Notations and statements of the talk

Tokyo Probability Seminar (Apr. 14, 2014)

- Local Lipschitz constant: For $f: X \rightarrow \mathbb{R},|\nabla f|(x):=\limsup _{y \rightarrow x} \frac{|f(y)-f(x)|}{d(y, x)}$.
- Cheeger's energy functional:

$$
\begin{aligned}
\operatorname{Ch}(f): & =\inf \left\{\liminf _{n \rightarrow \infty} \int_{X}\left|\nabla f_{n}\right|^{2} d m\right. \\
& =\int_{X}|\nabla f|_{w}^{2} d m .
\end{aligned}
$$

Note that the existence of such a function $|\nabla f|_{w}$ is non-trivial.

- L^{2}-Wasserstein distance: $\mathscr{P}_{2}(X): L^{2}$-Wasserstein space, consisting of probability measures on X with finite second moments:

$$
\mathscr{P}_{2}(X):=\left\{\mu \in \mathscr{P}(X) \mid \int_{X} d\left(x_{0}, x\right)^{2} \mu(d x)<\infty \text { for some } x_{0} \in X\right\} .
$$

$W_{2}: L^{2}$-Wasserstein distance:

$$
W_{2}(\mu, \nu):=\inf \left\{\begin{array}{l|l}
\|d\|_{L^{2}(\pi)} & \begin{array}{l}
\sigma \in \mathscr{P}(X \times X), \forall A \in \mathcal{B}(X), \\
\sigma(A \times X)=\mu(A), \sigma(X \times A)=\nu(A)
\end{array}
\end{array}\right\} .
$$

Note that $\left(\mathscr{P}_{2}(X), W_{2}\right)$ is a Polish geodesic metric space if so is (X, d).

- Comparison functions: For $\kappa \in \mathbb{R}$ and $\kappa \theta^{2} \leq \pi^{2}$,

$$
\mathfrak{s}_{\kappa}(\theta):=\frac{\sin (\sqrt{\kappa} \theta)}{\sqrt{\kappa}}, \quad \sigma_{\kappa}^{(t)}(\theta):=\frac{\mathfrak{s}_{\kappa}(t \theta)}{\mathfrak{s}_{\kappa}(\theta)} .
$$

- (K, N)-convexity: $\left(Y, d_{Y}\right)$: a metric space. $V: Y \rightarrow \mathbb{R}(K, N)$-convex if for ${ }^{\forall} x, y \in Y$ ${ }^{\exists} \gamma:[0,1] \rightarrow Y$: constant speed geodesic from x to y s.t.
$U_{N}\left(\gamma_{t}\right) \geq \sigma_{K / N}^{(1-t)}\left(d_{Y}(x, y)\right) U_{N}\left(\gamma_{0}\right)+\sigma_{K / N}^{(t)}\left(d_{Y}(x, y)\right) U_{N}\left(\gamma_{1}\right), \quad$ where $U_{N}:=\exp \left(-\frac{1}{N} V\right)$.
This is an integral formulation of the following inequality in the distributional sense:

$$
\partial_{t}^{2} V_{N}\left(\gamma_{t}\right) \leq-\frac{K}{N} d(x, y)^{2} V_{N}\left(\gamma_{t}\right)
$$

If V is C^{2}-function on a Riemannian manifold, then V is (K, N)-convex if and only if

$$
\text { Hess } V-\frac{1}{N} \nabla V \otimes \nabla V \geq K
$$

- Relative entropy: The (imprecise) definition of Ent : $\mathscr{P}(X) \rightarrow \overline{\mathbb{R}}$ is as follows:

$$
\operatorname{Ent}(\mu):= \begin{cases}\int_{X} \rho \log \rho d m & (\mu \ll m, \mu=\rho m) \\ \infty & (\text { otherwise })\end{cases}
$$

Note that Ent is well-defined for ${ }^{\forall} \mu \in \mathscr{P}_{2}(X)$ and $\operatorname{Ent}(\mu)>-\infty$ under Assumption 1.
(i)' $\mathrm{CD}^{*}(K, N)$ (reduced curvature-dimension condition): For $\mu_{0}=\rho_{0} m, \mu_{1}=\rho_{1} m \in \mathscr{P}(X)$ with bounded supports, there exists an optimal coupling q of them (i.e. minimizer of $\left.W_{2}\left(\mu_{0}, \mu_{1}\right)\right)$ and a geodesic $\mu_{t}=\rho_{t} m \in \mathscr{P}_{2}(X)$ with bounded supports such that for all $t \in[0,1]$ and $N^{\prime} \geq N:$

$$
\begin{aligned}
& \int_{X} \rho_{t}^{-1 / N^{\prime}} d \mu_{t} \geq \int_{X \times X}\left[\sigma_{K / N^{\prime}}^{(1-t)}\left(d\left(x_{0}, x_{1}\right)\right) \rho_{0}\left(x_{0}\right)^{-1 / N^{\prime}}\right. \\
& \\
& \left.\quad+\sigma_{K / N^{\prime}}^{(t)}\left(d\left(x_{0}, x_{1}\right)\right) \rho_{1}\left(x_{1}\right)^{-1 / N^{\prime}}\right] q\left(d x_{0} d x_{1}\right)
\end{aligned}
$$

(ii)' $\mathrm{CD}^{e}(K, N)$ (entropic curvature-dimension condition): The relative entropy Ent is (K, N) convex on $\left(\mathscr{P}_{2}(X), W_{2}\right)$.
(iii), $\mathrm{EVI}_{K, N}$ (evolution variational inequality): ${ }^{\forall} \mu \in D$ (Ent), ${ }^{\exists}$ locally absolutely continuous curve $\mu_{t} \in \mathscr{P}_{2}(X)$ with $\mu_{0}=\mu$ s.t.

$$
\begin{aligned}
& \frac{d}{d t} \mathfrak{s}_{K / N}^{2}\left(\frac{W_{2}\left(\mu_{t}, \nu\right)}{2}\right)+K \mathfrak{s}_{K / N}^{2}\left(\frac{W_{2}\left(\mu_{t}, \nu\right)}{2}\right) \leq \frac{N}{2}\left(1-\exp \left(-\frac{1}{N}\left(\operatorname{Ent}(\nu)-\operatorname{Ent}\left(\mu_{t}\right)\right)\right)\right) \\
& \text { for }{ }^{\forall} \nu \in \mathscr{P}_{2}(X) .
\end{aligned}
$$

(iv) Space-time W_{2}-control: ${ }^{\forall} \mu_{0}, \mu_{1} \in \mathscr{P}_{2}(X),{ }^{\forall} t, s \geq 0$,

$$
\mathfrak{s}_{K / N}^{2}\left(\frac{W_{2}\left(T_{t} \mu_{0}, T_{s} \mu_{1}\right)}{2}\right) \leq \mathrm{e}^{-K(s+t)} \mathfrak{s}_{K / N}^{2}\left(\frac{W_{2}\left(\mu_{0}, \mu_{1}\right)}{2}\right)+\frac{N}{2} \frac{1-\mathrm{e}^{-K(s+t)}}{K(s+t)}(\sqrt{t}-\sqrt{s})^{2}
$$

(v) Bakry-Ledoux gradient estimate: ${ }^{\forall} f \in D(\mathrm{Ch}),{ }^{\forall} t>0$,

$$
\left|\nabla T_{t} f\right|_{w}^{2}+\frac{2 t C(t)}{N}\left|\Delta T_{t} f\right|^{2} \leq \mathrm{e}^{-2 K t} T_{t}\left(|\nabla f|_{w}^{2}\right) \quad m \text {-a.e. }
$$

where $C(t)>0$ is a function satisfying $C(t)=1+O(t)$ as $t \rightarrow 0$.
(vi) Bochner's inequality (weak form): ${ }^{\forall} f \in D(\Delta)$ with $\Delta f \in D(\mathrm{Ch}),{ }^{\forall} g \in D(\Delta) \cap L^{\infty}(X, m)$ with $g \geq 0$ and $\Delta g \in L^{\infty}(X, m)$,

$$
\frac{1}{2} \int_{X} \Delta g|\nabla f|_{w}^{2} d m-\int_{X} g\langle\nabla f, \nabla \Delta f\rangle d m \geq K \int_{X} g|\nabla f|_{w}^{2} d m+\frac{1}{N} \int_{X} g(\Delta f)^{2} d m
$$

This is a weak form of

$$
\frac{1}{2} \Delta|\nabla f|_{w}^{2}-\langle\nabla f, \nabla \Delta f\rangle \geq K|\nabla f|_{w}^{2}+\frac{1}{N}(\Delta f)^{2}
$$

Here $\langle\cdot, \cdot\rangle$ means

$$
\langle\nabla f, \nabla g\rangle=\frac{1}{4}\left(|\nabla(f+g)|_{w}^{2}-|\nabla(f-g)|_{w}^{2}\right)
$$

This is bilinear in f and g under Assumption 1.

