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1. Introduction



Brownian motion < curvature

M : manifold

o Riem. met. g +> Laplace-Beltrami op. A
A

> Heat semigroup P; = €t
<> Brownian motion By on M
o Shape of (M, g) «~ “curvature” of (M, g)

o A = tr Hess: “averaged (in direction)” 2nd deriv.
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Recent developments on “Ric > K”

o Characterizations of "Ric > K" on met. meas. sp.

o Equivalence of characterizations:
[Ambrosio, Gigli & Savaré '13-'15

[Ambrosio, Gigli, Mondino & Rajala '15]

Study via optimal transport
[Sturm '06 / Lott & Villani '09 / -]

Study via A / P,
[Bakry & Emery '85 / - - -]

o Extension to "Ric > K & dim < N”
[Erbar, K. & Sturm '15]

o Many applications in Geometry & Analysis
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Review: Couplings of BMs
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on Riem. mfd.:
Coupling of dB;O) € TpoM & dBt(fU cT,,wM
by parallel transport/reflection TB(O)M o TB(I)M

along a minimal geodesic

o Require the notion of parallel transport

o Require a careful modification at cut locus

[Kendall '86 / Cranston '91 / F.-Y. Wang '94,'05 / E.-P. Hsu '03 /
von Renesse '04 / K. '10,'12 / Arnaudon, Coulibaly & Thalmaier '09
/ Neel & Popescu '15+ / - -]
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How do we extend?

;

Change the definition:

From the structure we used for construction
to the characteristic property they satisfies
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5. Concluding remarks
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Framework

(X, d,m): Polish geodesic metric measure sp.,
m: loc. finite, o-finite, suppm = X,

P, = e'® < Cheeger's L?-energy
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Framework

(X, d,m): Polish geodesic metric measure sp.,
m: loc. finite, o-finite, suppm = X,

P, = e'® «» Cheeger's L?*-energy

loc. Lip. const.o

2Ch(f) := inf{li_m /X 'V fr|?dm fnfngl-ii:-Lz }

n

/ IV F|2, dm
X

(|V f|w: minimal weak upper gradient)
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RCD (K, oo) space

. 7t: couplin
Wo(p,v) := inf {Hd||L2(7r) of 1 &PV g }

Ent(pm) := /plogpdm

Definition 1

(X, d, m): Riemannian CD(K, c©) sp. (K € R)

& “Hess Ent > K" on (P(X), W)

& Ch: quadratic form (< F;: linear)

11/2



RCD (K, oo) space

(X, d, m): Riemannian CD(K, c©) sp. (K € R)
& “Hess Ent > K" on (P(X), Wa)

& Ch: quadratic form (< P;: linear)

Properties
o “O(uP;) = —VEnt(puFP;)" on (P(X), Ws)

o Ch: str. local quasi-reg. Dirichlet form admitting

carré du champ (~ Brownian motion (B(t),P,))

1
o "SAIVL, =V, VAf)w 2 K|V,

(Bakry-Emery’s CD cond. BE(K, 00))

~
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RCD(K, ) = BE(K, o)

Hess Ent > K
J

Wy (K,o00): Wo(uP,vP) < e B'Woh(p,v)
J [K.'10, '13 / - -]

G2(K,0): |[VPiflw < e ™' P(|Vf[2)"/?
(1

BE(K, 00): s AIVF[ — (Vf, VAf)y > K|V,



RCD(K, ) = BE(K, o)

Hess Ent > K

J
Wy (K,o00): Wo(uPi,vP;) < e B'Woh(u,v)
T [K. 10, '13 / « -]
G2 (K, 0): VP, flw < e *'P(|Vf|2)"?
(1
BE(K, 00): s AIVFI% — (Vf,VAf), > K|V,
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3. Coupling by parallel transport



Sturm’s coupling by parallel transport
Voo, 1 € X El(Bt(O), B,fl)): coupling of BMs on X s.t.
0 1
° (B(() )9B(() )) = (o, z1)
o eKtd(B!”, BM) \ as.
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Sturm’s coupling by parallel transport

Voo, 1 € X EI(Bt(O), B,fl)): coupling of BMs on X s.t.
o (By, By) = (o, 1)
o eth(Bt(O), Bt(l)) N\ a.s. (defining property!)
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Self-improvement
W, (K, 00): Wo(uPivP;) < e *'Wy(p,v)
)
G2 (K, 00): [VPifl, < e ™ 'P(IVf|2)"?
)
BE(K, co): %A|Vf\fv — (V£ VAW > K|VF]?
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4. Coupling by reflection



o Defining property of coupling by reflection:
Estimate of coupling probability P[T > ]

o Our strategy:
Monotonicity of a transportation cost
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o Defining property of coupling by reflection:
Estimate of coupling probability P[T > ]

o Our strategy:
Monotonicity of a transportation cost

How do we formulate monotonicity?

$

Observe it on Riem. mfd.

18 / 29



Coupling by refl. and opt. trans.
X: Riem. mfd., Ric > K
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Coupling by refl. and opt. trans.
X: Riem. mfd., Ric > K

Vao, 1, E'(B],fo), Bﬁl)): coupling of BM's s.t.
° (By”, By) = (w0, z1)
o d(B",B") < p"™ (¢ < 7)

{ dp! = 2v/2dW; — K p!dt,
where

r
Pop —T




Coupling by refl. and
X: Riem. mfd., Ric > K

opt. trans.

Vao, 1, a(B,fO), Bél)): coupling of BM's s.t.

o (B\”, B\") = (¢, z1)
o d(B(O) B(l)) < pd(mo,ml)

(t <)

{ dp; = 2v/2dW; — K pldt,
where

r
Po — T

Y

Pt > t] <P |inf p“@=1) > (

T s<t
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Coupling by refl. and opt. trans.

X: Riem. mfd., Ric > K

Vao, 1, a(B,fO), Bél)): coupling of BM's s.t.

o (B\”, B\") = (¢, z1)
o d(B(O) B(l)) < pd(mo,ml)

(t < T)

{ dp; = 2v/2dW; — K pldt,
where

r
Po — T

Y

Pt > t] <P |inf p“@=1) > (

T s<t

2 pt(d(xo, 1))
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* er—t(p;): martingale in ¢
= Elp.(d(B;”, B;"))] < ¢ss1(d(x0, 71)).

Y

Theorem 2 ([K. & Sturm ’'13])
Forc: X X X — R,

. 7. coupling
Te(p,v) := inf {/ngdﬂ' of 11 & v }

= Tor @y (WP vP) Nint € [0,T]

Rem JExtension involving “dim < N"




Coupling by refl. and opt. trans.
X: Riem. mfd., Ric > K

* er—t(p;): martingale in ¢
= Elp.(d(B;”, B;"))] < ¢ re(d(o, 1))

Y

Theorem 2 ([K. & Sturm ’'13])
Forec: X x X — R,

. 7. coupling
Te(p,v) := inf {/Xfxdﬂ' of 11 & v }

= Tor_i(@)(nPy, v Py) Nint € [0,T]

Rem FExtension involving “dim < IN"



On Riem. mfd., T, ,(a) (0P, VP;)

Is the same true on RCD sp's?



On Riem. mfd., T, ,(a) (0P, VP;)

ls the same true on RCD sp's? Yes!
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Theorem 3 ([K.])
On RCD (K, 50) 5p's, Tp_,(a)(nPsy v Py) N in t

Corollary 4 (cf. [K. & Sturm '13])

1
ElléwOPT — 5:1:1PTHvar S SOT(d(mO? 331))

(Comparison theorem for total variations)




Theorem 5 ([K.])
On RCD (K, c©) sp’s, Veo. 1 € X,
a(BéO), Bt(l) ): a coupling of BMs s.t.

o (By, By) = (w0, 21)

o Yt > 0, Pl > t] < ¢i(d(xg, x1))
In particular, PlT < ool =1 if K >0




Theorem 5 ([K.])
On RCD(K, 00) sp’s, Vo, x1 € X,
E'(Bt(o) : Bﬁl) ): a coupling of BMs s.t.

o (By, By") = (w0, 1)

oVt > 0, PlT > t] < pi(d(xzg,x1))
In particular, Pt < ool =1 if K >0

»

% Thm.2 = Thm. 4" is simliar to the corresponding
argument in coupling by parallel transport



Idea of the proof of Thm 2
Basic idea: modify “Ga (K, 00) = Wy (K, c0)”
(cf. [Bakry, Gentil & Ledoux '15+])
o W (K, o00)
o Kantorovich-Rubinstein duality

@ Reverse f'nal Gaussian isoperimetric ineq. for P,
(<= G1(K, 0))
eZKt —1
—|VPf2 < I(P.f)* - P(I(§))

1 ! 2
I :=® o0d !, ®(x):= 2 / e V2 dy
T J—o0
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Sketch of the proof of Thm 2 (K = 0)

2| VEF? < I(P.f)? — P(I(f))* (0<f<1)
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1
(1) = 7 I  (cf. [Bakry, Gentil & Ledoux '15+])

d(x,y)

O (Puf(z)) < @ (Pf(y)) A NeT:
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—1/_1
(@) =7 U

(cf. [Bakry, Gentil & Ledoux '15
v (Pf@) <0 (P +
= Pf@) <@ (0 (Rf) + “ 52
< Piw) +o (222

(0<fF <)
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Sketch of the proof of Thm 2 (K = 0)

2| VPfI? < I(P.f)? — P(I(£))? (0< f<1)

1
(@) = 7 I  (cf. [Bakry, Gentil & Ledoux '15+])

d(x,y)

(P f(z)) < @7 (Pf(y)) A NeT:

Proposition 1

P f(z) — P f(y) < ¢pi(d(z,y))
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2| VPfI? < I(P.f)? — P(I(£))? (0< f<1)

1
(@) = 7 I  (cf. [Bakry, Gentil & Ledoux '15+])

d(x,y)

(P f(z)) < @7 (Pf(y)) A NeT:

Proposition 1

P f(x) — P f(y) < pe(d(z,y)) (= Cor. 3)

*¢t(d)+1=2<1>(

)



Sketch of the proof of Thm 2 (K = 0)
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o ud) +1 =28

)



Sketch of the proof of Thm 2 (K = 0)
o Pif(x) — P f(y) < pild(z,y))

ocpt(d)—l—1:2<I>(

2\/ﬂ)

f f(x) — f(y) < psld(z,y)).

then Py f(z) — P f(y) < ws(d(x,y))
( Woo(Ka OO))




Sketch of the proof of Thm 2 (K = 0)
o Pif(x) — Pif(y) < ¢i(d(z,y))

ocpt(d)—l—1:2<1>(

zx/ﬂ)

f f(x) — f(y) < psld(z,y)).

then P f(x) — Pf(y) < ps(d(x,y))
( Woo(Ka OO))

= P f(x) — P f(y)

< : _tl_tcpt(d(w,y)) | - j_ t‘Ps(d(ma y))

< ¢sri(d(z,y)) (- 2(v/*): concave)




5. Concluding remarks



Summary

o "Ric > K" on "Riemannian” met. meas. sp

— Brownian motion is defined

— Bakry-Emery theory is available

@ “Coupling by parallel transport/reflection” of BMs

<— Define them by characteristic properties

<— Use of f'nal ineq's & Bakry—émery theory

@ New approach to construction of couplings

— Requi

— Avoic

res less regularity of the underlying sp.
technical arguments
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Questions

o Coupling by refl. under "Ric > K& dim < N"?
@ New formulation of (K, IN)-coupling by refl.?

@ Other sample path properties?
( e.g. Comparison theorem for d(xg, B:): )

OK for K = 0 ([K. & Kuwae]; in progress)
o (K, N)-(rev.) isoperimetry for P, with N < oo

@ Characterize "Ric > K" by the coupling by refl.?
(OK on Riem. mfd. by [von Renesse & Sturm '05])

@ Can we localize the construction?

@ Pathwise comparison (or stochastic domination)?
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