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This talk is based on [3], a joint work with N. Gigli and S. Ohta.

Let (X, d) be a compact Alexandrov space of curvature bounded from below by k£ € R (e.g.
a compact Riemannian manifold). Suppose n = dimyg X € N. Let H" be the n-dimensional
Hausdorff measure, which will be regarded as a canonical base measure on X. In what follows,
we consider two different ways to define “heat distribution” on X.

First we deal with the Dirichlet energy. By using properties of the distance d, we can define
a weak gradient V f as well as a canonical Hilbertian metric (Vf, Vf) (see [5]). By using these
notions, we define the energy functional £ on L?(X) by

Ef f) = /X<Vf, Vf)dH".

and a first order L2-Sobolev space W?(X). Note that Lip(X) is dense in W12(X) and
(Vf, V)12 coincides with the local Lipschitz constant |V4f| H™-a.e. for f € Lip(X). More-
over, (£, W1%(X)) becomes a strongly local regular Dirichlet form. We denote the associated
generator and semigroup by A and T; respectively. It is shown in [5] that 7; has a positive
Holder-continuous density p;(x,y). Thus we can define T;u for any p € P(X).

Next we consider the gradient flow of the relative entropy on P(X). Recall that dj” stands
for the L2-Wasserstein distance on P(X). Note that (P(X),ds") becomes a geodesic metric
space. For u € P(X), we define the relative entropy by

Ent(u) ::/ plog pdH™
X

when dp = pdH"™ and Ent(u) = oo otherwise. For p € P(X) with Ent(u) < oo, we define the
local slope as

) max{Ent(u) — Ent(v),0}
V_Ent|(p) := limsup .
| () sy o)

We say that an absolutely continuous curve (ji);>0 in (P(X),d]") is a gradient flow of Ent if
Ent(u:) < oo for ¢ > 0 and

1 [° 1/
Ent(u:) = Ent(us) + 2/ || dr + 2/ |V_Ent|*(u,) dr
¢ t

1
for all 0 < t < s, where || = illin%) EdQW(,uerh,,us). This is one of possible formulations of

“Opptr = —VEnt(u,)” in this nonsmooth setting. To study more about it, we consider the
“curvature-dimension condition” CD(K, co) given as follows: For K € R, we say that (X, d, H™)
enjoys CD(K, c0) when

Ent(v¢) < (1 — t)Ent(vg) + tEnt(vy) — Kt(1 — t)dy" (vo, 1)

for any minimal geodesic v in (P(X),dy"). The condition CD(K, o) is known as a generalization
of the presence of a lower Ricci curvature bound by K. It is shown in [7] that (X, d, H") satisfies
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CD(K,00) with K = (n — 1)k. Under CD(K, c0), we can apply the general theory of gradient
flows on a metric space to show the existence and the uniqueness ([2]; see [1] also). Moreover,
gradient flows p; and pj of Ent satisfies the following contraction property (see [6]):

dy" (pe, py) < e K3 (o, pp). (Co)

Thus we can extend the notion of the gradient flow of Ent for any initial condition up € P(X).
Under these formulations, our main theorem asserts the following;:

Theorem 1 [3, Theorem 3.1] Given py € P(X), let py be the gradient flow of the relative
entropy. Then py = Tipg.

As a direct consequence of Theorem 1, we obtain (C2) for Tiuo and Ty instead of py and g
By combining it with the result in [4] and a known regularity of T}, we obtain the following:

Theorem 2 [3, Theorems 4.3,4.4 and 4.6] Suppose that CD(K,o0) holds.
(i) Let f € WH3(X) and t > 0. Then T,f € Lip(X) and
VaTf|(x) < e T (|V f?) () '/
holds for oll x € X. In particular, the following Bakry—E’mery L?-gradient estimate holds:
VTif|(z) < e MV ) (@) ? for ae. a.
(ii) pi(z,-) € Lip(X) and Ty f € Lip(X) for all z € X and f € L}(X).
(iii) Let f be an L*-eigenfunction of A. Then f € Lip(X).

(iv) A weak I'y-condition
! / Ag(Vf,V f)dH" / G(VAL VAR > K / GV £,V f)dH"
2 X X X

holds for f € D(A) with Af € WH(X) and g € D(A) N LS (X) with Ag € L (X).
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