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91 Framework



M : m-dim. manifold, 0 < T7; < T5 < o©
(g(t))te[r,, 1) sSmooth complete
Riemannian metrics on M
o —m 0

(X (t))te(my,121- g(t)-Brownian motion, i.e.

f(t, X(t)) — f(T1, X(T1))

- Aya) f(s, X (s))ds

t(a
J Ty US

IS a local martingale for ¥V f: smooth
(Construction: [Coulibaly '09] via SDE on F(M))




92 Coupling by reflection




Theorem 1 [K. "10]
Suppose 3K € R s.t.
Btg(t) < 2 Rng(t) — 2K (*)




Theorem 1 [K. "10]
Suppose 3K € R s.t.
0:g(t) < 2Ricyy) —2K (x)
= 3(X1(t), X2(t)): coupling of g(t)-BMs s.t.
P[X1(s) # Xa(s) for Th < s < t]

<P _T1i<nsf<t Udg(Tl)(X1(0)7X2(O))(S) > O_

where U, (t) solves U,(T7) = a and
dU, (t) = 2vV2dW (t) — KU, (t)dt




Remarks

e Heuristically,
“dg)(X1(t), X2(t)) < U(t)" = Thm

e [Thm implies the following gradient estimate:

K
|dPT1,tf|9(T1) S \/27‘(‘(6K(t_T1) - 1) ”f”oo

backward Ricci flow (K = 0 & “=" in (%))
= [Coulibaly '09] via stoch. diff. geom.




33 ldea of the proof




Construct (X4 (%), X2(t))
where d X2 (t) = “(local) reflection” of d X (%)
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Construct (X4 (%), X2(t))
where d X2 (t) = “(local) reflection” of d X (%)




Construct (X1(t), X2(1))
where d X2 (t) = “(local) reflection” of d X (%)
= For p(t) := dgt)(X1(t), X2()),

dp(t) = 2v/2dW (t) + dA; — dL,




dp(t) = 2+/2dW (t) + dA; — dL;
o (reflection) ~» 2/2dW (t)
o (x) =>dA: < —Kp(t)dt

e [.; > 0: "local time” at singular points of d )

= p(t) S U(¢t)
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Approximation by coupled RWs (X (¢), X, (%))
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TXs(tn)M +1

E tn —
X (tn—H_) - — eXPg{(e(t)n)(fn 1) D




Approximation by coupled RWs (X (¢), X, (%))

M
/ } €n+1 AN

TXe (tn) M

- tn
X (tnt1) 1= exp‘}ée(t)n)(& 1)
)

dp (t) < 2+/2dW*(t) — Kdp (t)dt

with high probability (— 1 as € — 0)

(We can avoid to extract “/1.;")



Invariance principle for X ¢

e [ightness

e Uniqueness of the mart. pbm. for 9; + A, (.

Key estimate for tightness

lim P, | sup dgs)(0, X (8)) > R
R—o0 _O<s<t

(cf. [K.-Philipowski '09] for X (%))

|dea of the Proof
o (discrete) Itd formula for dg(+) (0, X (1))




Related results
e The case O:g(t) =0

o SDE approach: [Kendall '86], [Cranston '91],
[F.-Y. Wang '94,'05]

o Approx. by RWSs: [von Renesse '04], (K. "10]

e Coupling by parallel transport

o [McCann & Topping 10}
K = 0, M: cpt. via optimal transport

o [Arnaudon, Coulibaly & Thalmaier '10]
via stoch. diff. geom.




94 Coupling by L-parallel transport

(joint work with R. Philipowski)




Perelman’s L-distance

BAEE [7'1,7'2] — M, [7'1,7'2] C [T1,T2]

T2

L= | V7 (IFO P + By (2(7)) dr

T1

L(11,x;7T2,y) := inf {E('Y)

Normalization
Given T7; < 71 < 75 < Ty,

7(71) — L,
Y(T2) = ¥y

O(t,z,y) := 2( Tol =N/ T1t)L(7T1t, 25 721, y)




Theorem 2 [K. & Philipowski "10]
Suppose 0:g(t) = 2 Ric, ),

sup  [Rmyg(r)|g(r)(x) < 00
cceM,Trc|[Ty,T5]

3(X1(7), X2(7)): coupling of g(7)-BMs

IS @ supermartingale

=> recover the monotonicity of the normalized
L-optimal transport in [Topping '09]




Strategy of the Proof

e Properties of L£-distance
being analogous to the Riem. distance

o L-geodesic, 1st & 2nd variation of L-length,
L-index lemma, L-cut locus

e Approximation by RWs

e Coupling of dX73(7:%) and dX5(727) by
spacetime-parallel transport along L£-geodesic




