Optimal transport and coupled diffusion by reflection

Kazumasa Kuwada

(Ochanomizu University)

[joint work with K.-Th. Sturm (Bonn)]

1. Introduction

M: complete Riemannian manifold, $\dim M \geq 2$ $(X(t), \mathbb{P}_x)$: Brownian motion on M

 P_t : heat semigroup

$$\mathrm{Ric} \geq K$$
 \Downarrow

Good control of

- Coupling by parallel transport
- Coupling by reflection

of two BMs $(X(t), \mathbb{P}_{x_1})$ and $(X(t), \mathbb{P}_{x_2})$

Coupling by parallel transport

Coupling by reflection

Coupling by parallel transport

 \Rightarrow Contraction of L^p -Wasserstein distances: $\mathrm{e}^{tK}W_p(P_t\mu_1,P_t\mu_2) \searrow \mathrm{in}\ t.$

Coupling by reflection

- Coupling by parallel transport
 - \Rightarrow Contraction of L^p -Wasserstein distances: $e^{tK}W_p(P_t\mu_1, P_t\mu_2) \searrow \text{in } t.$
 - \Rightarrow Bakry-Émery type gradient estimates: $|\nabla P_t f|^q \leq \mathrm{e}^{-tqK} P_t(|\nabla f|^q)$
- Coupling by reflection

- Coupling by parallel transport
 - \Rightarrow Contraction of L^p -Wasserstein distances: $e^{tK}W_p(P_t\mu_1, P_t\mu_2) \searrow \text{in } t.$
 - \Rightarrow Bakry-Émery type gradient estimates: $|\nabla P_t f|^q \leq \mathrm{e}^{-tqK} P_t(|\nabla f|^q)$
- Coupling by reflection
 - \Rightarrow Estimate of $\mathbb{P}[(\text{coupling time}) > t]$

- Coupling by parallel transport
 - \Rightarrow Contraction of L^p -Wasserstein distances: $\mathrm{e}^{tK}W_p(P_t\mu_1,P_t\mu_2) \searrow \mathrm{in}\ t.$
 - \Rightarrow Bakry-Émery type gradient estimates: $|\nabla P_t f|^q \leq \mathrm{e}^{-tqK} P_t(|\nabla f|^q)$
- Coupling by reflection
 - \Rightarrow Estimate of $\mathbb{P}[(\text{coupling time}) > t]$

$$\Rightarrow \|\nabla P_t f\|_{\infty} \leq C_{N,K}(t) \operatorname{osc}(f)$$

- Coupling by parallel transport
 - \Rightarrow Contraction of L^p -Wasserstein distances: $e^{tK}W_p(P_t\mu_1, P_t\mu_2) \searrow \text{in } t.$
 - \Rightarrow Bakry-Émery type gradient estimates: $|\nabla P_t f|^q \leq \mathrm{e}^{-tqK} P_t(|\nabla f|^q)$
- Coupling by reflection
 - \Rightarrow Estimate of $\mathbb{P}[(\text{coupling time}) > t]$
 - ⇒ (monotonicity of a transportation cost)
 - $\Rightarrow \|\nabla P_t f\|_{\infty} \leq C_{N,K}(t) \operatorname{osc}(f)$

Motivation: Stochastic analysis on singular spaces

Construction of coupling by reflection

 \Leftarrow differentiable structure on M

(How do we formulate it on singular sp.'s?)

- "Monotonicity of transportation cost" is robust
 - ⇒ Stable under Gromov-Hausdorff conv.

2. Main results

Assumption -

$$\dim M \leq N$$
 and $\mathrm{Ric} \geq K$ $(N \in [2,\infty] \text{ and } K \in \mathbb{R})$

$$ullet \; ar{R} := \sqrt{rac{N-1}{Kee 0}} \pi$$

 $\star \operatorname{diam}(M) \leq \bar{R}$ [Bonnet-Myers thm]

Theorem 1 [K. & Sturm] –

$$|(X_1(t),X_2(t)):$$
 a coupling by refl. of two BMs. $\Rightarrow \exists arphi = arphi^{N,K}: [0,\infty) imes \overline{[0,ar{R})} o [0,1]$

s.t. for t > 0.

$$\mathbb{E}[\varphi_{t-s}(d(X_1(s),X_2(s)))] \searrow$$

in $s \in [0,t]$

Optimal transportation cost

For
$$c: M imes M o \mathbb{R}$$
, $\mu_1, \mu_2 \in \mathcal{P}(M)$,

$$\mathcal{T}_c(\mu_1,\mu_2) := \inf_{\pi \in \Pi(\mu_1,\mu_2)} \int_{M imes M} c \, d\pi$$

$$(\Pi(\mu_1,\mu_2)\subset \mathcal{P}(M^2)$$
: couplings of μ_1 & μ_2)

<u>Theorem 2</u> [K. & S.] —

$$\left| \begin{array}{l} \text{For } t>0, \, \mu_1, \mu_2 \in \mathcal{P}(M), \\ \\ \mathcal{T}_{\varphi_{t-s}(d)}(P_s^*\mu_1, P_s^*\mu_2) \searrow \text{in } s \in [0,t] \end{array} \right|$$

Definition of $\varphi_t^{K,N}(a)$ (for $N \in \mathbb{N}$)

$$arphi_t^{K,N}(oldsymbol{a}) := rac{1}{2} \left\| ilde{oldsymbol{P}_t^*} \delta_{ ilde{oldsymbol{x}}} - ilde{oldsymbol{P}_t^*} \delta_{ ilde{oldsymbol{y}}}
ight\|_{ ext{TV}}$$

- P_t^* : heat semigr. on the spaceform $M_{N,K}$ ($M_{N,K}$: sphere, Euclidean sp. or hyperbolic sp.)
- $ullet d(ilde{x}, ilde{y})=a$

Definition of $\varphi_t^{K,N}(a)$ (for $N\in\mathbb{N}$)

$$arphi_t^{K,N}(oldsymbol{a}) := rac{1}{2} \left\| ilde{oldsymbol{P_t^*}} \delta_{ ilde{oldsymbol{x}}} - ilde{oldsymbol{P_t^*}} \delta_{ ilde{oldsymbol{y}}}
ight\|_{\mathrm{TV}}$$

- \tilde{P}_t^* : heat semigr. on the spaceform $\mathbb{M}_{N,K}$ ($\mathbb{M}_{N,K}$: sphere, Euclidean sp. or hyperbolic sp.)
- $ullet \ d(ilde{x}, ilde{y})=a$
- \star We can define $arphi_t$ even when $N
 otin \mathbb{N}$
- \star More explicit expression is possible but complicated when $N<\infty$ or K
 eq 0

Properties of φ_t

ullet $arphi_t$ \nearrow , concave, $arphi_t(0)=0$

 $\bullet \varphi.(a) \searrow$

Properties of φ_t

- ullet $arphi_t$ \nearrow , concave, $arphi_t(0)=0$
- $\bullet \varphi.(a) \searrow$
- $\varphi_0 = 1_{(0,\infty)}$ $(\Rightarrow \mathcal{T}_{\varphi_0(d)}(\mu_1, \mu_2) = \frac{1}{2} \|\mu_1 \mu_2\|_{\text{TV}})$

Properties of φ_t

- ullet $arphi_t$ \nearrow , concave, $arphi_t(0)=0$
- $\bullet \ \varphi.(a) \searrow$
- $\varphi_0 = 1_{(0,\infty)}$ ($\Rightarrow \mathcal{T}_{\varphi_0(d)}(\mu_1, \mu_2) = \frac{1}{2} \|\mu_1 - \mu_2\|_{\text{TV}}$)
- $N < N' \Rightarrow \varphi_t^{K,N}(a) \le \varphi_t^{K,N'}(a)$
- $\bullet \ \partial^+ \varphi_t(0) \leq \frac{1}{2\sqrt{2\pi}} \left(\frac{\mathrm{e}^{Kt} 1}{K} \right)^{-1/2}$

3. Applications

Theorem 2

$$\mathcal{T}_{\varphi_0(d)}(P_t^*\delta_x, P_t^*\delta_y) \leq \mathcal{T}_{\varphi_t(d)}(\delta_x, \delta_y)$$

Theorem 2

$$\bigvee$$

$$\mathcal{T}_{arphi_0(d)}(P_t^*\delta_x, P_t^*\delta_y) \leq \mathcal{T}_{arphi_t(d)}(\delta_x, \delta_y)$$
 \Downarrow

Corollary 1 (Comparison thm for total variations) –

$$egin{aligned} \left\| P_t^* \delta_x - P_t^* \delta_y
ight\|_{\mathrm{TV}} \ & \leq \left\| ilde{P}_t^* \delta_{ ilde{x}} - ilde{P}_t^* \delta_{ ilde{y}}
ight\|_{\mathrm{TV}} \end{aligned}$$

Corollary 2 (Gradient estimate) —

For any bounded measurable f on M,

$$\|\nabla P_t f\|_{\infty} \leq \partial^+ \varphi_t(0) \operatorname{osc}(f)$$

Remark

Corollary 2 directly follows from

$$\mathcal{T}_{\varphi_0(d)}(P_t\delta_x, P_t\delta_y) \leq \mathcal{T}_{\varphi_t(d)}(\delta_x, \delta_y)$$

Remark

These results hold in more general framework:

(i) Diffsions associated with $\Delta/2+Z$,

$$\mathrm{Ric}^{Z,N} \geq K$$

 $(Ric^{Z,N}: Bakry-Émery Ricci tensor)$

- $\star Z$ can be of non-gradient type
- (ii) Riemannian metric g depends on time,

$$\mathrm{Ric}_{g(t)}^{Z,\infty} \geq \partial_t g(t) + K$$

(a generalization of super Ricci flow)

Stability under GH-convergence

 (M_m,g_m) : n-dim. cpt. Riem. mfds, $\mathrm{Ric}_{g_m} \geq K$

Suppose

$$(M_m,d_m,\operatorname{vol}_{g_m})\stackrel{\mathsf{mGH}}{
ightarrow} (M_\infty,d_\infty,v_\infty)$$

For $\mu^{(m)} \in \mathcal{P}(M_m)$ with $\mu^{(m)} \to \mu^{(\infty)} \in \mathcal{P}(M_\infty)$, $P_t \mu^{(m)} \to \text{a "heat distribution" } \mu_t^\infty \text{ on } M_\infty$ [Gigli '10, Ambrosio, Gigli & Savaré '11]

Theorem 3 [K. & S.] -

$$(M_\infty,d_\infty,v_\infty)$$
: as above, $N\geq n$ $\mu_1(t),\mu_2(t)$: heat distributions on M_∞ \Rightarrow For $t>0$, $\mathcal{T}_{arphi_{t-s}^{K,N}(d)}(\mu_1(s),\mu_2(s))\searrow$ in $s\in[0,t]$