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This talk is based on a joint work with M. Erbar and K.-Th. Sturm (Universität Bonn) [6].
There are several different ways to characterize “(Ricci curvature) ≥ K & dim X ≤ N” on a

Riemannian manifold X, where K ∈ R and N ∈ (0,∞). Among them, the curvature-dimension
condition introduced by Sturm [8], Lott and Villani [7] works well even in the framework of ab-
stract metric measure spaces. It is described in terms of optimal transportation and it possesses
many nice geometric stability properties. On the other hand, Bochner’s inequality introduced
by Bakry and Émery is formulated for an abstract diffusion generator. As Bochner’s formula
has played significant roles in Riemannian geometry, Bochner’s inequality provides enormous
important functional inequalities in geometric analysis. The purpose of this talk is to unify
these two concepts by introducing new conditions equivalent to either (and hence both) of them
on metric measure spaces. When N = ∞, this program was essentially finished by Ambrosio,
Gigli, Savaré and their collaborators [1, 2, 3, 4] and our main focus is in the case N < ∞.

Let (X, d, m) be a Polish geodesic metric measure space, where the measure m is locally finite,
σ-finite and suppm = X. Let us introduce comparison functions: for κ ∈ R and κθ2 ≤ π2,

sκ(θ) :=
sin(

√
κθ)√

κ
, σ(t)

κ (θ) :=
sκ(tθ)
sκ(θ)

.

We call a function V on a metric space (Y, dY ) (K, N)-convex if for each x, y ∈ Y there is a
constant speed geodesic γ : [0, 1] → Y from x to y such that the following holds:

VN (γt) ≥ σ
(1−t)
K/N (dY (x, y))VN (γ0) + σ

(t)
K/N (dY (x, y))VN (γ1), where VN := exp

(
− 1

N
V

)
.

We call V strongly (K,N)-convex if the last inequality holds for each (and at least one) geodesic
γ. This is an integral formulation of the following inequality in the distributional sense:

∂2
t VN (γt) ≤ −K

N
d(x, y)2VN (γt).

If V is C2-function on a Riemannian manifold, then V is (K,N)-convex if and only if

Hess V − 1
N

∇V ⊗∇V ≥ K.

Let P2(X) be the L2-Wasserstein space, consisting of probability measures on X with finite
second moments, equipped with the L2-Wasserstein distance W2 given by

W2(µ, ν) := inf { ‖d‖L2(π) | π: a coupling of µ and ν} .

Note that (P2(X),W2) is also a Polish geodesic metric space. We denote the relative entropy
by Ent: For µ ∈ P(X),

Ent(µ) :=


∫

X
ρ log ρ dm if µ = ρm with (ρ log ρ)+ ∈ L1(X, m),

∞ otherwise.
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We say that (X, d, m) satisfies the (strong) entropic curvature-dimension condition CDe(K, N)
if Ent is (strongly) (K, N)-convex on P2(X) respectively.

Let Ch be Cheeger’s L2-energy functional given by a relaxation of the energy functional
associated with local Lipschitz constants. It can be written as an energy integral in terms of the
weak upper gradient |∇f |w, i.e.

Ch(f) :=
1
2

∫
X
|∇f |2w dm

(see [3]). We say (X, d, m) infinitesimally Hilbertian if Ch coincides with a closed symmetric
bilinear form E : 2Ch(f) = E(f, f). In this case E(f, g) has a density denoted by 〈∇f,∇g〉 and
in particular |∇f |2w = 〈∇f,∇f〉 m-a.e. (see [4]). Let ∆ be the associated generator of E and Tt

a Markov semigroup generated by ∆.

Example
Let (X, d, m) be an N -dimensional complete Riemannian manifold, ∂X = ∅, equipped with

the Riemannian measure m. Suppose Ric ≥ K. Let V be a (K ′, N ′)-convex function on (X, d).
Then (X, d, e−V m) satisfies CDe(K + K ′, N + N ′). In this framework, Ch coincides with the
usual Dirichlet energy and hence (X, d, e−V m) is infinitesimally Hilbertian.

Theorem A
The following are equivalent:

(i) (X, d, m) is infinitesimally Hilbertian and satisfies the reduced curvature-dimension condi-
tion CD∗(K, N) introduced by Bacher and Sturm [5]. That is, for µ0 = ρ0m,µ1 = ρ1m ∈
P(X) with bounded supports, there exists an optimal coupling q of them and a geodesic
µt = ρtm ∈ P2(X) with bounded supports such that for all t ∈ [0, 1] and N ′ ≥ N :∫

X
ρ
−1/N ′

t dµt ≥
∫

X×X

[
σ

(1−t)
K/N ′(d(x0, x1))ρ0(x0)−1/N ′

+ σ
(t)
K/N ′(d(x0, x1))ρ1(x1)−1/N ′]

q(dx0, dx1).

(ii) (X, d, m) is infinitesimally Hilbertian and satisfies CDe(K,N).

(iii) Assumption (a) holds, and for each µ ∈ D(Ent) there is a locally absolutely continuous
curve µt ∈ P2(X) with µ0 = µ satisfying the following: For each σ ∈ P2(X),

d

dt
s2
K/N

(
W2(µt, σ)

2

)
+ Ks2

K/N

(
W2(µt, σ)

2

)
≤ N

2

(
1 − exp

(
− 1

N
(Ent(σ) − Ent(µt))

))
(the (K, N)-evolution variational inequality (EVIK,N )).

In the condition (iii), the solution µt to EVIK,N can be regarded as a gradient curve of Ent (in a
stronger sense). This was heuristically known that µt coincides with the heat distribution. We
can verify it in this framework (see [3]) and this fact connects CDe(K,N) with analysis of the
heat semigroup Tt. This connection was hidden in CD∗(K, N) since there appears no Ent.

Assumption

(a) There exists c > 0 such that
∫

X
exp

(
−cd(x, x0)2

)
dm < ∞ for some x0 ∈ X.

(b) Every f ∈ D(Ch) with |∇f |w ≤ 1 m-a.e. has a 1-Lipschitz representative.
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Note that CDe(K, N) implies (a). In addition, the condition (ii) implies (b).

Theorem B
If one of (i)–(iii) holds, then ((X, d, m) is infinitesimally Hilbertian and) the following holds:

(iv) [Space-time W2-control ] For µ0, µ1 ∈ P2(X) and t, s ≥ 0,

s2
K/N

(
W2(Ttµ0, Tsµ1)

2

)
≤ e−K(s+t)s2

K/N

(
W2(µ0, µ1)

2

)
+

N

2
1 − e−K(s+t)

K(s + t)

(√
t −

√
s
)2

.

(v) [Bakry-Ledoux gradient estimate] For f ∈ D(Ch) and t > 0,

|∇Ttf |2w +
2tC(t)

N
|∆Ttf |2 ≤ e−2KtTt(|∇f |2w) m-a.e.,

where C(t) > 0 is a function satisfying C(t) = 1 + O(t) as t → 0.

(vi) [(a weak form of) Bochner’s inequality ] For f ∈ D(∆) with ∆f ∈ D(Ch) and all g ∈
D(∆) ∩ L∞(X, m) with g ≥ 0 and ∆g ∈ L∞(X,m),

1
2

∫
X

∆g|∇f |2w dm −
∫

X
g〈∇f,∇∆f〉 dm ≥ K

∫
X

g|∇f |2w dm +
1
N

∫
X

g(∆f)2 dm.

Conversely, if Assumptions (a) and (b) holds and (X, d, m) is infinitesimally Hilbertian, then
one of (iv)–(vi) implies (i)–(iii) and hence (i)–(vi) are all equivalent.

Applications and related results will be mentioned in the talk.
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