt{2t}}$$

Proposition 1

$$P_t f(x) - P_t f(y) \leq \varphi_t(d(x,y))$$

$$2t|\nabla P_t f|^2 \le I(P_t f)^2 - P_t(I(f))^2 \quad (0 \le f \le 1)$$

$$(\Phi^{-1})' = rac{1}{I} \Downarrow ext{ (cf. [Bakry, Gentil & Ledoux '15+])}$$

$$\Phi^{-1}(P_tf(x)) \leq \Phi^{-1}(P_tf(y)) + rac{d(x,y)}{\sqrt{2t}}$$

Proposition 1

$$P_t f(x) - P_t f(y) \leq \varphi_t(d(x,y))$$

$$igstar arphi_t(d) + 1 = 2\Phi\left(rac{d}{2\sqrt{2t}}
ight)$$

$$2t|\nabla P_t f|^2 \le I(P_t f)^2 - P_t(I(f))^2 \quad (0 \le f \le 1)$$

$$(\Phi^{-1})' = rac{1}{I} \Downarrow ext{ (cf. [Bakry, Gentil & Ledoux '15+])}$$

$$\Phi^{-1}(P_tf(x)) \leq \Phi^{-1}(P_tf(y)) + \frac{d(x,y)}{\sqrt{2t}}$$

Proposition 1

$$P_tf(x)-P_tf(y)\leq arphi_t(d(x,y))$$
 (\Rightarrow Cor. 3)

$$igstar arphi_t(d) + 1 = 2\Phi\left(rac{d}{2\sqrt{2t}}
ight)$$

$$P_t f(x) - P_t f(y) \leq \varphi_t(d(x,y))$$

$$ullet \ arphi_t(d) + 1 = 2\Phi\left(rac{d}{2\sqrt{2t}}
ight)$$

$$P_t f(x) - P_t f(y) \leq \varphi_t(d(x,y))$$

$$ullet arphi_t(d) + 1 = 2\Phi\left(rac{d}{2\sqrt{2t}}
ight)$$

If
$$f(x)-f(y)\leq arphi_s(d(x,y))$$
, then $P_tf(x)-P_tf(y)\leq arphi_s(d(x,y))$ $(\because \mathsf{W}_\infty(K,\infty))$

$$P_t f(x) - P_t f(y) \leq \varphi_t(d(x,y))$$

$$ullet arphi_t(d) + 1 = 2\Phi\left(rac{d}{2\sqrt{2t}}
ight)$$

If
$$f(x)-f(y)\leq arphi_s(d(x,y)),$$
 then $P_tf(x)-P_tf(y)\leq arphi_s(d(x,y))$ $(\because \mathsf{W}_\infty(K,\infty))$

$$\Rightarrow P_t f(x) - P_t f(y) \ \leq rac{t}{s+t} arphi_t (d(x,y)) + rac{s}{s+t} arphi_s (d(x,y)) \ \leq arphi_{s+t} (d(x,y)) \; (\because \Phi(\sqrt{\cdot}): \; ext{concave}) \;\; extstyle$$

1. Introduction

2. Framework

3. Coupling by parallel transport

4. Coupling by reflection

5. Concluding remarks

- ullet " ${
 m Ric} \geq K$ " on "Riemannian" met. meas. sp
 - → Brownian motion is defined
 - → Bakry-Émery theory is available
- "Coupling by parallel transport/reflection" of BMs
 - ← Define them by characteristic properties
 - ← Use of f'nal ineq's & Bakry-Émery theory
- New approach to construction of couplings
 - → Requires less regularity of the underlying sp.
 - → Avoid technical arguments

- ullet " ${
 m Ric} \geq K$ " on "Riemannian" met. meas. sp
 - → Brownian motion is defined
 - → Bakry-Émery theory is available
- "Coupling by parallel transport/reflection" of BMs
 - ← Define them by characteristic properties
 - ← Use of f'nal ineq's & Bakry-Émery theory
- New approach to construction of couplings
 - → Requires less regularity of the underlying sp.
 - → Avoid technical arguments

- ullet " $\mathrm{Ric} \geq K$ " on "Riemannian" met. meas. sp
 - → Brownian motion is defined
 - → Bakry-Émery theory is available
- "Coupling by parallel transport/reflection" of BMs
 - ← Define them by characteristic properties
 - ← Use of f'nal ineq's & Bakry-Émery theory
- New approach to construction of couplings
 - → Requires less regularity of the underlying sp.
 - → Avoid technical arguments

- ullet " $\mathrm{Ric} \geq K$ " on "Riemannian" met. meas. sp
 - → Brownian motion is defined
 - → Bakry-Émery theory is available
- "Coupling by parallel transport/reflection" of BMs
 - ← Define them by characteristic properties
 - ← Use of f'nal ineq's & Bakry-Émery theory
- New approach to construction of couplings
 - → Requires less regularity of the underlying sp.
 - → Avoid technical arguments

- ullet " $\mathrm{Ric} \geq K$ " on "Riemannian" met. meas. sp
 - → Brownian motion is defined
 - → Bakry-Émery theory is available
- "Coupling by parallel transport/reflection" of BMs
 - ← Define them by characteristic properties
 - ← Use of f'nal ineq's & Bakry-Émery theory
- New approach to construction of couplings
 - → Requires less regularity of the underlying sp.
 - → Avoid technical arguments

- ullet " $\mathrm{Ric} \geq K$ " on "Riemannian" met. meas. sp
 - → Brownian motion is defined
 - → Bakry-Émery theory is available
- "Coupling by parallel transport/reflection" of BMs
 - ← Define them by characteristic properties
 - ← Use of f'nal ineq's & Bakry-Émery theory
- New approach to construction of couplings
 - → Requires less regularity of the underlying sp.
 - → Avoid technical arguments

- ullet " ${
 m Ric} \geq K$ " on "Riemannian" met. meas. sp
 - → Brownian motion is defined
 - → Bakry-Émery theory is available
- "Coupling by parallel transport/reflection" of BMs
 - ← Define them by characteristic properties
 - ← Use of f'nal ineq's & Bakry-Émery theory
- New approach to construction of couplings
 - → Requires less regularity of the underlying sp.
 - → Avoid technical arguments

- ullet " ${
 m Ric} \geq K$ " on "Riemannian" met. meas. sp
 - → Brownian motion is defined
 - → Bakry-Émery theory is available
- "Coupling by parallel transport/reflection" of BMs
 - ← Define them by characteristic properties
 - ← Use of f'nal ineq's & Bakry-Émery theory
- New approach to construction of couplings
 - → Requires less regularity of the underlying sp.
 - → Avoid technical arguments

- ullet " $\mathrm{Ric} \geq K$ " on "Riemannian" met. meas. sp
 - → Brownian motion is defined
 - → Bakry-Émery theory is available
- "Coupling by parallel transport/reflection" of BMs
 - ← Define them by characteristic properties
 - ← Use of f'nal ineq's & Bakry-Émery theory
- New approach to construction of couplings
 - → Requires less regularity of the underlying sp.
 - → Avoid technical arguments

- ullet Coupling by refl. under " $\mathrm{Ric} \geq K\& \dim \leq N$ "?
- New formulation of (K, N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for K=0 ([K. & Kuwae]; in progress)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " ${
 m Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?

- \bullet Coupling by refl. under " $\mathrm{Ric} \geq K\&\dim \leq N$ "?
- New formulation of (K, N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for oldsymbol{K} = 0 ([K. & Kuwae]; in progress)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " ${
 m Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?

- \bullet Coupling by refl. under " $\mathrm{Ric} \geq K\&\dim \leq N$ "?
- New formulation of (K, N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for K=0 ([K. & Kuwae]; in progress) \Big)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " ${
 m Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?

- ullet Coupling by refl. under " $\mathrm{Ric} \geq K\& \dim \leq N$ "?
- New formulation of (K, N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for K=0 ([K. & Kuwae]; in progress) \Big)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " $\mathrm{Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?

- ullet Coupling by refl. under " $\mathrm{Ric} \geq K\&\dim \leq N$ "?
- New formulation of (K, N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for K=0 ([K. & Kuwae]; in progress) \Big)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " $\mathrm{Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?

- Coupling by refl. under " $\mathrm{Ric} \geq K\& \dim \leq N$ "?
- ullet New formulation of (K,N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for oldsymbol{K} = 0 ([K. & Kuwae]; in progress)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " ${
 m Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?

- \bullet Coupling by refl. under " $\mathrm{Ric} \geq K\&\dim \leq N$ "?
- New formulation of (K, N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for K=0 ([K. & Kuwae]; in progress)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " ${
 m Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?

- \bullet Coupling by refl. under " $\mathrm{Ric} \geq K\&\dim \leq N$ "?
- New formulation of (K, N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for K=0 ([K. & Kuwae]; in progress)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " ${
 m Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?

- ullet Coupling by refl. under " $\mathrm{Ric} \geq K\&\dim \leq N$ "?
- New formulation of (K, N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for oldsymbol{K} = 0 ([K. & Kuwae]; in progress)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " ${
 m Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?

- \bullet Coupling by refl. under " $\mathrm{Ric} \geq K\&\dim \leq N$ "?
- ullet New formulation of (K,N)-coupling by refl.?
- Other sample path properties?

```
( e.g. Comparison theorem for d(x_0, B_t): OK for oldsymbol{K} = 0 ([K. & Kuwae]; in progress)
```

- ullet (K,N)-(rev.) isoperimetry for P_t with $N<\infty$
- Characterize " ${
 m Ric} \geq K$ " by the coupling by refl.? (OK on Riem. mfd. by [von Renesse & Sturm '05])
- Can we localize the construction?
- Pathwise comparison (or stochastic domination)?