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1. Introduction



T (M,g): compl. Riem. mfd, dim M = n > 2
(Riem. met. g may depend on time), OM = ()

T X*(t): Brownian motion on M, X*(0) = x
(diffusion process generated by A)
Ass X *(-) has infinite lifetime

Interest: Relation between

e (Lower bound of) Ricci curvature

e Behavior of (a coupling of) Brownian motions



(Xo(t), X1(t)): a coupling of X*0(t) & X*1(t)

& (Xi(1)em0 2 (X (£))eso0 (i = 0,1)

Example

w BM is invariant under an isometry © : M — M
= (X*(t), ¢(X*(t))): coupling of BMs
starting from (x, p(x))



Optimal transportation cost

c : M xXx M — IR: cost function

(c(x, y): cost of bringing a unit mass from x to y)
For p,v € P(M),

w(E X M) = p(E),
(M X E) = v(FE)

TR E e ;

(set of all couplings between 1 and v),

2olpsar) = _Inf (x, y)m(dxd
)= int | (@ y)m(dady)



Why transportation costs instead of coupling?

* i(t) :=Po X*i(t)~1: distribution of X *i(t)
(Xo(t), X1(t)): coupling of X*0(t) & X*1(t)
U
Te(po(t), pa(t)) < E[e(Xo(t), X1(2))]




Why transportation costs instead of coupling?

* i(t) :=Po X*i(t)~1: distribution of X *i(t)
(Xo(t), X1(t)): coupling of X*0(t) & X*1(t)
U
T.(po(t), pa(t)) < Ele(Xo(t), X1(2))]

e Reflects the geometry of M well
(when c is a (fn. of) distance)

e Stable under perturbation

¢ Nice properties (e.g. an alternative variational
expression (Kantorovich duality))



Relation with Ric

P; := e'®: the heat semigroup
Thm 1.1 [von Renesse & Sturm '05, etc.]
For K € R, the following are equivalent:

(1) Ric >
(i) 3/Vp € [1, o0,

Tiertayr (P o, Ppr) ™\
i) 3/Vq € [1, oc],

VP, f|(z)? < e 1" P (|V f]?)(x)




Related results

e Formulation of (i) via optimal transportation
[Sturm 06, Lott & Villani '09]
=> extension to metric measure spaces

e (ii) < (iii) for p,q € [1, oco] with ! | L —3 |

P q
K. '10]

e “(i)" = (ii) with p = 2 on singular sp.’s
([Savaré '07], [Ohta '09]) & [Gigli, K. & Ohtal],
|[Ambrosio, Gigli & Savaré]



Contents of the talk

e (i) = (ii) via coupling by parallel transport
e Ricci flow, Perel'man’s L-distance
e Coupling by reflection

e Curvature-dimension condition



2. Coupling by parallel transport



Example (M = R")

XO(O) . X1 (())



Example (M = R"™)

Xo(t)

Xo(0)



Example (M = R"™)
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Example (M = R"™)
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Example (M = R"™)

Xo(t)

Xo(0)

X1(0)

= d(Xo(t), X1(t)) = d(Xo0(0), X1(0))
= Tar (P} po, Pl p1) ™\



ldea

e Couple two BMs to keep their distance as much
as possible
e Construct the coupling by integrating a coupled
Infinitesimal motions
—=> coupling of Infin. motions by parallel transport
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ldea

e Couple two BMs to keep their distance as much
as possible
e Construct the coupling by integrating a coupled
Infinitesimal motions
—=> coupling of Infin. motions by parallel transport

M ~ 1 X 1 ( \: //~dXo(t)




Heuristics:

p(t) := d(Xo(t), X1(t))
= By the It6 formula, under Ric > K,

dp(t) < Kp(t)dt

e Coupling by parallel transport
= Vd - d(Xo(t), X1(t)) =0
e Comparison theorem for 2nd variation
= (V2d) - d(Xo(t), X1(t))®* < Kp(t)

= E[ePRtp(t)P] \. = Conclusion [



Time-dependent metric g(t)

P; = Py_,¢: transition semigroup of a g(t)-BM
(diffusion process generated by A, 4))

Thm 2.1

1
Suppose Ricg () > gat!](t) K (%)
= forany o : R, — R, 7,

Tcp(ethg(t)) (Pt*“()a Pt*ul) \t
(e.9. p(u) = uP)

* K =0 & “="in (x) & backward Ricci flow



Difficulty: singularity at cutlocus



Difficulty: singularity at cutlocus

History

Time-homogeneous case
e |[F.-Y.Wang '97]
e [von Renesse '04, K. '10] Approximation by RWs

Time-inhomogeneous case

e [McCann & Topping '10] via optimal transport

e [Arnaudon, Coulibaly & Thalmaier ' 09}
Coupling of particles constituting a string

e |K.| Approximation by RWs



3. Coupling by spacetime parallel transport
and Perel'man’s L-distance
(Metric g depends on t € [0,T'])



Perel'man’s £-distance:
For ~ : [10, 7] — M (curve in spacetime),

oTl
. TO
L(7o,z03T1,®1) := inf  L(v)
Y(7Ti)=m;
i=0,1

(Normalization): Given 0 < 7o < 7 < T,

O (xo, 1) :=
2(\/ 7_'1t — 7_'()t)L(7_'()t, L0Os 7_'1t, .’,131)
— 2n(VALE — Vol



Thm 3.1 [K. & Philipowski '11]

d:g(t) = 2 Ricgy(),
Suppose - Ricg ) (V, V)

VETM tY(V.V =
tEE[O,T] g(t)(V,V)
= d(Xo(7), X1(7)): coupling of g(7)-BMs
s.t. (O (X r1t)))ten, T/l

IS a



Cor 3.2 [K. & Philipowski '11]

V: & YV ;i (t): heat distributions,
T, (e,) (ro(Tot), p1(T1t)) \

e [Topping '09]: Ze, (tto(Tot), p1(T1t)) \
when M: cpt, via optimal transport techniques

(= Monotonicity of Perel’'man’s YVW-entropy)



Strategy of the Proof

e Properties of L-distance
being analogous to the Riem. distance

o L-geodesic, 1st & 2nd variation of
L-distance, L£-index lemma, L-cut locus

e Approximation by RWs (X (t), X7 (%))

. Coupllng of dX"-“(q-O )(t) and dXe(Tl )(t)
by spacetime-parallel transport along £



Why does the martingale part survive?

e For L£-geodesic v, v/u~,, is NOT spacetime
parallel to ~

e “speed’ of Xo(Tot) and X1 (71t) is different



Why does the martingale part survive?

Spacetime parallel transport

For ~v : [s,t] — M & V' vector field along ~,
V': spacetime parallel

1
(g:e; Vg((z))V(u) = —§B,l,,g(’l1,)ﬁV(u)

e For L£-geodesic v, v/u~,, is NOT spacetime
parallel to ~

e “speed’ of Xo(Tot) and X1 (71t) is different



4. Coupling by reflection



Example (M = R")

parallel transport reflection

Xo(0) Xo(0)’

X1(O). Xl(O).



Example (M = R")
parallel transport reflection
Xo(t)

Xo0(0)

X1(0) X1(0)



Example (M = R")

parallel transport reflection
Xo(t)
Xo(t)
X1 (t)
Xo(0) (/—\\\\_/E::> Xo0(0)

X1(0) )(1(0).
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Xo(t)
X1 (t)
Xo(0) (/—\\\\_/E::> Xo0(0)

X1(0) )(1(0).



Example (M = R")
parallel transport
Xo(t)

Xo0(0)

X1(0)

reflection

Xo(t)



Example (M = R")

parallel transport reflection
Xo(1)
X1(1)
Xo(7) = X1(7)
X (O) Xo (O)
X1(t)
X1 (O) Xl(O)

(7: first time to meet)



Example (M = R")

parallel transport reflection
Xo(t)
X1(1)
X()(T) — X]_(T)
Xo(0) Xo(0)
X1(t)
X1(0) X1(0)

= Est. of /7 > £| (7: first time to meet)
—> Est. of total variations between distributions



On M: compl. Riem. mfd:



On M: compl. Riem. mfd:




On M: compl. Riem. mfd:

M //’Y(IX”
/

dXo(t X1 (t)
T

TXo(t)M TXl(t)M



On M: compl. Riem. mfd:

M —
//'y dXo (f)
/1\ RN

(.[X(j)(t) Xo(t) 45(1 (t)
el T M
TXo(t)M wro




On M: compl. Riem. mfd:

e e

TXl(t)M



On M: compl. Riem. mfd:




History

|Kendall '86, Cranston '91, F.-Y.Wang '97, '05,
von Renesse '04, K. '10, K. .. .]



History

|Kendall '86, Cranston '91, F.-Y.Wang '97, '05,
von Renesse '04, K. '10, K. .. .]

Q.

Can we formulate properties of coupling by reflection
In terms of transportation costs?



Framework
t Z: Cl-vector field

T X®(t): diffusion process generated by A + Z
(X (t): BM & Z = 0)

Bakry-Emery Ricci tensor
For NV € [n, oo],

Ric*" := Ric—(VZ)"™" - ——Z® Z

— T

Ass
|RicZ’N > K forsome K e R& N € [n, o] I




Remarks

e When Z = 0,
Ass < Ric > K & n < N

e [he Riem. metric g and Z CAN depend on t¢:

1
. Z(t),00
Rlcg(t) & Eatg(t) + K

e K >0& N < oo = max. diam. thm. [K.]



Thm 4.1 [K. & Sturm]
(X1(t), X2(t)): a coupling by refl. of two BMs.
= For pr = ;"% : [0, 00) — [0, 1]

given below,
E (d(X1(s), X2(s)))] \
ins € [0, 1]
Cor 4.2 [ibid.]

Fort > 0, p1,ue € P(M),
T, (a)(Prp1,Pruz) ™\ ins € [0,{]



Definition of ¢, " (a) (for N € N)

K,N ~ ~
2 TV

. 15t: heat semigr. on the spaceform M g
(M ~: sphere, Eucl. sp. or hyp. sp.)

e d(x,y) = a



Definition of ¢, " (a) (for N € N)

1 o~ o~
K,N L ” "
Pt ((1/) . — 5 Pt 5;}‘; — Pt 517 _—

e P, heat semigr. on the spaceform Mg
(M : sphere, Eucl. sp. or hyp. sp.)
e d(x,y) = a
O =————— 0

K,N T
% ;  (a) can be described in terms of a sol. to
SDE which d(Xo(t), X1(t)) on M n solves

=> Definition for N ¢ N



Properties of ¢

e v, ', concave, p¢(0) = 0 (= ¢¢(d): dist.)
o p.(a) \,
SIS = ]—(O,oo)
1
(= Tgoo(d)(PJOa p1) = EHNU — p1||lTv )
N < N X' N

K,N
. — @, (a) S @ a
R > K" (@) ; (@)



Sketch of the proof (when NV € N)
(Xo(t), X1(t)): coupling by refl. on Mg N

o If d(Xo(0),X1(0)) = d(Xo(0), X1(0)),
then
“d(Xo(t), X1(t)) < d(Xo(t), X1(t))”

(under a suitable realization)

o E[p;_s(d(Xo(s), X1(s)))]: const.ins O



Applications 1: Comparison thm for total variations

Too () (P80 Pydy) < Tpo(a) (62, 6y)
|

Cor 4.3 [ibid.]

Hpt*éw o Pt*(s’yHTV < ZSOt(d(way))

When N € N,
(RHS) = || Pz — P o

LN

with dmg & (Z,y) = d(x, y)



Applications 2: New monotonicity (when K < 0)

Htlim o (a) =: KN (a) (> 0iff a > 0)

U

Cor 4.4 [ibid.]
7. (d)(Pt*“Oapt*ul) \int Z 0

Recall:
Ric > K = T pktgp (Pt*uo, Pt*ul) "



x(r) := p([—r,7r]), p ~ N(0,1)

. q)K,oo(”) — ¥ ((l\/_K>
2
o PN (a)
— / (\/jSIIlh (”\/N_l))v(du),
, N —1
where v: Gamma distr. of param. "

i
l.e. v(dz) =T (N; 1) N 3/267% g



Further results

e 3 an integral expression of ¢¢(a)
(= concavity of )

e There's an explicit expression of ¢ (a)
(but it's complicated when N < oo & K # 0)

e [he conclusion of Cor 4.2 is stable under
Gromov-Hausdorff convergence with a uniform
curvature-dimension bound



5. Curvature-dimension conditions
(Metric g is time-independent)



Interest: Characterization of
Ric > K & dim M < N
In terms of transportation cost
(For Ric > K only, given in Thm 1.1 (ii))
O ———0
(1) 3 Analytic characterization [Bakry & Emery '84]

(2) 3 Characterization by the heat semigroup
[F.-Y. Wang '11]}

(3) 3 Characterization via optimal transportation
[Sturm '06, Lott & Villani '09]



L:= A+ Z, P, := et~
Thm 5.1 (|Bakry & Emery '84, F.-Y. Wang '11})

For N € [n,o0] & K € R, TFAE:

(0) Ric®" > K

(1) SL(VFI) — (V£ VLS)

> K|V |2+ —(£f)

(2) [VP.fI* < e " P (|Vf]7)

| 1 . e—2Kt

2
| —(LP:f)




Thm 5.2 [K]]
Let p € [2,00). Thm 5.1 (0) yields the following:

(4) Tar (Ps po, P; p1 )2/p

— 2Kt —2K s
= s 2/p

& T
S k(s =) larlpop)

_I_ — 9 = —2K s
| ( 2p )(s—t)log(1_2_2Kt>

% By letting s — t, (4) yields Thm 1.1 (ii)



Thm 5.3 [K] 1

1
For g € (1, 2] with — 4+ — =1,
p q
Thm 5.2 (4) is equivalent to the following:

(2) |VPf|? < e *M'P(|Vf|?)*/1

1 — e—ZKt

| ( —|—p—2)K(£Pt‘f)2

In particular, (4) is equivalent to (0) when p = 2

% When N = oo, Thm 5.3 is known [K. "10}



Rough sketch of the proof

e Thmb5.3 ... extension of the argument
when N = oo

e Thmb.2 ... coupling method for BMs
with different speed
& analysis of transportation costs



Application (p = 2)

(4) Td2 (PS*lJ'O’ Pt*Ml)

_ 2Kt 2K
e — e S

=
Sl 2K(S _t) Td2(l“l’09 ,“1’1)

Ho — K1 — M,

¥ o
dividing by (s — t)? & s — t



7:12 (PS*Ua Pt*ﬂ)

Since > F'(P,
(s — 1) (Pepe)
(Fisher information),
|V pe|? NK
/ Vol vol, < ,
M o e2Kt _ 1
d P
where =y
d vol,

% (RHS) = Fisher info. of Ornstein-Uhlenbeck
process on R



Questions

e (Direct) relation with Sturm-Lott-Villani's
curvature-dimension condition

e Relation between Inequalities with different p

e Further applications
(Laplacian comparison? Sobolev inequalities?)

e Different formulations?



