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Let (X, d) be a metric space. Let p ∈ (1,∞). For f ∈ Cb(X), we define Qtf ∈ Cb(X) by

Qtf(x) := inf
y∈X

[
f(y) +

t

p

(
d(x, y)

t

)p]
.

We call it Hopf-Lax semigroup (also called Hamilton-Jacobi semigroup). When (X, d) is an Eu-
clidean space, Qtf is nothing but the Hopf-Lax formula, which gives a solution to the Hamilton-
Jacobi equation

∂tQtf(x) = −1
q
|∇Qtf |(x)q

in an appropriate sense, where q is the Hölder conjugate of p. This property is still valid even
on more abstract metric spaces. It has been revealed that the notion of Hopf-Lax semigroup
is strongly related with many functional inequalities including logarithmic Sobolev inequalities
and transport-entropy inequalities. The purpose of this talk is to explain recent developments
in this direction in connection with the heat semigroup.

For probability measures µ0, µ1 ∈ P(X), we denote the Lp-Wasserstein distance between µ0

and µ1 by Wp(µ0, µ1). That is,

Wp(µ0, µ1) := inf
{
‖d‖Lp(π)

∣∣ π ∈ P(X × X): coupling of µ0 and µ1

}
,

where we call π a coupling of µ0 and µ1 when the marginal distribution of π is µ0 and µ1

respectively. The dual representation of Wp is called the Kantorovich duality. By using Qtf , it
can be stated as follows:

Wp(µ0, µ1) = sup
f∈Cb(X)

[∫
X

Q1f dµ1 −
∫

X
f dµ0

]
.

The Hopf-Lax semigroup appears here and this fact connects the study of Hopf-Lax formula
with the theory of optimal transportation.

The first application of Hopf-Lax formula in this talk is a relation between a Lipschitz
estimate of Wasserstein distance and a Bakry-Émery type gradient estimate for Markov kernels
which in particular we can apply to the (Feller) heat semigroup. For f : X → R, we define the
local Lipschitz constant |∇df |(x) with respect to d by

|∇df |(x) = lim sup
y→x

|f(x) − f(y)|
d(x, y)

.

Theorem 1 (cf. [4])
Let (X, d) be a Polish length space and d̃ be another length metric on X. We denote the

Lp-Wasserstein distance defined by using d̃ instead of d by W̃p. Let P (x, ·) ∈ P(X) be a Markov
kernel on X which depends continuously in x ∈ X. Then, for p, q ∈ [1,∞] with p−1 + q−1 = 1,
the following are equivalent:

(i) For µ0, µ1 ∈ P(X), Wp(P ∗µ0, P
∗µ1) ≤ W̃p(µ0, µ1).

(ii) For f ∈ CLip
b (X), |∇d̃Pf |(x) ≤ P (|∇df |q)(x)1/q (When q = ∞, ‖|∇d̃Pf |‖∞ ≤ ‖|∇df |‖∞).



The second application is on the estimate of the speed of heat distributions with respect to
W2. For simplicity, we state it when X is a Riemannian manifold.

Theorem 2
Let X is a complete and stochastically complete Riemannian manifold and Pt the heat

semigroup on X. Take f : X → [0,∞) with ‖f‖L1 = 1 and set µt := Ptfvol. Then

|µ̇t|2W2
:= lim sup

s↓0

W2(µt+s, µt)2

s2
=

∫
X

|∇Ptf |2

Ptf
dvol.

This estimate is first studied in [3] on Alexandrov spaces in the context of identification problem
of heat flows. On Riemannian manifolds, there are two different ways to formulate a “heat flow”.
The one is a gradient flow of the Dirichlet energy in L2-space of functions and the other is a
gradient flow of the relative entropy on P(X) endowed with a metric structure by W2. Thus
Theorem 2 is an estimate related with the second formulation in the sense that it is a bound
of the speed of curves in P(X) with respect to W2 while the object µt is given by the first
formulation. It plays a fundamental role for identifying those two formulation on non-smooth
metric measure spaces as Alexandrov spaces (see [1, 3]). As a result of the identification, we can
obtain the Bakry-Émery gradient estimate for the heat semigroup under a generalized notion of
lower Ricci curvature bound (see [2, 3]).

The third application is a sort of extension of Theorem 1. Inequalities of the form (i) or
(ii) are first introduced in connection with the notion of lower Ricci curvature bound. Recently,
F.-Y. Wang introduced an extension of the Bakry-Émery gradient estimate involving an upper
bound of dimX (property (v) below; see [5]). We obtain the condition corresponding to (i):

Theorem 3
Let X be a complete and stochastically complete Riemannian manifold with dimX ≥ 2.

Then, for N ∈ [2,∞] and K ∈ R, the following are equivalent:

(iii) dimX ≤ N and Ric ≥ K.

(iv) W2(Pt0µ0, Pt1µ1)2 ≤ e−2Kt1 − e−2Kt0

2K(t0 − t1)
W2(µ0, µ1)2+(t1−t0)

∫ t1

t0

NK

e2Ku − 1
du for t1 > t0 > 0

and µ0, µ1 ∈ P(X).

(v) |∇Ptf |(x)2 ≤ e−2KtPt(|∇f |2) − 1 − e−2Kt

NK
(∆Ptf)2 for t > 0 and f ∈ CLip

b (X).

References
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