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Let (X,d) be a metric space. Let p € (1,00). For f € Cy(X), we define Q:f € Cy(X) by
p
Qufta) = it |+ & (152)].
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We call it Hopf-Lax semigroup (also called Hamilton-Jacobi semigroup). When (X, d) is an Eu-
clidean space, Q:f is nothing but the Hopf-Lax formula, which gives a solution to the Hamilton-
Jacobi equation

Quf (x) = —;|VQtf|($)q

in an appropriate sense, where ¢ is the Holder conjugate of p. This property is still valid even
on more abstract metric spaces. It has been revealed that the notion of Hopf-Lax semigroup
is strongly related with many functional inequalities including logarithmic Sobolev inequalities
and transport-entropy inequalities. The purpose of this talk is to explain recent developments
in this direction in connection with the heat semigroup.

For probability measures po, p1 € P(X), we denote the LP-Wasserstein distance between i
and g1 by Wy(po, p1). That is,

Wy (o, 1) == inf { [|d]| 1o(z) | 7 € P(X x X): coupling of puo and 41},

where we call 7w a coupling of g and p; when the marginal distribution of 7 is ug and
respectively. The dual representation of W), is called the Kantorovich duality. By using Q:f, it
can be stated as follows:

Wy(po, p1) = sup UXQJdm—/deuo}
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The Hopf-Lax semigroup appears here and this fact connects the study of Hopf-Lax formula
with the theory of optimal transportation.

The first application of Hopf-Lax formula in this talk is a relation between a Lipschitz
estimate of Wasserstein distance and a Bakry—Emery type gradient estimate for Markov kernels
which in particular we can apply to the (Feller) heat semigroup. For f: X — R, we define the
local Lipschitz constant |Vgf|(x) with respect to d by

: [(x
Vaf|(z) hryﬂj;lp i)
Theorem 1 (cf. [4])

Let (X, d) be a Polish length space and d be another length metric on X. We denote the
LP-Wasserstein distance defined by using d instead of d by W,,. Let P(z,-) € P(X) be a Markov
kernel on X which depends continuously in x € X. Then, for p,q € [1,00] with p~! + ¢! =1,
the following are equivalent:

(i) For po, 1 € P(X), Wy(P*pio, P*p1) < Wy(po, pa)-

(i) For f € Cy"(X), |V Pfl() < P(IVaf|?)(@)"/® (When ¢ = oo, [[V;Pflllec < [[[Vafllloo)-



The second application is on the estimate of the speed of heat distributions with respect to
Wy, For simplicity, we state it when X is a Riemannian manifold.

Theorem 2

Let X is a complete and stochastically complete Riemannian manifold and P; the heat

semigroup on X. Take f: X — [0,00) with || f||z1 = 1 and set y; := P;fvol. Then

2 Wa(pieys, p1)* [ VPSP

||y, = hrzllsoup — 2 ). Bf dvol.
This estimate is first studied in [3] on Alexandrov spaces in the context of identification problem
of heat flows. On Riemannian manifolds, there are two different ways to formulate a “heat flow”.
The one is a gradient flow of the Dirichlet energy in L2-space of functions and the other is a
gradient flow of the relative entropy on P(X) endowed with a metric structure by Ws. Thus
Theorem 2 is an estimate related with the second formulation in the sense that it is a bound
of the speed of curves in P(X) with respect to Wa while the object p; is given by the first
formulation. It plays a fundamental role for identifying those two formulation on non-smooth
metric measure spaces as Alexandrov spaces (see [1, 3]). As a result of the identification, we can
obtain the Bakry—Emery gradient estimate for the heat semigroup under a generalized notion of
lower Ricci curvature bound (see [2, 3]).

The third application is a sort of extension of Theorem 1. Inequalities of the form (i) or
(ii) are first introduced in connection with the notion of lower Ricci curvature bound. Recently,
F.-Y. Wang introduced an extension of the Bakry—Emery gradient estimate involving an upper
bound of dim X (property (v) below; see [5]). We obtain the condition corresponding to (i):

Theorem 3
Let X be a complete and stochastically complete Riemannian manifold with dim X > 2.
Then, for N € [2,00] and K € R, the following are equivalent:

(iii) dim X < N and Ric > K.
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W2(/J’Oa,ul)2+(tl_t0)/ Wdu for tl > tO >0
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(iv) Wa(Pypo, Prypi1)? <

and po, 1 € P(X).
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(AP.f)? for t > 0 and f € C;'(X).
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