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• Local Lipschitz constant: For f : X → R, |∇f |(x) := lim sup
y→x

|f(y)− f(x)|
d(y, x)

.

• Cheeger’s energy functional:

Ch(f) : = inf

{
lim inf
n→∞

∫
X
|∇fn|2 dm

∣∣∣∣ fn : X → R: Lipschitz
fn → f in L2(m)

}
=

∫
X
|∇f |2w dm.

Note that the existence of such a function |∇f |w is non-trivial.

Assumption 1: Ch is quadratic, that is, it comes from a bilinear form.

Assumption 2: ∃c > 0 such that

∫
X

exp
(
−cd(x0, x)2

)
m(dx) <∞.

Assumption 3: For any f ∈ D(Ch) with |∇f |w ≤ 1, f has 1-Lipschitz representative.

• L2-Wasserstein distance: L2-Wasserstein space P2(X) consists of probability measures
on X with finite second moments:

P2(X) :=

{
µ ∈ P(X)

∣∣∣∣ ∫
X
d(x0, x)2µ(dx) <∞ for some x0 ∈ X

}
.

L2-Wasserstein distance W2 : P(X)× P(X)→ [0,∞) is given as follows:

W2(µ, ν) := inf

{
‖d‖L2(π)

∣∣∣∣ π ∈ P(X ×X), ∀A ∈ B(X),
π(A×X) = µ(A), π(X ×A) = ν(A)

}
.

Note that (P2(X),W2) is a Polish geodesic metric space since so is (X, d).

• Relative entropy: Ent : P(X)→ R̄ is defined as follows:

Ent(µ) :=


∫
X
ρ log ρ dm (µ� m, µ = ρm, (ρ log ρ)+ ∈ L1(m)),

∞ (otherwise).

Under Assumption 2, Ent(µ) > −∞ holds for ∀µ ∈ P2(X).

• Comparison functions: For κ ∈ R and κθ2 ≤ π2,

sκ(θ) :=
sin(
√
κθ)√
κ

, σ(t)κ (θ) :=
sκ(tθ)

sκ(θ)
.

(i)’ CD∗(K,N) (reduced curvature-dimension condition): For µ0 = ρ0m,µ1 = ρ1m ∈
P(X) with bounded supports, there exists an optimal coupling q of them (i.e. a minimizer
of W2(µ0, µ1)) and a geodesic µt = ρtm ∈ P2(X) with bounded supports such that for all
t ∈ [0, 1] and N ′ ≥ N :∫

X
ρ
−1/N ′

t dµt ≥
∫
X×X

[
σ
(1−t)
K/N ′(d(x0, x1))ρ0(x0)

−1/N ′

+ σ
(t)
K/N ′(d(x0, x1))ρ1(x1)

−1/N ′]
q(dx0dx1).
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(ii)’ CDe(K,N) (entropic curvature-dimension condition): For each µ0, µ1 ∈ P2(X),
there is a minimal W2-geodesic (µt)t∈[0,1] joining µ0 and µ1 s.t.

UN (µt) ≥ σ(1−t)K/N (W2(µ0, µ1))UN (µ0) + σ
(t)
K/N (W2(µ0, µ1))UN (µ1),

where UN := exp

(
− 1

N
Ent

)
. We also call this property “(weak) (K,N)-convexity of

Ent on (P2(X),W2)”. This is an integral formulation of the following inequality in the
distributional sense:

∂2t UN (µt) ≤ −
K

N
W2(µ0, µ1)

2UN (µt).

If we can regard (P2(X),W2) as a Riemannian manifold (i.e. W2 is the Riemannian dis-
tance) and Ent is C2-function on it, then Ent is (K,N)-convex if and only if

Hess Ent− 1

N
∇Ent⊗∇Ent ≥ K.

(iii)’ EVIK,N (evolution variational inequality): ∀µ ∈ D(Ent), ∃locally absolutely continu-
ous curve µt ∈ P2(X) with µ0 = µ s.t., for ∀ν ∈ P2(X),

d

dt
s2K/N

(
W2(µt, ν)

2

)
+Ks2K/N

(
W2(µt, ν)

2

)
≤ N

2

(
1− exp

(
− 1

N
(Ent(ν)− Ent(µt))

))
.

(iv) Space-time W2-control:
∀µ0, µ1 ∈ P2(X), ∀t, s ≥ 0,

s2K/N

(
W2(P

∗
t µ0, P

∗
s µ1)

2

)
≤ e−K(s+t)s2K/N

(
W2(µ0, µ1)

2

)
+
N

2

1− e−K(s+t)

K(s+ t)

(√
t−
√
s
)2
.

(v) Bakry-Ledoux gradient estimate: ∀f ∈ D(Ch), ∀t > 0,

|∇Ptf |2w +
2tC(t)

N
|∆Ptf |2 ≤ e−2KtPt(|∇f |2w) m-a.e.,

where C(t) > 0 is a function satisfying C(t) = 1 +O(t) as t→ 0.

(vi) Bochner’s inequality (weak form): ∀f ∈ D(∆) with ∆f ∈ D(Ch), ∀g ∈ D(∆) ∩
L∞(X,m) with g ≥ 0 and ∆g ∈ L∞(X,m),

1

2

∫
X

∆g|∇f |2w dm−
∫
X
g〈∇f,∇∆f〉 dm ≥ K

∫
X
g|∇f |2w dm+

1

N

∫
X
g(∆f)2 dm,

where 〈·, ·〉 means

〈∇f,∇g〉 =
1

4

(
|∇(f + g)|2w − |∇(f − g)|2w

)
.

This is bilinear in f and g under Assumption 1. This is a weak form of the following
inequality:

1

2
∆|∇f |2w − 〈∇f,∇∆f〉 ≥ K|∇f |2w +

1

N
(∆f)2.
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