Optimal transport and coupled diffusion by reflection

Kazumasa Kuwada*

(Graduate school of Humanities and Sciences, Ochanomizu university)

This talk is based on a joint work with Karl-Theodor Sturm (Universität Bonn).

Given $-\infty < T_1 < T_2 \leq \infty$, let M be an m-dimensional manifold with $\partial M = \emptyset$ and $m \geq 2$, and $(g(t))_{t \in [T_1, T_2]}$ a family of smooth complete Riemannian metrics on M. Let Δ_t, ∇^t , Ric_t and d_t be the Laplace-Beltrami operator, the covariant derivative, the Ricci curvature and the Riemannian distance with respect to g(t) respectively. Take a family of C^1 -vector fields $(Z(t))_{t \in [T_1, T_2]}$ on M which is continuous as a function of t. Let $(X(t))_{t \in [T_1, T_2]}$ be a diffusion process associated with a time-dependent generator $\mathscr{L}_t := \Delta_t/2 + Z(t)$. Let $(\nabla Z(t))^{\flat}$ be a (0, 2)-tensor given by

$$(\nabla Z(t))^{\flat}(V_1, V_2) := \frac{1}{2} \left(\langle \nabla_{V_1}^t Z(t), V_2 \rangle + \langle \nabla_{V_2}^t Z(t), V_1 \rangle \right).$$

Assumption 1 Given $K \in \mathbb{R}$ and $N \in [m, \infty]$, the following holds:

- (i) When $N = \infty$, $2(\nabla Z(t))^{\flat} + \partial_t g(t) \leq \operatorname{Ric}_t Kg(t)$.
- (ii) When $N < \infty$, g(t) is independent of t and

$$\frac{4}{N-m}Z(t)\otimes Z(t)+2(\nabla Z(t))^{\flat}\leq \operatorname{Ric}_t-Kg(t).$$

Note that the condition (ii) means that the N-dimensional Bakry-Émery Ricci tensor associated with \mathscr{L}_t is bounded from below by K.

The first goal of this talk is to show that the so-called coupling by reflection or the Kendall-Cranston coupling (see [1, 3] and references therein) yields the monotonicity of an optimal transportation cost. To begin with, we introduce some notations in order to describe the cost function. Let $K \in \mathbb{R}$ and $N \in [m, \infty]$. Set $\overline{R} \in (0, \infty]$ by

$$\bar{R} := \begin{cases} \sqrt{\frac{N-1}{K}} \pi & \text{if } K > 0, \\ \infty & \text{otherwise.} \end{cases}$$

Note that diam $(M) \leq R$ under Assumption 1. Moreover, diam $(M) = R < \infty$ holds if and only if $Z(t) \equiv 0$ and M is isometric to the sphere of constant sectional curvature K/(m-1) (see [2]). We define s_K and c_K as a usual comparison function as follows:

$$s_{K}(\theta) := \begin{cases} \frac{1}{\sqrt{K}} \sin(\sqrt{K}\theta) & K > 0, \\ \theta & K = 0, \\ \frac{1}{\sqrt{-K}} \sinh(\sqrt{-K}\theta) & K < 0, \end{cases} \qquad c_{K}(\theta) := \begin{cases} \cos(\sqrt{K}\theta) & K > 0, \\ 1 & K = 0, \\ \cosh(\sqrt{-K}\theta) & K < 0 \end{cases}$$

and $t_K := s_K/c_K$. Let $\Psi = \Psi_{K,N} : (-\bar{R}, \bar{R}) \to \mathbb{R}$ be given by

$$\Psi_{K,N}(u) := \begin{cases} -Kt_{K/(N-1)}\left(\frac{u}{2}\right) & \text{if } N < \infty, \\ -\frac{K}{2}u & \text{otherwise.} \end{cases}$$

*URL: http://www.math.ocha.ac.jp/kuwada e-mail: kuwada.kazumasa@ocha.ac.jp

Let us define a diffusion process $\rho(t)$, $t \in [T_1, T_2]$ on $(-\bar{R}, \bar{R})$ with an initial condition $\rho(T_1) = a \in [0, \bar{R})$ by

$$d\rho(t) = 2d\beta(t) + \Psi(\rho(t))dt$$

For $t \in [T_1, T_2]$, let us define $\varphi_t : [0, \infty) \to [0, 1]$ by

$$\varphi_t(a) := \mathbb{P}[\rho(s) > 0 \text{ for } s \in [T_1, t + T_1]].$$

By using it, we state our main theorems as follows:

Theorem 1 Under Assumption 1, for any $x_1, x_2 \in M$, let $\mathbf{X}(t) = (X_1(t), X_2(t))_{t\geq 0}$ be a coupling by reflection of two \mathscr{L}_t -diffusion processes starting from (x_1, x_2) , constructed in [1]. Then, for any $t \in [T_1, T_2]$, $\mathbb{E}[\varphi_{t-s}(d_s(\mathbf{X}(s)))]$ is a nonincreasing function of $s \in [T_1, t]$.

Theorem 2 For a probability measure $\mu^{(i)}$ on M, let $\mu_t^{(i)}$ be a distribution of X(t) under $\mathbb{P}_{\mu^{(i)}}$ (i = 1, 2). For $t, s \in [T_1, T_2]$ with $s \leq t$, let $\mathcal{T}_{\varphi_{t-s}(d_s)}(\mu_s^{(1)}, \mu_s^{(2)})$ be the optimal transportation cost between $\mu_s^{(1)}$ and $\mu_s^{(2)}$ associated with the cost function $\varphi_{t-s}(d_s)$, that is,

$$\mathcal{T}_{\varphi_{t-s}(d_s)}(\mu_s^{(1)}, \mu_s^{(2)}) := \inf\left\{ \int_{M \times M} \varphi_{t-s}(d_s(x, y)) \pi(dx dy) \ \middle| \ \pi \text{ is a coupling of } \mu_s^{(1)} \text{ and } \mu_s^{(2)} \right\}.$$

Then, for any $t \in [T_1, T_2]$, $\mathcal{T}_{\varphi_{t-s}(d_s)}(\mu_s^{(1)}, \mu_s^{(2)})$ is an nonincreasing function of $s \in [T_1, t]$.

In what follows, we will state some additional results related to Theorem 1.

- In the case $N < \infty$, t = s and $\mu^{(i)} = \delta_{x_i}$, Theorem 2 means that the total variation between $\mu_t^{(1)}$ and $\mu_t^{(2)}$ is bounded from above by that between two heat distributions in the space form of dimension N and constant sectional curvature K/(N-1) with initial distribution δ_{y_1} and δ_{y_2} , where y_1 and y_2 will be chosen to satisfy $d(x_1, x_2) = d(y_1, y_2)$ (when $N = \infty$, distributions of an Ornstein-Uhlenbeck process appears instead)
- We can give an explicit expression of φ_t . In any case, $\varphi_t(\cdot)$ is concave.
- Theorem 2 implies a gradient bound of the following type for the diffusion semigroup P_t :

$$\|\nabla P_t f\|_{\infty} \le C(t)(\sup f - \inf f).$$

It immediately yields the strong Feller property. Moreover, when $K \ge 0$, $\lim_{t\to\infty} C(t) = 0$ holds. This fact implies the Liouville property when g(t) is independent of t.

• The monotonicity in Theorem 2 is preserved under the Gromov-Hausdorff convergence with a uniform upper dimension bound and a uniform lower Ricci curvature bound (when the corresponding heat flow also converges; it certainly holds when $Z \equiv 0$ and M is compact). Thus the conclusion of the last item is still valid for the Gromov-Hausdorff limit.

References

- [1] K. Kuwada. Convergence of time-inhomogeneous geodesic random walks and its application to coupling methods. to appear in Ann. Probab.
- [2] K. Kuwada. A probabilistic approach to the maximal diameter theorem. preprint. available at: http://www.math.ocha.ac.jp/kuwada/papers.html.
- [3] F.-Y. Wang. Functional inequalities, Markov semigroups, and spectral theory. Mathematics Monograph Series 4. Science Press, Beijing, China, 2005.