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This talk is based on [3], a joint work with N. Gigli and S. Ohta.
Let (X, d) be a compact Alexandrov space of curvature bounded from below by k ∈ R (e.g.

a compact Riemannian manifold). Suppose n = dimH X ∈ N. Let Hn be the n-dimensional
Hausdorff measure, which will be regarded as a canonical base measure on X. In what follows,
we consider two different ways to define “heat distribution” on X.

First we deal with the Dirichlet energy. By using properties of the distance d, we can define
a weak gradient ∇f as well as a canonical Hilbertian metric 〈∇f,∇f〉 (see [5]). By using these
notions, we define the energy functional E on L2(X) by

E(f, f) :=
∫

X
〈∇f,∇f〉dHn.

and a first order L2-Sobolev space W 1,2(X). Note that Lip(X) is dense in W 1,2(X) and
〈∇f,∇f〉1/2 coincides with the local Lipschitz constant |∇df | Hn-a.e. for f ∈ Lip(X). More-
over, (E ,W 1,2(X)) becomes a strongly local regular Dirichlet form. We denote the associated
generator and semigroup by ∆ and Tt respectively. It is shown in [5] that Tt has a positive
Hölder-continuous density pt(x, y). Thus we can define Ttµ for any µ ∈ P(X).

Next we consider the gradient flow of the relative entropy on P(X). Recall that dW
2 stands

for the L2-Wasserstein distance on P(X). Note that (P(X), dW
2 ) becomes a geodesic metric

space. For µ ∈ P(X), we define the relative entropy by

Ent(µ) :=
∫

X
ρ log ρ dHn

when dµ = ρdHn and Ent(µ) = ∞ otherwise. For µ ∈ P(X) with Ent(µ) < ∞, we define the
local slope as

|∇−Ent|(µ) := lim sup
ν→µ

max{Ent(µ) − Ent(ν), 0}
W2(µ, ν)

.

We say that an absolutely continuous curve (µt)t≥0 in (P(X), dW
2 ) is a gradient flow of Ent if

Ent(µt) < ∞ for t ≥ 0 and

Ent(µt) = Ent(µs) +
1
2

∫ s

t
|µ̇r|2 dr +

1
2

∫ s

t
|∇−Ent|2(µr) dr

for all 0 ≤ t < s, where |µ̇s| := lim
h→0

1
h

dW
2 (µs+h, µs). This is one of possible formulations of

“∂rµr = −∇Ent(µr)” in this nonsmooth setting. To study more about it, we consider the
“curvature-dimension condition” CD(K,∞) given as follows: For K ∈ R, we say that (X, d,Hn)
enjoys CD(K,∞) when

Ent(νt) ≤ (1 − t)Ent(ν0) + tEnt(ν1) − Kt(1 − t)dW
2 (ν0, ν1)

for any minimal geodesic νt in (P(X), dW
2 ). The condition CD(K,∞) is known as a generalization

of the presence of a lower Ricci curvature bound by K. It is shown in [7] that (X, d,Hn) satisfies
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CD(K,∞) with K = (n − 1)k. Under CD(K,∞), we can apply the general theory of gradient
flows on a metric space to show the existence and the uniqueness ([2]; see [1] also). Moreover,
gradient flows µt and µ′

t of Ent satisfies the following contraction property (see [6]):

dW
2 (µt, µ

′
t) ≤ e−KtdW

2 (µ0, µ
′
0). (C2)

Thus we can extend the notion of the gradient flow of Ent for any initial condition µ0 ∈ P(X).
Under these formulations, our main theorem asserts the following:

Theorem 1 [3, Theorem 3.1] Given µ0 ∈ P(X), let µt be the gradient flow of the relative
entropy. Then µt = Ttµ0.

As a direct consequence of Theorem 1, we obtain (C2) for Ttµ0 and Ttµ
′
0 instead of µt and µ′

t.
By combining it with the result in [4] and a known regularity of Tt, we obtain the following:

Theorem 2 [3, Theorems 4.3,4.4 and 4.6] Suppose that CD(K,∞) holds.

(i) Let f ∈ W 1,2(X) and t > 0. Then Ttf ∈ Lip(X) and

|∇dTtf |(x) ≤ e−KtTt(|∇f |2)(x)1/2

holds for all x ∈ X. In particular, the following Bakry-Émery L2-gradient estimate holds:

|∇Ttf |(x) ≤ e−KtTt(|∇f |2)(x)1/2 for a.e. x.

(ii) pt(x, ·) ∈ Lip(X) and Ttf ∈ Lip(X) for all x ∈ X and f ∈ L1(X).

(iii) Let f be an L2-eigenfunction of ∆. Then f ∈ Lip(X).

(iv) A weak Γ2-condition

1
2

∫
X

∆g〈∇f,∇f〉dHn −
∫

X
g〈∇∆f,∇f〉dHn ≥ K

∫
X

g〈∇f,∇f〉dHn

holds for f ∈ D(∆) with ∆f ∈ W 1,2(X) and g ∈ D(∆) ∩ L∞
+ (X) with ∆g ∈ L∞(X).
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