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1 What is Wasserstein distance?

Let (M,d) be a Polish space (complete separable metric space) and P(M) the set of
probability measures on (M,B(M)). For µ0, µ1 ∈ P(M), let Π(µ0, µ1) be the set of all
couplings between µ0 and µ1. That is,

Π(µ0, µ1) :=
{
π ∈ P(M ×M)

∣∣∣∣ π(A×M) = µ0(A),
π(M ×A) = µ1(A)

for each A ∈ B(M)
}
.

Under these notations, let us introduce Lp-Wasserstein distance Wp(µ0, µ1) for p ∈
[1,∞] and µ0, µ1 ∈ P(M) as follows:

Wp(µ0, µ1) := inf
π∈Π(µ0,µ1)

‖d‖Lp(π).

In general, Wp(µ0, µ1) = ∞ can occur. To prevent it, we sometimes restrict Wp on
Pp(M) ⊂ P(M), the set of probability measures on M with a finite p-th moment (in
terms of the distance function), defined as follows:

Pp(M) :=
{
µ ∈ P(M)

∣∣∣∣ ∫
M
d(x, y)pµ(dy) <∞ for some/any x ∈M

}
.

The Wasserstein distance can be expressed by means of couplings between random
variables. Let X0 and X1 be M -valued random variables and we denote distributions
of Xi by µi for i = 0, 1. Then we say that an M ×M -valued random variable (Y0, Y1) is
a coupling between X0 and X1 when the distribution of Yi is the same as that of Xi for
i = 0, 1. By using this terminology, we can express the Wasserstein distance as follows:

Wp(µ0, µ1) = inf
{

E[d(Y0, Y1)p]1/p
∣∣∣ (Y0, Y1) is a coupling between X0 and X1

}
.

As stated in Villani’s book [37], some notions corresponding to Wasserstein distance
have been appeared in several fields in mathematics and hence there are many differ-
ent names, e.g. Monge-Kantorovich distance, Tanaka distance, Kantorovich-Rubinstein
distance, minimal metrics. One reason why it happens could consist in the fact that it
is very useful especially in measuring the rate of convergence of probability measures.
Indeed, the Wasserstein distance enjoys the following nice properties (see [3, 37, 38] for
instance; see [20, 33, 34] also)

• When p <∞, “ lim
n→∞

Wp(µn, µ) = 0” is equivalent to the following two conditions:

(1) µn → µ (weak convergence of probability measures).

(2) sup
n∈N

∫
M
d(x, y)pµn(dy) <∞ for some/any x ∈M .
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In particular, if d is bounded, Wp is a distance function being compatible with
the topology of the weak convergence on P(X).

• Wp is a distance function on Pp(X).

• There is another variational expression of the Wasserstein distance by means of
an integration against test functions (Kantorovich duality; see Theorem 1 below).

• We can obtain an (upper) bound of the Wasserstein distance by constructing a
coupling of distributions explicitly.

• The Wasserstein distance is “stable” under “perturbation” of the underlying space
or the distance function. Although this statement is not mathematically rigorous,
this is (heuristically) important viewpoint.

• The property of the Wasserstein distance strongly reflects that of the metric
structure of the underlying space. For instance, (Pp(X),Wp) is a Polish space for
1 ≤ p < ∞. As another example, if d is a geodesic distance, the same is true for
Wp, p ∈ (1,∞) (see Theorem 2 below).

It should be remarked that the Wasserstein distance is closely related with the
Monge-Kantorovich mass transportation problem. Here we introduce two properties of
the Wasserstein distance as a special case of the general theory of optimal transporta-
tion.

Theorem 1 (Kantorovich duality; e.g. [38, Theorem 5.10])

Wp(µ0, µ1)p = sup
{∫

M
f∗dµ0 −

∫
M
fdµ1

∣∣∣∣ f ∈ CLip
b (M)

}
,

where f∗(x) := inf{f(y) + d(x, y)p}. In particular,

W1(µ0, µ1) = sup
{∫

M
fd(µ0 − µ1)

∣∣∣∣ f : M → R 1-Lipschitz
}
.

The latter one is called the Kantorovich-Rubinstein formula.

To state the second property, we review the notion of geodesic distance. We call
the distance d a geodesic distance when there exists a curve γ : [0, 1] →M (of constant
speed) from x to y whose length realizes the distance between x and y for any x, y ∈M .
More precisely, the curve γ : [0, 1] →M appeared in the last sentence satisfies γ(0) = x,
γ(1) = y and d(γ(s), γ(t)) = d(x, y)|s − t| for each s, t ∈ [0, 1]. We call such a curve
geodesic (of constant speed). Let Γ([0, 1];M) be the set of constant speed geodesics
γ : [0, 1] → M with the topology of uniform convergence. We denote the evaluation
map Γ([0, 1];M) → M at t ∈ [0, 1] by et. That is, et(γ) := γ(t) for γ ∈ Γ([0, 1];M).
We denote the push-forward of a measure µ by a map f by f#µ.

Theorem 2 (Displacement interpolation; e.g. [38, Corollary 7.22])
Suppose d to be a geodesic distance and p ∈ (1,∞). For µ0, µ1 ∈ Pp(M), There

exists Ξ ∈ P(Γ([0, 1];M)) such that e#i Ξ = µi for i = 0, 1 and

Wp(e
#
t Ξ, e#s Ξ) =

{∫
Γ([0,1];M)

d(et(γ), es(γ))pΞ(dγ)

}1/p

= |s− t|Wp(µ0, µ1).



In particular, (e#t Ξ)t∈[0,1] is a constant-speed geodesic on (Pp(X),Wp) joining µ0 and
µ1, and hence Wp is a geodesic distance on Pp(M). Ξ is called a dynamical coupling
of µ0 and µ1.

As mentioned above, the Wasserstein distance has appeared in several different
contexts. In what follows, among them, we will concentrate on its connection with
couplings of diffusion processes. For other topics, I just demonstrate some (incomplete)
references.

• [32] for a general reference on optimal transportation other than [37, 38].

• [19, 35] for a general reference of coupling methods.

• [10, 11] for a recent development in coupling methods for SPDE.

• [9] for transport inequalities, which is a functional inequality involving the Wasser-
stein distance.

2 Wasserstein contraction and equivalent conditions

As a simple example, let us consider the following SDE on Rm:

dXx(t) =
√

2dBt −∇V (Xx
t )dt,

Xx(0) = x,

where V ∈ C∞(Rm) with ∇2V ≥ K for some K ∈ R. Then a coupling argument easily
yields the following estimate of the Wasserstein distance: for p ∈ [1,∞],

Wp((Xx(t))#P, (Xy(t))#P) ≤ e−Ktd(x, y).

A condition of this kind is known to be equivalent to several geometric or analytic
conditions for Brownian motions on a Riemannian manifold:

Theorem 3 (see [39] and references therein)
Let M be a complete Riemannian manifold and Pt the heat semigroup on M . Then,

for K ∈ R, the following conditions are equivalent:

(a) W2(P ∗
t µ0, P

∗
t µ1) ≤ e−KtW2(µ0, µ1) for t > 0 and µ0, µ1 ∈ P2(X).

(b) Ric ≥ K, where Ric stands for the Ricci curvature.

(c) |∇Ptf |(x)2 ≤ e−2KtPt(|∇f |2)(x) for t > 0, x ∈M and f ∈ CLip(M).

(d) Ent is K-convex with respect to W2, i.e., for any W2-geodesic µt in P2(M),

Ent(µt) ≤ (1 − t) Ent(µ0) + tEnt(µ1) −
K

2
t(1 − t)W2(µ0, µ1)2.

Here Ent : P(X) → R̄ is the relative entropy defined by

Ent(µ) :=
∫

M
ρ(x) log ρ(x) dx

when µ(dx) = ρ(x) dx with
∫

M
ρ(x)[log ρ(x)]+dx <∞ and ∞ otherwise.



In differential geometry, the condition (b) has been studied well, especially in the
case K > 0 or K = 0 (see e.g. [30]). The condition (c) is so-called Bakry-Émery’s
(L2-)gradient estimate. It has several applications in analysis, especially in functional
inequalities (see e.g. [5, 18]). The condition (d) is closely related to the theory of
gradient flow on (P2(M),W2), which will be studied below.

3 Coupling by parallel transport

In Theorem 3, one direct way to prove (a) from (b) is to construct a coupling of two
Brownian motions by parallel transport of infinitesimal motions. The resulted coupling
(B(1)

t , B
(2)
t ) satisfies

d(B(1)(t), B(2)(t)) ≤ e−Ktd(B(1)(0), B(2)(0)) (1)

for all t ≥ 0 P-almost surely when Ric ≥ K. By taking an expectation, this inequality
yields not only (a), or theW2-contraction, but aWp-contraction with p ∈ [1,∞]. For the
construction, we can make it by solving a (degenerated) SDE on M ×M if the distance
function d has no other singularity than that on the diagonal set {(x, x) | x ∈ M}.
Therefore, almost all technical difficulties arises from the singular points of the distance
function, or the cut locus. See [14, 41] and references therein for more details.

This idea of constructing a coupling by parallel transport works in a more general
framework. An important extension is done on manifolds whose metric g(t) depends
on time parameter t and evolves as a backward Ricci flow, i.e.,

∂tg(t) = 2 Ricg(t), t ∈ [0, T ]. (2)

Note that the condition (2) would imply a sort of time-dependent analogue of non-
negative Ricci curvature. As a direct extension of (1), we can obtain

dt(B(1)(t), B(2)(t)) ≤ d0(B(1)(0), B(2)(0))

for t ≥ 0 P-almost surely, where ds is the distance function associated with the metric
at time s (see [4, 13]; see [23] also). In addition, there is analogous but different
contraction property, which is associated with the Perelman’s L-functional instead of
the squared distance. Let Rg(τ) be the scalar curvature with respect to the metric g(τ).
For a C1-curve γ : [τ1, τ2] →M ,

L(γ) :=
∫ τ2

τ1

√
τ

(
|γ̇(τ)|2g(τ) +Rg(τ)(γ(τ))

)
dτ.

By using this functional L, we define L(τ1, x; τ2, y) by

L(τ1, x; τ2, y) := inf {L(γ) | γ : [τ1, τ2] →M,γ(τ1) = x, γ(τ2) = y} .

Let us define a normalized L-function as follows:

Θt(x, y) := 2(
√
τ̄2t−

√
τ̄1t)L(τ̄1t, x; τ̄2t, y) − 2m(

√
τ̄2t−

√
τ̄1t)2,

where τ̄1 < τ̄2 are normalizing constants and m := dimM .



Theorem 4 ([16]; see [36] also)
Suppose

inf
X∈TM
t∈[0,T ]

Ricg(t)(X,X)
g(t)(X,X)

> −∞.

Then there exists a coupling of g(τ)-Brownian motions (X0(τ), X1(τ))τ s.t.

(Θt(X0(τ̄1t), X1(τ̄2t)))t∈[1,T/τ̄2]

is a supermartingale.

4 Dual approach

There is a deep connection between the condition (a) and the condition (c) beyond
the framework in Theorem 3. Again, let M be a Polish space. Instead of the heat
semigroup, we consider a Markov kernel p(x, ·) ∈ P(M) (x ∈ M). We denote the
action of this Markov kernel to functions and to probability measures by P and P ∗

respectively. Let us define a “modulus of gradient” |∇f | of a function on M as the
local Lipschitz constant. That is,

|∇f |(x) := lim sup
y→x

|f(x) − f(y)|
d(x, y)

.

Theorem 5 ([K.] cf. [15])

For p, q ∈ [1,∞] with
1
p

+
1
q

= 1, and a constant C > 0, the following are equivalent:

(i) Wp(P ∗µ0, P
∗µ1) ≤ CWp(µ0, µ1) for any µ0, µ1 ∈ P(M).

(ii) |∇Pf |(x) ≤ CP (|∇f |q)(x)1/q for any x ∈ M and f ∈ CLip(M), where the right
hand side must be replaced with ‖∇f‖∞ when q = ∞.

By using this duality, we can obtain an estimate of Wasserstein distance like (i) for a
semigroup associated with a hypoelliptic diffusion (see [15] for details). It should be
remarked that no coupling methods are known to obtain such an estimate for those
hypoelliptic diffusion processes.

For this duality, it is essential that the action of the Markov kernel to functions
or probability measures are linear. Indeed, there naturally appears a nonlinear heat
equation on a Finsler manifold [27]. In these cases, we can formulate conditions corre-
sponding to (a)-(d) in Theorem 3. Then (b) and (d) are equivalent and it implies (c)
[25, 27]. However, (a) typically does not hold [26].

5 Heat distribution as a gradient flow on P2(M)

An important connection between the theory of Optimal transportation and stochastic
analysis is in the fact that the heat distribution (µt)t≥0, which is obviously a curve in
P(M), can be regarded as a gradient curve of the relative entropy Ent on (P2(M),W2).
This viewpoint was proposed by Otto [12, 28, 29]. See [3, 38] for a rigorous treatment
of the gradient flow in a fairly general framework. Based on this viewpoint, heuristic



argument yields an easy derivation of (a) from (d) in Theorem 3 (see below). Actually,
for the heat distributions on compact Alexandrov spaces, the property (a) is shown by
making this heuristic argument rigorous. That is,

Theorem 6 ([31] for (i), [24] for (ii), [8] for (iii))
Let M be a compact m-dimensional Alexandrov space with curvature bounded from

below by k. Then the following holds:

(i) The condition (d) in Theorem 3 holds for K = (m− 1)k.

(ii) Any pair of gradient curves (µ(1)
t , µ

(2)
t )t of Ent satisfies

W2(µ
(1)
t , µ

(2)
t ) ≤ e−KtW2(µ

(1)
0 , µ

(2)
0 ).

(iii) Any gradient curve of µt equals P ∗
t µ0, where Pt is the heat semigroup associated

with the canonical Dirichlet form on L2(M) constructed in [17].

By passing through the duality argument in Theorem 5, we obtain the Lipschitz con-
tinuity of the heat kernel or eigenfunction of the Laplacian as an application of The-
orem 6 (iii). Since the set of singular points where usual differential calculus cannot
work can be dense on Alexandrov spaces, such a regularity is totally non-trivial.

Along the argument in [8] with several extensions of techniques, this approach is
generalized in the framework of metric measure spaces in [1, 2] with a lower Ricci
curvature bound in the sense of Sturm-Lott-Villani [20, 33, 34]. Under an additional
assumption, they constructed a Dirichlet form based via a Cheeger type energy. More-
over, they obtained the property (a) for the associated heat semigroup by identifying
it with the gradient of relative entropy. Note that such an approach are also done for
Markov chains by introducing a suitable distance function [7, 21].

To explain a heuristic reason why Ent produces the heat flow, we restrict ourselves
into the case M = Rm. To formulate a gradient flow, we requires a notion of tan-
gent space over P2(Rm) and Riemannian metric on it. Let Pac

2 (M) be a subset of
P2(M) consisting of probability measures being absolutely continuous with respect to
the Lebesgue measure. For µ0, µ1 ∈ Pac

2 (M), there exists a convex function ϕ on Rm

such that (∇ϕ)#µ0 = µ1 and∫
Rm

|x−∇ϕ(x)|2µ0(dx) = W2(µ0, µ1)2.

Moreover, a map ξ : Rm → Γ([0, 1]; Rm) defined by ξ(x) := ((1 − t)x + t∇ϕ(x))t≥0

induces a dynamical coupling of µ0 and µ1 in the sense of Theorem 2 by pushing forward
µ0 by ξ (see [6, 22]; see [37, 38] also). From this property it seems to be natural to
define the tangent space TµP(M) and a Riemannian metric σ on it as follows:

TµP(M) := {∇ϕ | ϕ ∈ C∞(Rm)}L2(µ)
,

σ(∇ϕ,∇ψ)(µ) :=
∫

Rm

〈∇ϕ,∇ψ〉dµ.

On this formal Riemannian structure, a natural family of curves emanating from µ ∈
P(M) are given by the push-forward of µ by a one-parameter semigroup of a gradient



flow Φt of a (spatially) smooth functions ϕt on Rm. Then the resulted curve µt = Φ#
t µ

satisfies the following continuity equation in the weak sense:

∂tµt − divµt(∇ϕt)µt = 0. (3)

From these observation, we can conclude that

∇Ent(µ) =
∇ρ
ρ

if µ(dx) = ρ(x)dx.

By combining it with (3), we can easily verify that a gradient curve of Ent solves the
heat equation in the weak sense.

6 Curvature-dimension conditions

As an extension of the condition (c), F.-Y. Wang [40] introduced the following functional
inequality

|∇Ptf |(x)2 ≤ e−2KtPt(|∇f |2)(x) −
1 − e−2Kt

KN
(∆Ptf(x))2 (4)

on a complete Riemannian manifold M . He proved that it is equivalent to the Bakry-
Émery’s curvature-dimension inequality

1
2
∆|∇f |2 − 〈∇∆f,∇f〉 ≥ K|∇f |2 +

1
N

(∆f)2,

which is known to be equivalent to Ric ≥ K and dimM ≤ N .
By following a duality argument in section 4, we obtain an equivalent estimate of

the L2-Wasserstein distance between heat distributions as follows:

Theorem 7 [K.]
For the heat semigroup Pt on a complete Riemannian manifold M , the inequality

(4) is equivalent to the following inequality: For s > t and µ0, µ1 ∈ P(M),

W2(P ∗
t µ0, P

∗
s µ1)2 ≤ e−2Kt − e−2Ks

2K(s− t)
W2(µ0, µ1)2 + (s− t)

∫ s

t

NK

e2Ku − 1
du.

Note that we can recover the condition (a) in Theorem 3 from this inequality by taking
a limit s ↓ t.
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