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1. Introduction



M: m-dim. manifold, —oo < T7 < T35 < 00,

(g(t))te[r, 1) Smooth complete
Riemannian metrics on M

% Difficulty: Almost every geometric structure
but the topology depends on time

Examples
e 0:g(t) = Ricgy () (backward Ricci flow)

e Jtg(t) < Ricyy) —Kg(t)
(time-dependent extension of “Ric > K")



1
A = EAt + Z; time-inhomogeneous generator

(Xt)tem 121 As-diffusion, i.e.

f(taXt) o f(Tla XTl)

t O
— ( - A f(s, Xg)ds
T 0S

Is a local martingale for V f: smooth



Goal
Approximating the A;-diffusion

by “nice” geodesic random walks

Purpose

Application to coupling methods
(especially, coupling by reflection)



2. Framework and the main result



Discrete time geodesic random walk Y €

e (&,)neN: R%-valued i.i.d.,
unif. dist. on a centered disk, Var(&,,) = 1

¢ tpi1:=1t, +€% to="T,

e &, : M — Ogt)(M) m'ble orth. frame




Two continuous-time interpolations

(i) Linear interpolation of tangent vector: X*
=> Trajectory of X ¢ iIs a piecewise geodesic
—=> X ° has continuous sample path
= X ¢: not Markov

(ii) Poisson subordination: X¢

— X°¢ has cadlag sample path
— X¢: Markov



Assumption

3b : [0, c0) — R sufficiently regular s.t.

(i) 9:9(t) < Ricy + b(d(o,-))g(t)
( RiCtZ = Ricg) —2(V Z)>™ )

(ii) YC > 0, p; cannot go to oo,
o W (pt)
where dp; = dB3; + | C - dt,

(ﬁt: BM', ¥ (r) := /O b(jds>

lrb

% No time-uniform bounds are necessary!



Thm 1 [K.] (invariance principle)

Under Assumptions (i)(ii),
X -2 Xase — 0inC([Ty, To] — M).



Rem

(i) Convergence of X< <> Convergence of X©

(ii) When 9:g(t) = 0, our assumption is a
well-known sufficient condition for conservativity

(iii) Under the same assumption, X is conservative
|K.-Philipowski]



Known results (When 9;g(t) = 0)

e [Jgrgensen '75]
IP under analytic assumptions
(Spacially inohomogeneous noise, with killing)

e [M.Pinsky '76] / [Blum '84]
Conv. of Cp-semigr. under Feller / Ric > K
(isotropic noise)

e [von Renesse '04, K. '10]
Coupling via geodesic RWs



3. Sketch of the proof



3.1. Overview



Structure of the proof

(i) Tightness for X
<= Estimate of the modulus of continuity
(curvature bound & unif. error est.)

(ii) Identification of the (subsequential) limit for X ¢
<= | of the A;-martingale problem
(cpt unif. convergence of generators)

% Crucial to localize the problem!



Lem 1 (localization of underlying geometry)

For VR > 0, AMy C M: cpt s.t.

{p c M inf  di(o,p) < R} C My
te|Ty,15]

Localization by
or := inf {t | d¢(0, X7) > R}



Thm 2 [K.] (unif. non-explosion)

lim Iim P,

RToo /0

sup ds(o, X.) > R

0<s<t




Thm 2 [K.] (unif. non-explosion)

lim lim P, | sup ds(o,X.) > R| =0
RToo |0 0<s<t

|dea of the proof: Follow [K.-Philipowski]



3.2. Conservativity of A;-diffusions
(under Assumptions(i)(ii))



Strategy

(i) Consider r+(X¢), r¢(x) := di(0, )

(ii) Apply the 1to formula:
dri(X¢) < V2dBs + (0 + Ag)re(Xe)dt
(3; becomes BM')

L
(iii) Comparison thm: (9; + A¢)ry < C A (1)

2
(iv) ¢ < px,

\\J
p¢ solves dp; = d3; + (C’ + (;t)) dt




More on comparison thm

~ : [0, ¢ (x)] — M: g(t)-geod. from o to x

1 rt(w)
¢ dr(w) = / 9,9(t) (e, 7o) ds
O

d—1G (ri(x))

e Airi(z) < c+ 2 G(ri(x))

Ric/ (4ss Vs
G (s) = O30 )
where (d —1)

G(0) =0, G'(0) = 1




| Ass. (i)

(0¢ + A¢)re
d—1 G,(T‘t)

1 [t

S —/ RiCtZ(;YS, ’ys)ds _I—
2 Jo
+c+ V(re)

= | [non-incr. fn. along ~v|(7r¢) + ¥ (re)

2 G(Tt)



Obstruction to the Ito formula:
Singularity of r; at Cut ;) (0) (g(%)-cut locus)
* Singular points depends on time!

% Establish the 1to formula for r;
involving “local time at g(%)-cut locus

([Kendall '86, Hsu '02] when 0:g(t) = 0)
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Obstruction to the Ito formula:
Singularity of r; at Cut,;)(0) (g(t)-cut locus)

* Singular points depends on time!
O

T
% Establish the 1to formula for r;
involving “local time at g(t)-cut locus
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Obstruction to the Ito formula:
Singularity of r; at Cut,;)(0) (g(t)-cut locus)

* Singular points depends on time!
O

[ 3- !
Xt - CU.tg(t) (O)

% Establish the 1to formula for r;
involving “local time at g(t)-cut locus

([Kendall '86, Hsu '02] when 0:g(t) = 0)




Obstruction to the Ito formula:
Singularity of r; at Cut,;)(0) (g(t)-cut locus)

* Singular points depends on time!

Cutg(y) (0)
% Establish the 1to formula for r;
involving “local time at g(%)-cut locus

([Kendall '86, Hsu '02] when 0:g(t) = 0)



Cutgt := {(t,z,y) | y € Cutyy)(x)}

Few facts on g(t)-cut locus

e volg(t)(Cutg)(x)) =0

e Cutgr: closed



Our approach: follow [Kendall '86]
T0o:=0< 11 <+ < Tn < ---: stopping times

® Tony1: 1stvisit to Cut(o) after T,

e Ton,: Ist exit from d-nbd of X (75,,_1)
after 79,,_1

) ¢ Z Ton — Ton—1| — 0 as.aso | O

use an alternative ref. pt o,, instead of o



3.3. Uniform non-explosion bound of
geodesic RWs



Discrete |to formula (Taylor expansion)

n+1(X€n_|_1) — T, (Xe )
< E.‘g(tn)(VTtn,f _|_1) + 528trt (Xs )

2
e
+ 27,7, (X{ ) + EHQSS 7, (605 €0)

+ 6 + o(e?)

% ‘<" without extracting “local time at Cutgt"”



Discrete |to formula (Taylor expansion)
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Discrete |to formula (Taylor expansion)

n+1(X€n+1) — 7, (X} )
< eg(tn)(VTtnag +1) + 52875” (Xe )
2
_I_ €zztn T‘tn (thn) + %HQSS rtn (gT ? gl’)
+ 6 + o(e?) Kt
4
O — an

% ‘<" without extracting “local time at Cutgt"”



Discrete |to formula (Taylor expansion)

n+1(X€n+1) — 7, (X} )
< eg(tn)(Vre,, & 1) + 20, (X5)

2
+e%Z;, 7, (X5) + %HQSS 7, (6, €0)
+ 6 + o(e?) Kt

4
O Xz:n

% ‘<" without extracting “local time at Cutgt"”



Discrete |to formula (Taylor expansion)

n+1(X€n+1) — 7, (X} )
< eg(tn)(Vre,, & 1) + 20, (X5)
2
3
+ 27,7, (X{ ) + EHQSS 7, (605 €0)
> €
—I— 5 + 0(5 ) th-|—1
| 8“tg(t)(0)
o At

% ‘<" without extracting “local time at Cutgt"”



Discrete |to formula (Taylor expansion)

(X ) — e (XE)

< eg(tn)(Vre,, & 1) + €20, (XE)
2
g
_I_ €2Ztn rtn (thn) + EHQSS rtn (g;‘;’, gjl)

'n,-|—1

+ 0 + o(e?) fin
Cut O
1 g(t)( )
O On an

% ‘<" without extracting “local time at Cutgt"”



Obstructions to follow [K.-Philipowski]

(i) of ry

(ii) (Local) uniform estimate of o(&?)

(<= Localization + Cutgt: closed)

(iii) Treatment of the 2nd order term:
Fn

| D HeSST‘tn(g _|_17€ -|-1)

(iv) Different scalings
e Ist order: scale for CLT
e 2nd order: scale for LLN

—A,

T

T’tn



(iii) Treatment of the 2nd order term

Ac 11 = Hess 1¢,, (g -|-19€ -|-1)
+ 4 T, (an) + O¢7e,, (an)

Lem 2 (Martingale LLN for Af)

E[AS|Fn_1]) | — 0

In probability



ldea for (i)(iv): Comparison before scaling limit

Discrete Comparison process p°©

e A 4= g(tn)(Vrtn,é 4q)0 Lid.

e (3;: piecewise linear interpolation of € ) | A2

o pS solves dp = dp3s + W (ps)dt,
where
U= U + U, + (“error’),
Wy > 0: auxiliary drift (explained below)



(i) Singularity of r; at o

Take Wy sothat | 0 < da < irtlf P;

Y
re(X;) < pf when X7 = o



(iv) Different scalings
What we need:

Smallness of I’ |sup 7 (X;) > R| unif. in g
t<T )

Lem 2 4+ Discrete comparison thm

Y
P|lsupri(X;) > R| <P|supp; > R

t<T ] t<T

.. Studying the scaling imit of p = Thm 2
(Note: p€ has unbounded drift)




4. Coupling by reflection



Thm 3 [K.]
Suppose dK € R s.t. 0:g(t) < Rith — Kg(t)




Thm 3 [K/]
Suppose dK € R s.t. 0:g(t) < Rith — Kg(t)
= Vax,x € M,

E(Xt,Xt): coupled A;-diff. from (x, &) s.t.

P[T1i<I1£<t dg(s)(Xss Xs) > 0

= P[T11<nsf<t ps >0

where p; solves pr, = dg(1,)(x,y) and

K
dpr = 2dB; — - prdt




Rem

e Heuristically,
“dg(t) (Xt,Xt) < pAt" = Thm 3

¢ (RHS) — Pt—-T, (dg(T1)(a:7 y))'

where
2 2,/a s 2
ps(a) := \/—/ ) e 2dz,
T Jo
elfs — 1
B(s) :=

K



Cor 1 [K. & Sturm]

let T7 < T < T5. Y, vy heat distributions,
inf / O _+dTT

WEH(“’taut) N

Cor 2 [K.]

1
VP
HI 15 tf‘g(Tl)Hoo — \/271'/6(t — Tl) OSCf

(cf. [Coulibaly] via stoch. diff. geom.)



|ldea of the proof of Thm 3



Construct (X, X;)
where dX%VIart = “(local) reflection” of d X Mart



Construct (X, X;)

where dXiVIart = “(local) reflection” of dX%VIart
M
—
AN
/Xt t —
Mart e



Construct (X, X;)

where dXMart = “(local) reflection” of d X Mart
M
Sy
R ™~




Construct (X, X;)
where dXiVIart = “(local) reflection” of dX%VIart

M

\
»7 \

dXi\/Iart, TXtM 7/ TXtM




Construct (X, X;)

where dXiVIart = “(local) reflection” of dX%VIart
M
—
Y T~




Construct (X, X;)

where dXiVIart = “(local) reflection” of d X Mart
M
—
Y o~




Construct (X¢, X¢)

where d X Mart

“(local) reflection” of dX Mart




Construct (X, X;)

where dXiVIart = “(local) reflection” of d X Mart
M .
T~ dXt

N

/Xt X /_)

M " Tg M




Construct (X, X;)

where dXMart = “(local) reflection” of d X Mart
M )
T~ dXt
~
X \
/Xt t JJ
Mart e

and apply the |to formula



Obstruction
How frequently do (X4, Xt) stay iIn Cutgt?

% vol, ) (Cutgyr)()) = 0 is not sufficient

When 0,g(t) = 0, via SDE approach
|[Kendall '86, Cranston '91, F.-Y. Wang '94/'05]



Obstruction
How frequently do (X4, Xt) stay iIn Cutgt?

% vol, ) (Cutgyr)()) = 0 is not sufficient

When 90:g(t) = 0, via SDE approach
|[Kendall '86, Cranston '91, F.-Y. Wang '94/'05]

Advantage of our approach

“oy < p¢” follows without extracting L,



