Invariance principle for time-inhomogeneous geodesic random walks

Kazumasa Kuwada (Ochanomizu University)

1. Introduction

M: m-dim. manifold, $-\infty < T_1 < T_2 \le \infty$, $(g(t))_{t \in [T_1, T_2]}$: smooth complete Riemannian metrics on M

★ Difficulty: Almost every geometric structure but the topology depends on time

Examples

- $\partial_t g(t) = \operatorname{Ric}_{g(t)}$ (backward Ricci flow)
- $\partial_t g(t) \leq \mathrm{Ric}_{g(t)} Kg(t)$ (time-dependent extension of "Ric $\geq K$ ")

 $\mathcal{A}_t := rac{1}{2} \Delta_t + Z_t$ time-inhomogeneous generator $(X_t)_{t \in [T_1, T_2]}$: \mathcal{A}_t -diffusion, i.e.

$$f(t, X_t) - f(T_1, X_{T_1})$$

$$-\int_{T_1}^t (rac{\partial}{\partial s} + \mathcal{A}_s) f(s, X_s) ds$$

is a local martingale for $\forall f$: smooth

Goal

Approximating the \mathcal{A}_t -diffusion by "nice" geodesic random walks

Purpose

Application to coupling methods (especially, coupling by reflection)

2. Framework and the main result

Discrete time geodesic random walk $Y^{arepsilon}$

- $(\xi_n)_{n\in\mathbb{N}}$: \mathbb{R}^d -valued i.i.d., unif. dist. on a centered disk, $\mathrm{Var}(\xi_n)=I$
- $ullet t_{n+1}:=t_n+arepsilon^2$, $t_0=T_1$
- ullet $\Phi_t: M o \mathcal{O}_{g(t)}(M)$ m'ble orth. frame

Given
$$Y_{t_n}^arepsilon$$
, $\xi_{n+1}^{\dagger} := \Phi_{t_n}(Y_{t_n}^arepsilon) \xi_{n+1},$ $Y_{t_{n+1}}^arepsilon := \exp_{Y_{t_n}^arepsilon}^{g(t_n)}(arepsilon \xi_{n+1}^{\dagger} + arepsilon^2 Z_{t_n}(Y_{t_n}^arepsilon))$

Two continuous-time interpolations

- (i) Linear interpolation of tangent vector: $X^{arepsilon}$
 - \Rightarrow Trajectory of $X^{arepsilon}$ is a piecewise geodesic
 - $\Rightarrow X^{\varepsilon}$ has continuous sample path
 - $\Rightarrow X^{\varepsilon}$: not Markov
- (ii) Poisson subordination: $ilde{X}^{arepsilon}$
 - $\Rightarrow ilde{X}^arepsilon$ has cadlag sample path
 - $\Rightarrow \tilde{X}^{\varepsilon}$: Markov

Assumption

 $\exists b: [0,\infty) \to \mathbb{R}$ sufficiently regular s.t.

(i)
$$\partial_t g(t) \leq \operatorname{Ric}_t^Z + b(d(o, \cdot))g(t)$$

($\operatorname{Ric}_t^Z := \operatorname{Ric}_{g(t)} - 2(\nabla Z_t)^{\operatorname{sym}}$)

(ii) $\forall C > 0$, ρ_t cannot go to ∞ ,

where
$$d
ho_t = deta_t + \left(C + rac{\Psi(
ho_t)}{2}
ight)dt$$
, $\left(eta_t ext{: BM}^1, \, \Psi(r) := \int_0^r b(s)ds
ight)$

★ No time-uniform bounds are necessary!

Thm 1 [K.] (invariance principle)

Under Assumptions (i)(ii),

 $X^arepsilon \stackrel{d}{\longrightarrow} X ext{ as } arepsilon \to 0 ext{ in } \mathcal{C}([T_1,T_2] \to M).$

Rem

- (i) Convergence of $X^{arepsilon}\Leftrightarrow$ Convergence of $X^{arepsilon}$
- (ii) When $\partial_t g(t) \equiv 0$, our assumption is a well-known sufficient condition for conservativity
- (iii) Under the same assumption, X_t is conservative [K.-Philipowski]

Known results (When $\partial_t g(t) \equiv 0$)

- [Jørgensen '75]
 IP under analytic assumptions
 (Spacially inohomogeneous noise, with killing)
- [M.Pinsky '76] / [Blum '84] Conv. of C_0 -semigr. under Feller / $\mathrm{Ric} \geq K$ (isotropic noise)
- [von Renesse '04, K. '10]
 Coupling via geodesic RWs

3. Sketch of the proof

3.1. Overview

Structure of the proof

- (i) Tightness for X^{ε}
 - Estimate of the modulus of continuity (curvature bound & unif. error est.)
- (ii) Identification of the (subsequential) limit for \tilde{X}^{ε} \Leftarrow ! of the \mathcal{A}_t -martingale problem (cpt unif. convergence of generators)

★ Crucial to localize the problem!

Lem 1 (localization of underlying geometry) -

For $\forall R>0$, $\exists M_0\subset M$: cpt s.t.

$$\left\{p \in M \mid \inf_{\boldsymbol{t} \in [T_1, T_2]} d_{\boldsymbol{t}}(o, p) \leq R\right\} \subset M_0$$

Localization by

$$\sigma_R := \inf \left\{ t \mid d_t(o, X_t^{\varepsilon}) \geq R \right\}$$

Thm 2 [K.] (unif. non-explosion)

$$\lim_{R \uparrow \infty} \overline{\lim_{arepsilon \downarrow 0}} \, \mathbb{P}_x \left[\sup_{0 \leq s \leq t} d_s(o, X_s^{arepsilon}) > R
ight] = 0$$

Thm 2 [K.] (unif. non-explosion)

$$\left[\lim_{R
otag \infty} \overline{\lim_{arepsilon \downarrow 0}} \, \mathbb{P}_x \left[\sup_{0 \le s \le t} d_s(o, X_s^{arepsilon}) > R
ight] = 0$$

Idea of the proof: Follow [K.-Philipowski]

3.2. Conservativity of A_t -diffusions (under Assumptions(i)(ii))

Strategy

- (i) Consider $r_t(X_t)$, $r_t(x) := d_t(o, x)$
- (ii) Apply the Itô formula:

$$dr_t(X_t) \le \sqrt{2}d\beta_t + (\partial_t + \mathcal{A}_t)r_t(X_t)dt$$

(β_t becomes BM¹)

- (iii) Comparison thm: $(\partial_t + \mathcal{A}_t)r_t \leq C + \frac{\Psi(r_t)}{2}$
- (iv) $r_t \leq
 ho_t$, ho_t solves $d
 ho_t = deta_t + \left(C + rac{\Psi(
 ho_t)}{2}
 ight)dt$

More on comparison thm

$$\gamma:[0,r_t(x)] o M$$
: $g(t)$ -geod. from o to x

$$\bullet \ \partial_t r_t(x) = \frac{1}{2} \int_0^{r_t(x)} \frac{\partial_t g(t)(\dot{\gamma}_s, \dot{\gamma}_s) ds}$$

$$\bullet \ \mathcal{A}_t r_t(x) \leq c + \frac{d-1}{2} \frac{G'(r_t(x))}{G(r_t(x))},$$

where
$$G''(s)=-rac{\mathrm{Ric}_{t}^{oldsymbol{Z}}(\dot{\gamma}_{s},\dot{\gamma}_{s})}{(d-1)}G(s),$$
 $G(0)=0,\,G'(0)=1$

↓ Ass. (i)

$$egin{aligned} (\partial_t + \mathcal{A}_t) r_t \ &\leq rac{1}{2} \int_0^{r_t} \mathrm{Ric}_t^Z(\dot{\gamma}_s,\dot{\gamma}_s) ds + rac{d-1}{2} rac{G'(r_t)}{G(r_t)} \ &+ c + \Psi(r_t) \end{aligned}$$
 = $egin{aligned} [\mathsf{non\text{-}incr. fn. along } \gamma](r_t) + \Psi(r_t) \end{aligned}$

Singularity of r_t at $\mathrm{Cut}_{g(t)}(o)$ (g(t)-cut locus)

* Singular points depends on time!

Singularity of r_t at $\mathrm{Cut}_{g(t)}(o)$ (g(t)-cut locus)

* Singular points depends on time!

Singularity of r_t at $\mathrm{Cut}_{g(t)}(o)$ (g(t)-cut locus)

* Singular points depends on time!

Singularity of r_t at $\mathrm{Cut}_{g(t)}(o)$ (g(t)-cut locus)

* Singular points depends on time!

Singularity of r_t at $\mathrm{Cut}_{g(t)}(o)$ (g(t)-cut locus)

* Singular points depends on time!

$$Cut_{ST} := \{(t, x, y) \mid y \in Cut_{g(t)}(x)\}$$

Few facts on g(t)-cut locus

- $\operatorname{vol}_{g(t)}(\operatorname{Cut}_{g(t)}(x)) = 0$
- Cut_{ST}: closed

Our approach: follow [Kendall '86]

$$au_0:=0< au_1<\cdots< au_n<\cdots$$
 stopping times

- τ_{2n+1} : 1st visit to Cut(o) after τ_{2n}
- au_{2n} : 1st exit from δ -nbd of $X(au_{2n-1})$ after au_{2n-1}

$$\bigstar \sum_{n} |\tau_{2n} - \tau_{2n-1}| \to 0$$
 a.s. as $\delta \downarrow 0$

 \bigstar When $t \in [\tau_{2n-1}, \tau_{2n}]$, use an alternative ref. pt o_n instead of o

3.3. Uniform non-explosion bound of geodesic RWs

$$r_{t_{n+1}}(X_{t_{n+1}}^{\varepsilon})-r_{t_n}(X_{t_n}^{\varepsilon})$$

$$\leq \varepsilon g(t_n)(\nabla r_{t_n}, \xi_{n+1}^{\dagger}) + \varepsilon^2 \partial_t r_{t_n}(X_{t_n}^{\varepsilon})$$

$$+ \, arepsilon^2 Z_{t_n} r_{t_n} (X_{t_n}^arepsilon) + rac{arepsilon^2}{2} \mathrm{Hess} \, r_{t_n} (oldsymbol{\xi}_n^\dagger, oldsymbol{\xi}_n^\dagger)$$

$$+\delta + o(\varepsilon^2)$$

★ "≤" without extracting "local time at Cut_{ST}"

$$r_{t_{n+1}}(X_{t_{n+1}}^{\varepsilon})-r_{t_n}(X_{t_n}^{\varepsilon})$$

$$\leq \varepsilon g(t_n)(\nabla r_{t_n}, \xi_{n+1}^{\dagger}) + \varepsilon^2 \partial_t r_{t_n}(X_{t_n}^{\varepsilon})$$

$$+ \, arepsilon^2 Z_{t_n} r_{t_n} (X_{t_n}^arepsilon) + rac{arepsilon^2}{2} \mathrm{Hess} \, r_{t_n} (oldsymbol{\xi}_n^\dagger, oldsymbol{\xi}_n^\dagger)$$

$$+\delta + o(\varepsilon^2)$$

 \bigstar " \leq " without extracting "local time at $\mathrm{Cut}_{\mathrm{ST}}$ "

$$egin{aligned} r_{t_{n+1}}(X_{t_{n+1}}^{arepsilon}) - r_{t_n}(X_{t_n}^{arepsilon}) \ & \leq arepsilon g(t_n) (
abla r_{t_n}, oldsymbol{\xi}_{n+1}^{\dagger}) + arepsilon^2 \partial_t r_{t_n}(X_{t_n}^{arepsilon}) \ & + arepsilon^2 Z_{t_n} r_{t_n}(X_{t_n}^{arepsilon}) + rac{arepsilon^2}{2} \operatorname{Hess} r_{t_n}(oldsymbol{\xi}_n^{\dagger}, oldsymbol{\xi}_n^{\dagger}) \ & + \delta + o(arepsilon^2) \end{aligned}$$

★ "≤" without extracting "local time at Cut_{ST}"

$$egin{aligned} r_{t_{n+1}}(X_{t_{n+1}}^{arepsilon}) - r_{t_n}(X_{t_n}^{arepsilon}) \ & \leq arepsilon g(t_n) (
abla r_{t_n}, oldsymbol{\xi}_{n+1}^{\dagger}) + arepsilon^2 \partial_t r_{t_n}(X_{t_n}^{arepsilon}) \ & + arepsilon^2 Z_{t_n} r_{t_n}(X_{t_n}^{arepsilon}) + rac{arepsilon^2}{2} \operatorname{Hess} r_{t_n}(oldsymbol{\xi}_n^{\dagger}, oldsymbol{\xi}_n^{\dagger}) \ & + \delta + o(arepsilon^2) \ & \qquad \qquad X_{t_{n+1}}^{arepsilon} \end{aligned}$$

 \bigstar " \leq " without extracting "local time at $\mathrm{Cut}_{\mathbf{ST}}$ "

$$r_{t_{n+1}}(X_{t_{n+1}}^{arepsilon}) - r_{t_n}(X_{t_n}^{arepsilon})$$

$$\leq \varepsilon g(t_n)(\nabla r_{t_n}, \xi_{n+1}^{\dagger}) + \varepsilon^2 \partial_t r_{t_n}(X_{t_n}^{\varepsilon})$$

$$+ \, arepsilon^2 Z_{t_n} r_{t_n} (X_{t_n}^arepsilon) + rac{arepsilon^2}{2} \mathrm{Hess} \, r_{t_n} (oldsymbol{\xi}_n^\dagger, oldsymbol{\xi}_n^\dagger)$$

$$+\delta+o(arepsilon^2)$$
 $X_{t_{n+1}}^{arepsilon}$ Cut $C(t)$

 $Cut_{g(t)}(o)$ $X_{t_n}^{\varepsilon}$

★ "≤" without extracting "local time at Cut_{ST}"

$$egin{aligned} \overline{r_{t_{n+1}}}(X_{t_{n+1}}^{arepsilon}) &- \overline{r_{t_n}}(X_{t_n}^{arepsilon}) \ &\leq arepsilon g(t_n)(
abla r_{t_n}, oldsymbol{\xi}_{n+1}^{\dagger}) + arepsilon^2 \partial_t r_{t_n}(X_{t_n}^{arepsilon}) \ &+ arepsilon^2 Z_{t_n} r_{t_n}(X_{t_n}^{arepsilon}) + rac{arepsilon^2}{2} \operatorname{Hess} r_{t_n}(oldsymbol{\xi}_n^{\dagger}, oldsymbol{\xi}_n^{\dagger}) \ &+ \delta + o(arepsilon^2) \end{aligned}$$

$$+\delta+o(arepsilon^2) egin{pmatrix} X^arepsilon_{t_{n+1}} & X^arepsilon_{t_{n+1}} & Cut_{g(t)}(o) \ X^arepsilon_{t_{n}} & X^arepsilon$$

 \bigstar " \leq " without extracting "local time at $\mathrm{Cut}_{\mathbf{ST}}$ "

Obstructions to follow [K.-Philipowski]

- (i) Singularity of r_t at o
- (ii) (Local) uniform estimate of $o(\varepsilon^2)$ (\Leftarrow Localization + Cut_{ST} : closed)
- (iii) Treatment of the 2nd order term:

$$\mathbb{E}\left[\left.\operatorname{Hess} r_{t_n}(\xi_{n+1}^{\dagger},\xi_{n+1}^{\dagger})\right|\mathfrak{F}_n\right] = \Delta_{t_n}r_{t_n}$$

- (iv) Different scalings
 - 1st order: scale for CLT
 - 2nd order: scale for LLN

(iii) Treatment of the 2nd order term

$$egin{aligned} \Lambda_{n+1}^arepsilon &:= \operatorname{Hess} r_{t_n}(\xi_{n+1}^\dagger, \xi_{n+1}^\dagger) \ &+ Z_{t_n} r_{t_n}(X_{t_n}^arepsilon) + \partial_t r_{t_n}(X_{t_n}^arepsilon) \end{aligned}$$

Lem 2 (Martingale LLN for Λ_n^{ε}) —

As
$$arepsilon o 0$$
,
$$\sup_{t < \sigma_R} \left| arepsilon^2 \sum_{t_n \leq t} \left(\Lambda_n^{arepsilon} - \mathbb{E}[\Lambda_n^{arepsilon} | \mathfrak{F}_{n-1}] \right) \right| \to 0$$
 in probability

Idea for (i)(iv): Comparison before scaling limit

Discrete Comparison process ho^{ε}

- $ullet \lambda_{n+1}^arepsilon = g(t_n)(
 abla r_{t_n}, \xi_{n+1}^\dagger)$: i.i.d.
- ullet $eta_t^arepsilon$: piecewise linear interpolation of $arepsilon \sum \lambda_n^arepsilon$
- $m{ ilde{\phi}}_t^arepsilon$ solves $d
 ho_t^arepsilon = deta_t^arepsilon + ar{\Psi}(
 ho_t^arepsilon)dt$, where

$$ilde{\Psi}:=\Psi+\Psi_0+(ext{``error''}), \ \Psi_0\geq 0$$
: auxiliary drift (explained below)

(i) Singularity of r_t at o

Take
$$\Psi_0$$
 so that $0 < \exists rac{a}{t} \leq \inf_t
ho_t^arepsilon$

$$r_t(X^arepsilon_t) \leq
ho^arepsilon_t$$
 when $X^arepsilon_t pprox o$

(iv) Different scalings

What we need:

Smallness of
$$\mathbb{P}\left[\sup_{t\leq T}r_t(X^{arepsilon}_t)>R
ight]$$
 unif. in $arepsilon$

Lem 2 + Discrete comparison thm

$$\Downarrow$$

$$\mathbb{P}\left[\sup_{t\leq T} r_t(X_t^\varepsilon) > R\right] \leq \mathbb{P}\left[\sup_{t\leq T} \rho_t^\varepsilon > R\right]$$

 \therefore Studying the scaling limit of $\rho^{\varepsilon} \Rightarrow$ Thm 2 (Note: ρ^{ε} has unbounded drift)

4. Coupling by reflection

Thm 3 [K.]

Suppose $\exists K \in \mathbb{R}$ s.t. $\partial_t g(t) \leq \mathrm{Ric}_t^Z - Kg(t)$

Thm 3 [K.]

Suppose $\exists K \in \mathbb{R}$ s.t. $\partial_t g(t) \leq \mathrm{Ric}_t^Z - Kg(t)$

$$\Rightarrow \forall x, \hat{x} \in M$$
,

 $\exists (X_t, \hat{X}_t)$: coupled \mathcal{A}_t -diff. from (x, \hat{x}) s.t.

$$egin{aligned} \mathbb{P}ig[\inf_{T_1 \leq s \leq t} d_{g(s)}(X_s, \hat{X}_s) > 0 ig] \ & \leq \mathbb{P}ig[\inf_{T_1 < s < t}
ho_s > 0 ig] \end{aligned}$$

where $\hat{
ho}_t$ solves $\hat{
ho}_{T_1} = d_{g(T_1)}(x,y)$ and

$$d\hat{\rho}_t = 2dB_t - \frac{K}{2}\hat{\rho}_t dt$$

Rem

Heuristically,

"
$$d_{g(t)}(X_t, \hat{X}_t) \leq \hat{\rho}_t$$
" \Rightarrow Thm 3

ullet (RHS) $= arphi_{t-T_1}(d_{g(T_1)}(x,y)),$ where

$$egin{align} arphi_s(a) &:= \sqrt{rac{2}{\pi}} \int_0^{rac{2}{2\sqrt{eta(s)}}} \mathrm{e}^{-x^2/2} dx, \ eta(s) &:= rac{\mathrm{e}^{Ks} - 1}{K} \end{aligned}$$

Cor 1 [K. & Sturm] -

Let $T_1 < T \le T_2$. $\forall \mu_t, \nu_t$: heat distributions,

$$\inf_{\pi \in \Pi(\mu_t, \nu_t)} \int \varphi_{T-t} d\pi \searrow$$

<u>Cor 2</u> [K.] —

$$\left\| |
abla P_{T_1,t} f|_{g(T_1)}
ight\|_{\infty} \leq rac{1}{\sqrt{2\pieta(t-T_1)}} \operatorname{osc} f$$

(cf. [Coulibaly] via stoch. diff. geom.)

Idea of the proof of Thm 3

and apply the Itô formula

Obstruction

How frequently do (X_t, \hat{X}_t) stay in $\mathrm{Cut}_{\mathrm{ST}}$?

 $\bigstar \operatorname{vol}_{g(t)}(\operatorname{Cut}_{g(t)}(x)) = 0$ is not sufficient

When $\partial_t g(t) \equiv 0$, via SDE approach [Kendall '86, Cranston '91, F.-Y. Wang '94/'05]

Obstruction

How frequently do (X_t, \hat{X}_t) stay in $\mathrm{Cut}_{\mathrm{ST}}$?

 $\bigstar \operatorname{vol}_{g(t)}(\operatorname{Cut}_{g(t)}(x)) = 0$ is not sufficient

When $\partial_t g(t) \equiv 0$, via SDE approach [Kendall '86, Cranston '91, F.-Y. Wang '94/'05]

Advantage of our approach

" $\sigma_t \leq \hat{
ho}_t$ " follows without extracting L_t