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This talk is based on a joint work with Karl-Theodor Sturm (Universität Bonn).
Given −∞ < T1 < T2 ≤ ∞, let M be an m-dimensional manifold with ∂M = ∅ and

m ≥ 2, and (g(t))t∈[T1,T2] a family of smooth complete Riemannian metrics on M . Let ∆t, ∇t,
Rict and dt be the Laplace-Beltrami operator, the covariant derivative, the Ricci curvature and
the Riemannian distance with respect to g(t) respectively. Take a family of C1-vector fields
(Z(t))t∈[T1,T2] on M which is continuous as a function of t. Let (X(t))t∈[T1,T2] be a diffusion
process associated with a time-dependent generator Lt := ∆t/2 + Z(t). Let (∇Z(t))[ be a
(0, 2)-tensor given by

(∇Z(t))[(V1, V2) :=
1
2

(
〈∇t

V1
Z(t), V2〉 + 〈∇t

V2
Z(t), V1〉

)
.

Assumption 1 Given K ∈ R and N ∈ [m,∞], the following holds:

(i) When N = ∞, 2(∇Z(t))[ + ∂tg(t) ≤ Rict − Kg(t).

(ii) When N < ∞, g(t) is independent of t and

4
N − m

Z(t) ⊗ Z(t) + 2(∇Z(t))[ ≤ Rict − Kg(t).

Note that the condition (ii) means that the N -dimensional Bakry-Émery Ricci tensor associated
with Lt is bounded from below by K.

The first goal of this talk is to show that the so-called coupling by reflection or the Kendall-
Cranston coupling (see [1, 3] and references therein) yields the monotonicity of an optimal
transportation cost. To begin with, we introduce some notations in order to describe the cost
function. Let K ∈ R and N ∈ [m,∞]. Set R̄ ∈ (0,∞] by

R̄ :=


√

N − 1
K

π if K > 0,

∞ otherwise.

Note that diam(M) ≤ R̄ under Assumption 1. Moreover, diam(M) = R̄ < ∞ holds if and only
if Z(t) ≡ 0 and M is isometric to the sphere of constant sectional curvature K/(m−1) (see [2]).
We define sK and cK as a usual comparison function as follows:

sK(θ) :=


1√
K

sin(
√

Kθ) K > 0,

θ K = 0,
1√
−K

sinh(
√
−Kθ) K < 0,

cK(θ) :=


cos(

√
Kθ) K > 0,

1 K = 0,

cosh(
√
−Kθ) K < 0

and tK := sK/cK . Let Ψ = ΨK,N : (−R̄, R̄) → R be given by

ΨK,N (u) :=

−KtK/(N−1)

(u

2

)
if N < ∞,

−K

2
u otherwise.
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Let us define a diffusion process ρ(t), t ∈ [T1, T2] on (−R̄, R̄) with an initial condition ρ(T1) =
a ∈ [0, R̄) by

dρ(t) = 2dβ(t) + Ψ(ρ(t))dt.

For t ∈ [T1, T2], let us define ϕt : [0,∞) → [0, 1] by

ϕt(a) := P[ρ(s) > 0 for s ∈ [T1, t + T1]].

By using it, we state our main theorems as follows:

Theorem 1 Under Assumption 1, for any x1, x2 ∈ M , let X(t) = (X1(t), X2(t))t≥0 be a
coupling by reflection of two Lt-diffusion processes starting from (x1, x2), constructed in [1].
Then, for any t ∈ [T1, T2], E [ϕt−s(ds(X(s)))] is a nonincreasing function of s ∈ [T1, t].

Theorem 2 For a probability measure µ(i) on M , let µ
(i)
t be a distribution of X(t) under Pµ(i)

(i = 1, 2). For t, s ∈ [T1, T2] with s ≤ t, let Tϕt−s(ds)(µ
(1)
s , µ

(2)
s ) be the optimal transportation

cost between µ
(1)
s and µ

(2)
s associated with the cost function ϕt−s(ds), that is,

Tϕt−s(ds)(µ
(1)
s , µ(2)

s ) := inf
{∫

M×M
ϕt−s(ds(x, y))π(dxdy)

∣∣∣∣ π is a coupling of µ
(1)
s and µ

(2)
s

}
.

Then, for any t ∈ [T1, T2], Tϕt−s(ds)(µ
(1)
s , µ

(2)
s ) is an nonincreasing function of s ∈ [T1, t].

In what follows, we will state some additional results related to Theorem 1.

• In the case N < ∞, t = s and µ(i) = δxi , Theorem 2 means that the total variation between
µ

(1)
t and µ

(2)
t is bounded from above by that between two heat distributions in the space

form of dimension N and constant sectional curvature K/(N − 1) with initial distribution
δy1 and δy2 , where y1 and y2 will be chosen to satisfy d(x1, x2) = d(y1, y2) (when N = ∞,
distributions of an Ornstein-Uhlenbeck process appears instead)

• We can give an explicit expression of ϕt. In any case, ϕt(·) is concave.

• Theorem 2 implies a gradient bound of the following type for the diffusion semigroup Pt:

‖∇Ptf‖∞ ≤ C(t)(sup f − inf f).

It immediately yields the strong Feller property. Moreover, when K ≥ 0, lim
t→∞

C(t) = 0

holds. This fact implies the Liouville property when g(t) is independent of t.

• The monotonicity in Theorem 2 is preserved under the Gromov-Hausdorff convergence with
a uniform upper dimension bound and a uniform lower Ricci curvature bound (when the
corresponding heat flow also converges; it certainly holds when Z ≡ 0 and M is compact).
Thus the conclusion of the last item is still valid for the Gromov-Hausdorff limit.
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