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1. Introduction



M complete Riemannian manifold, dim M > 2
(X (t),P,): Brownian motion on M
P;: heat semigroup

Ric > K
J

Good control of
e Coupling by parallel transport
e Coupling by reflection
of two BMs (X (t),P,,) and (X (t),P..)
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e Coupling by parallel transport

=> (Contraction of LP-Wasserstein distances:
KWy, (Pipa, Pipta) N\ in t.
— Bakry-Emery type gradient estimates:

VP f|? < e "% P(|V f]9)
e Coupling by reflection
=> Estimate of IP[(coupling time) > ¢]
= (monotonicity of a transportation cost)

= ||[VPf||leo < Cn,k(t) osc(f)



Motivation: Stochastic analysis on singular spaces

e Construction of coupling by reflection
< differentiable structure on M
(How do we formulate it on singular sp.’s?)

e “Monotonicity of transportation cost” is robust
=> Stable under Gromov-Hausdorff conv.



2. Main results



Assumption

dim M < N and Ric > K
(N € [2,00] and K € R)

_ N —1
o R := ]
K VO
x diam(M) < R [Bonnet-Myers thm]




Theorem 1 [K. & Sturm]
(X1(t), X2(t)): a coupling by refl. of two BMs.

= Jp =" [0, 00) X [OaR) — [0, 1]
s.t. fort > 0,

Elp:_:(d(X1(s), X2(5)))]
In s - [Ovt]




Optimal transportation cost
Forc: M X M — R, p,us € P(M),

7. = inf d
(1, p12) WEHI(I:‘19M2)/MXMC "

(IT(p1, pp2) C P(M?): couplings of p1 & pi2)

Theorem 2 [K. & S.]
Fort > 0, 1, ue € P(M),
TSOt—s(d)(Ps*“’l? PS*Mz) \ In s - [O, t]




Definition of gof{’N(a) (for N € N)

1
K,N
pr () 1= 5

° 15t*: heat semigr. on the spaceform My, i

P*8. — 13*5~||
t t Y TV

(M, x: sphere, Euclidean sp. or hyperbolic sp.)
e d(z,y) = a



Definition of gof{’N(a) (for N € N)

1 ~ ~
K,N o " "

° 15t*: heat semigr. on the spaceform My, i
(M, x: sphere, Euclidean sp. or hyperbolic sp.)

e d(z,y) = a
o —m0

*» We can define o, even when N ¢ N

* More explicit expression is possible but
complicated when NV < oo or K # 0



Properties of ¢,

e p; ', concave, p(0) = 0
o p.(a) N\,
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Properties of ¢,

e p; ', concave, p(0) = 0
* p.(a) N\,
* vo = 1(0,00)
(= Toutay (B35 12) = i1 — piz v )

e N <N = ¢V (a) < ¢V (a)

—1/2
eKt—l) /

1
o 0T p(0) < 2\/%( [




3. Applications



Theorem 2

\
Tso()(d)(Pt*‘swv Pt*éy) < Tcpt(d)((smv 5y)



Theorem 2

\
T¢o(d)(Pt*5wv Pt*éy) < Tcpt(d)(‘smv 5y)

U

Corollary 1 (Comparison thm for total variations)

| P, — PO

vllrv

<

P*8s — 15*5~||
t t Y TV




Corollary 2 (Gradient estimate)

For any bounded measurable f on M,
VP, flloo < 07 :(0) osc(f)

Remark

Corollary 2 directly follows from

Tcpo(d) (Pt(san Pt(sy) S Tgot(d) (5:139 5y)



Remark

These results hold in more general framework:

(i) Diffsions associated with A /2 + Z,
Ric? N > K

(Ric?'™: Bakry-Emery Ricci tensor)

% Z can be of non-gradient type

(i) Riemannian metric g depends on time,

Ric ;Y > dug(t) + K

(a generalization of super Ricci flow)




Stability under GH-convergence
(M, g, ): n-dim. cpt. Riem. mfds, Ric, > K

Suppose
(Mo iy voly, ) ™2 (Moo, doos voo)
J

For (™ € P(M,,)

with (™) — () ¢ P(M),

P;pn(™) — a “heat distribution” p$° on M
|Gigli '10, Ambrosio, Gigli & Savaré '11]



Theorem 3 [K. & S.]
(Moo, doo,s Voo ): as above, N > n
p1(t), po2(t): heat distributions on Mo
= Fort > 0,

Tgpi’f;’(d)(ﬂl(s)v p2(s)) \
ins € [0,




