Duality on gradient estimates and Wasserstein controls

Kazumasa Kuwada *

Graduate school of Humanities and Sciences, Ochanomizu university Institut für Angewandte Mathematik, Universität Bonn

Let (X, d) be a complete, separable, proper, length metric space (hence d is a geodesic distance). Let \tilde{d} be a continuous distance function on X, possibly different from d. Assume that \tilde{d} is also a geodesic distance.

For a measurable function f on X and $x \in X$, we define $|\nabla_d f|(x)$ and $\|\nabla_d f\|_{\infty}$ by

$$\begin{aligned} |\nabla_d f|(x) &:= \lim_{r \downarrow 0} \sup_{0 < d(x,y) \le r} \left| \frac{f(x) - f(y)}{d(x,y)} \right|, \\ \|\nabla_d f\|_{\infty} &:= \sup_{x \in X} |\nabla_d f|(x). \end{aligned}$$

Note that $\|\nabla_d f\|_{\infty} < \infty$ holds if and only if f is Lipschitz continuous. For two probability measures μ and ν on X, we denote the space of all couplings of μ and ν by $\Pi(\mu,\nu)$. That is, $\pi \in \Pi(\mu,\nu)$ means that π is a probability measure on $X \times X$ satisfying $\pi(A \times X) = \mu(A)$ and $\pi(X \times A) = \nu(A)$ for each Borel set A. For $p \in [1,\infty]$, we define $d_p^W(\mu,\nu)$ by

$$d_p^W(\mu,\nu) := \inf \left\{ \|d\|_{L^p(\pi)} \ \Big| \ \pi \in \Pi(\mu,\nu) \right\}.$$
(I)

We define $|\nabla_{\tilde{d}}f|(x)$, $\|\nabla_{\tilde{d}}f\|_{\infty}$ and \tilde{d}_{W}^{p} similarly by using \tilde{d} instead of d.

Set $\mathcal{P}(X)$ be the space of all probability measures on X equipped with the topology of weak convergence. Let $(P_x)_{x \in X}$ be a family of elements in $\mathcal{P}(X)$. Assume that $x \mapsto P_x$ is continuous as a map from X to $\mathcal{P}(X)$. Then $(P_x)_{x \in X}$ defines a bounded linear operator P on $C_b(X)$ by

$$Pf(x) := \int_X f(y) P_x(dy)$$

Let P^* be the adjoint operator of P. Note that $P^*(\mathcal{P}(X)) \subset \mathcal{P}(X)$ holds.

Assumption 1 There exists a positive Radon measure v on X such that

- (i) (X, d, v) enjoys the local volume doubling condition. That is, there are constants $D, R_1 > 0$ such that $v(B_{2r}(x)) \leq Dv(B_r(x))$ holds for all $x \in X$ and $r \in (0, R_1)$.
- (ii) (X, d, v) supports a $(1, p_0)$ -local Poincaré inequality for some $p_0 \ge 1$. That is, for every R > 0, there are constants $\lambda \ge 1$ and $C_P > 0$ such that, for any $f \in L^1_{loc}(v)$ and any upper gradient g of f,

$$\int_{B_r(x)} |f - f_{x,r}| \, dv \le C_P r \left\{ \int_{B_{\lambda r}(x)} g^{p_0} dv \right\}^{1/p_0} \tag{II}$$

holds for every $x \in X$ and $r \in (0, R)$, where $f_{x,r} := v(B_r(x))^{-1} \int_{B_r(x)} f dv$.

(iii) P_x is absolutely continuous with respect to v for all $x \in X$; $P_x(dy) = P_x(y)v(dy)$. In addition, the density $P_x(y)$ is continuous with respect to x.

^{*}Partially supported by JSPS fellowship for research abroad.

URL: http://www.math.ocha.ac.jp/kuwada e-mail: kuwada@math.ocha.ac.jp

For $p \in [1, \infty]$, we consider the following two properties:

(i) (L^p-gradient estimate) For all bounded, Lipschitz continuous $f : X \to \mathbb{R}$,

$$|\nabla_{\tilde{d}} Pf|(x) \le P(|\nabla_d f|^p)(x)^{1/p}, \qquad (\mathbf{G}_p)$$

for any $x \in X$ when $p < \infty$. When $p = \infty$,

$$\left\|\nabla_{\tilde{d}} P f\right\|_{\infty} \le \left\|\nabla_{d} f\right\|_{\infty}.$$
 (**G**_{\infty})

(ii) (L^p -Wasserstein control) For all $\mu, \nu \in \mathcal{P}(X)$,

$$d_p^W(P^*\mu, P^*\nu) \le \tilde{d}_p^W(\mu, \nu). \tag{C}_p$$

Theorem 1 Let $p, q \in [1, \infty]$ with $p^{-1} + q^{-1} = 1$. Then the following assertions hold.

- (i) (\mathbf{C}_p) implies (\mathbf{G}_q) .
- (ii) Suppose that Assumption 1 holds. Then (\mathbf{G}_q) implies (\mathbf{C}_p) .

Example 1

- (i) Let (X, d) be a complete Riemannian manifold, $P = P_t$ the heat semigroup and $\tilde{d} = e^{-kt}d$. Then \mathbf{G}_q (for some $q \in [1, \infty]$) or \mathbf{C}_p (for some $p \in [1, \infty]$) is equivalent to Ric $\geq k$ [4].
- (ii) Let X be a Lie group of type H (e.g. a Heisenberg group), d the Carnot-Caratheodory distance and $P = P_t$ the heat semigroup associated with the canonical sub-Laplacian. Then (G_1) holds for any $f \in C_c^1(X)$ with $\tilde{d} = Kd$ for some K > 1 [2].
- (iii) Let (X, d) be a Lie group with a bracket generating family $\{X_i\}_{i=1}^n$ of left-invariant vector fields, d the associated Carnot-Caratheodory distance and $P = P_t$ the heat semigroup associated with $\sum_{i=1}^n X_i^2$. Then (G_p) holds for p > 1 for any $f \in C_c^\infty(X)$ with $\tilde{d} = K_p(t)d$ for $K_p(t) > 1$ [3]. If G is nilpotent, $K_p(t) \equiv K_p$ for some constant $K_p > 1$.

Assumption 1 is satisfied in the cases (ii)(iii). We can apply Theorem 1 to show (\mathbf{C}_{∞}) or (\mathbf{C}_q) $(1 \leq q < \infty)$ respectively.

For the proof of Theorem 1 (ii), we use a general theory of Hamilton-Jacobi semigroup developed in [1]. Given $p \in [1, \infty)$, we define $Q_t f$ by $Q_t f(x) := \inf_{y \in X} [f(y) + p^{-1}t^{p-1}d(x, y)^p]$ for bounded continuous function f. Under Assumption 1 (i)(ii), for t > 0 and v-a.e. $x \in X$,

$$\lim_{s\downarrow 0} \frac{Q_{t+s}f(x) - Q_tf(x)}{s} = -\frac{1}{q} |\nabla_d Q_t f|(x)^q.$$

References

- Z.M. Balogh, A. Engoulatov, L. Hunziker, and O.E. Maasalo. Functional inequalities and Hamilton-Jacobi equations in geodesic spaces. preprint; arXiv:0906.0476.
- [2] N. Eldredge. Gradient estimates for the subelliptic heat kernel on H-type groups. preprint; arXiv:0904.1781.
- [3] T. Melcher. Hypoelliptic heat kernel inequalities on Lie groups. Stochastic Process. Appl., 118(3):368–388, 2008.
- [4] M.-K. von Renesse and K.-Th. Sturm. Transport inequalities, gradient estimates, entropy and Ricci curvature. Comm. Pure. Appl. Math., 58(7):923–940, 2005.