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Abstract

We study large deviations and their rate functions in the framework of current-
valued stochastic processes. The processes we consider are determined by stochastic
line integrals of 1-forms on a compact Riemannian manifold. Two different types
of large deviations are proved, corresponding to the conditions on the decay rate
of the process. We obtain explicit expressions of their rate functions, which enable
us to observe their difference more closely and give clues to know the influence of
the geometric structure on the stochastic processes. Our theorems provide a unified
viewpoint of various limit theorems such as the large deviation for empirical means
and the Strassen law of the iterated logarithms. With the aid of these estimates,
we give a probabilistic approach to the analysis on noncompact Abelian covering
manifolds.
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3.3.2 Extension of a variational formula . . . . . . . . . . . . . . . . . . . 25
3.3.3 Rate function I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1



4 Applications 33
4.1 Large deviation for X and A . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Comparison of rate functions . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Empirical laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 The law of the iterated logarithm . . . . . . . . . . . . . . . . . . . . . . . 43
4.5 Long time asymptotics of the Brownian motion on Abelian covering manifolds 45

1 Introduction

Asymptotic behaviors of the diffusion processes on Riemannian manifolds have been
one of the central problems on intersection of the probability theory and the geometry.
In this paper, we prove several limit theorems, including the large deviation principles,
for a certain vector valued functional of diffusion processes to study how the geometric
structure influences the behavior of the diffusion paths.

In order to investigate the asymptotic behaviors, it is often effective to consider a
functional of diffusion processes which fits for each purpose. For example, if we want
to know the behavior of the diffusion paths regarded as random sets, we can observe
it through the analysis of empirical measures driven by the diffusion path. Another
typical example is the behavior of winding numbers of the Brownian paths, which was
first studied by Manabe [22]. By the harmonic integration theory, the line integral of
harmonic 1-forms along a cycle brings us homological information about the cycle. In
the same way, the stochastic line integral of harmonic 1-forms along the Brownian path
expresses homological behaviors of the Brownian motion.

The object of our analysis in this paper, the random current, is more general in the
sense that it contains all information about functionals explained above. It is defined by
embedding the diffusion process into the space of 1-currents by means of the stochastic
line integrals. Here, (1-)currents mean a kind of distributions whose test functions consist
of differential 1-forms. This framework provides us a unified approach to the analysis of
many functionals such as empirical measures and winding numbers. Moreover, it enables
us to investigate more refined asymptotic behaviors than what are obtained by individual
functionals. In what follows, we give a short introduction of our framework. The precise
definitions will be given in the next section.

Consider a nondegenerate diffusion process {zt}t≥0 on a compact Riemannian manifold
M . The stochastic line integral

∫
z[0,t]

α of a 1-form α on M along the diffusion paths

{zs}s∈[0,t] can be defined. For each t ≥ 0, we can regard a random functional Xt : α 7→∫
z[0,t]

α on the space of smooth 1-forms as a current-valued random variable. The current-

valued process {Xt}t≥0 is known to be a semimartingale. Let us denote the martingale
part of {Xt}t≥0 by {Yt}t≥0 .

Such current-valued processes were introduced by Ikeda and Ochi [14, 16, 24]. They
have established the law of large numbers and the central limit theorem for these processes.
Let us define Y λ by Y λ

t := λ−1/2Yλt. The central limit theorem for Y asserts that Y λ

converges in law into a current-valued Wiener process W 1 as λ → ∞. Take another
scaling g(λ) with limλ→∞ g(λ) = ∞ and set Ỹ λ := g(λ)−1Y λ. To know more precise
asymptotics than the preceding limit theorems, we shall study the asymptotic behavior of
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Ỹ λ formulated as large deviations corresponding to the conditions on the scaling parameter
g, which is the main theme of this article.

As a remarkable phenomenon, large deviations with a renormalizing parameter often
show a drastic change of their rate functions as the parameter arrives at some criti-
cal growth order. In order to clarify the point, consider the following simple example.
Let {Zn}n∈N be a sequence of Rd-valued zero mean i.i.d. random vectors with a non-
degenerate covariance matrix C and a sufficiently good integrability condition. Take a
renormalizing parameter {g(n)}n∈N, an increasing sequence diverging to ∞, and define
Sn = g(n)−1n−1/2

∑n
i=1 Zi. When g(n) = o(

√
n), Sn satisfies the large deviation principle

in the sense that the asymptotic behavior of g(n)−2 logP[Sn ∈ ·] is governed by a rate
function independent of g. This estimate is often called a moderate deviation. When
g(n) =

√
n, Sn also satisfies the large deviation as above by the Cramér theorem, but

the rate function is quite different in general. Indeed, the rate function corresponding to
the moderate deviation is quadratic and depends only on C. As a matter of fact, it also
governs the large deviation for {g(n)−1N}n∈N where N is a zero mean Gaussian random
vector with the same covariance matrix C. Meanwhile, we can easily see that the latter
rate function is more complicated; its expression by variational equality indicates that it
is influenced by the law of Z1 more sensitively.

Our main theorems give the existence of large deviations for Ỹ λ together with an
explicit distinct expression of their rate functions under the condition g(λ) = o(

√
λ) or

g(λ) =
√
λ respectively. The large deviation principle we shall show is formulated as

follows:

lim sup
λ→∞

1

g(λ)2
log

(
sup
x∈M

Px

[
Ỹ λ ∈ A

])
≤ − inf

w∈Ā
I (w), (1.1)

lim inf
λ→∞

1

g(λ)2
log

(
inf
x∈M

Px

[
Ỹ λ ∈ A

])
≥ − inf

w∈A ◦
I (w). (1.2)

When g(λ) = o(
√
λ), we obtain the estimates of type (1.1) and (1.2) with the rate function

I = L (see Theorem 2.6; for the definition of L, see Definition 2.5). We also call this
estimate the moderate deviation as in the case of i.i.d. random vectors. On the other
hand, when g(λ) =

√
λ, we show the estimates of the same type with the rate function

I = I, instead of L (see Theorem 2.8; for the definition of I, see Definition 2.7).
The functional L is quadratic and characterized by the fact that it also governs the

large deviation for {g(λ)−1W 1}λ>0. Thus, to see the definition of Ỹ λ, we can say that
the effect of the convergence of {Y λ}λ>0 in law to W 1 is stronger than the effect of
decay by g(λ)2 in the case of g(λ) = o(

√
λ). As for I, comparing with L by using our

expressions, we conclude that I is distinct from L even when M is a flat torus and {zt}t≥0

is the Brownian motion. These observations suggest that the rate of the convergence of
{Y λ}λ>0 is precisely equal to λ. That is, in some sense, a precision of the central limit
theorem is derived by comparing these rate functions.

The difference between I and L comes from the fact that I is influenced by the asymp-
totic behavior of the mean empirical measures {λ−1

∫ λ

0
δzsds}λ>0, while L is not. More

precisely, while the value of L(w) is determined by the normalized invariant measure m
of the diffusion {zt}t≥0, I(w) needs another measure µw depending on w, instead of m,
for its expression. We can interpret µw as a normalized invariant measure of a differential
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operator which is a sum of the generator of {zt}t≥0 and a lower-order perturbation deter-
mined by w. In addition, as we will see in section 4, this perturbation term controls the
asymptotic behavior of the mean empirical measures. Thus, we can say that, in the case
of g(λ) =

√
λ, the asymptotic behavior of Ỹ λ is affected by the trajectory of diffusion

path more sensitively. This fact means that the difference between I and L reflects the
influence of the geometric structure in the asymptotic behavior of diffusion paths.

Note that we can study the asymptotic behavior of the mean empirical measures itself
directly in our framework. Through a natural embedding of the mean empirical measures,
our result implies the large deviation principle for the mean empirical measures as random
currents. Thus, in this sense, our result generalizes the celebrated Donsker-Varadhan
law [7] in the case of diffusion processes on a compact Riemannian manifold.

We now review some preceding results on this topic in order to explain the relation
to the above-mentioned ones. Our theorem on the moderate deviation is regarded as a
generalization of Baldi’s work [3]. He has developed a large deviation estimate associated
with the stochastic homogenization of periodic diffusions on Rd. As is pointed out in [24],
the stochastic homogenization of periodic diffusions on Rd follows from the central limit
theorem of stochastic line integrals on the torus. In the case of g(λ) =

√
λ, Avellaneda [1]

has studied the large deviation for the stochastic line integrals {t−1Xt(α)}t>0 of a har-
monic 1-form α along the Brownian motion. Manabe [23] has extended his result to the
large deviation for random currents {t−1Xt}t>0 corresponding to the Brownian motion.
Note that we mainly deal with the martingale part Y instead of X itself. The crucial
difference between X and Y in asymptotics is that X degenerates on exact 1-forms by
the Stokes formula:

∫
z[0,t]

df = f(zt) − f(z0). Combining it with the fact that the mea-

sure µw appearing in the expression of I(w) is determined by the action of w on exact
1-forms, we know that the analysis of Y has an advantage in observing the influence of
the mean empirical laws. Besides, almost all limit theorems for {Xt}t≥0, including the
large deviation, are deduced as corollaries of those for {Yt}t≥0.

Now we introduce some applications. As a corollary of the moderate deviation, we
obtain the Strassen law of the iterated logarithm for our current-valued processes (The-
orem 4.12) by considering the case g(λ) =

√
log log λ. Another application is con-

cerned with a covering manifold N of M whose covering transformation group is Abelian.
Through the harmonic integration theory, we can apply our large deviations to the anal-
ysis of the long time asymptotics of the Brownian motion Bt on N . In particular, the
Strassen law gives an estimate for the Riemannian distance between Bt and B0 as t→∞
(Corollary 4.19):

lim sup
t→∞

dist(Bt, B0)√
2t log log t

= c a.s.

The organization of this paper is as follows. The framework on which our results are
based is arranged in the next section. There we review the law of large numbers and
the central limit theorem and state our main theorems, the large deviation estimates for
Y (Theorem 2.6 and Theorem 2.8). Section 3 is devoted to the proof of our main the-
orems. In the case of g(λ) = o(

√
λ), all part of the proof, including our expression of

the rate function, is arranged in section 3.2. This is deduced from Baldi’s theorem [2],
which is an infinite dimensional analogue of Gärtner’s theorem [11]. The rest of section 3
deals with the case g(λ) =

√
λ. We show the existence of large deviation in section 3.3.1.
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First we prove the existence for finite dimensional distributions and extend it to the space
of current-valued processes. To provide an explicit expression of the rate function, we
prepare in section 3.3.2 an extension of the variational formula for the principal eigen-
value of second order differential operators on M . In section 3.3.3, we obtain an explicit
representation of the rate function. There we study the Legendre transform of principal
eigenvalues of perturbed Laplace operators. Indeed, it coincides with our rate function.

Some results related to large deviations for Y and their rate functions are arranged in
section 4. First we deal with the large deviations for X and its bounded variation part A
in section 4.1. Section 4.2 is devoted to a comparison of the rate functions. The difference
between rate functions I and L is clarified there through some examples. As we will see,
the essential difference between the large deviation and the moderate deviation resulted
from the difference of the asymptotic behavior of A. To observe this, we give an explicit
form of rate functions for A, coming from the large deviation for empirical measures of
the diffusion process. Related to the large deviation for A, we mention how it is regarded
as a generalization of the Donsker-Varadhan law in section 4.3. In section 4.4, we shall
prove the Strassen law of the iterated logarithms for X, Y and A. In the last part of
section 4, we develop an application of our moderate deviation to the analysis of Abelian
covering manifolds of M .

Acknowledgment. I am deeply indebted to my advisor, Professor Masanori Hino for his
thoughtful guidance and innumerable discussions. I would also like to thank Professor
Shinzo Watanabe for leading me to the beautiful world of the probability theory and
Professor Takashi Kumagai for his valuable comments and encouragement.

2 Framework and main results

2.1 Current-valued processes X, Y and A

Let M be a d-dimensional, oriented, compact and connected Riemannian manifold.
Take a differential operator ∆/2+ b on M , where ∆ is the Laplace-Beltrami operator and
b a smooth vector field. The diffusion process on M associated with ∆/2 + b shall be
denoted by ({zt}t≥0, {Px}x∈M). Note that the generator of any nondegenerate diffusion
on M is of the form ∆/2 + b when we replace the Riemannian metric suitably. For
simplicity, we omit the initial point x from the notation and denote P = Px when it is not
so significant. Let m be the normalized invariant measure of {zt}t≥0.

For differential 1-forms α and β on M , |α|(x) (resp. (α, β)(x)) means the cotangent
norm of α(x) (resp. the inner product of α(x) and β(x)) on the cotangent space T ∗xM
at x ∈M . Let v be the normalized Riemannian measure on M . Let D1,∞ be the totality
of smooth 1-forms on M equipped with the L2-Schwartz topology. This topology is
determined by seminorms {‖ · ‖p}p≥0 given by the power of the Hodge-Kodaira Laplacian
∆1 acting on 1-forms. That is,

‖α‖p =

{∫

M

|(1−∆1)
p/2α|2dv

}1/2

.
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This topology makes D1,∞ a nuclear space (see [18, 24]; our seminorms are different from
those in [24]. However, they induce the same topology). Let D1,p be the Hilbert space
given by the completion of D1,∞ by ‖ · ‖p. The space D1,−∞ of 1-currents on M is the
dual space of D1,∞ and D1,−p the dual space of D1,p. We use a symbol ‖ · ‖−p for the
operator norm on D1,−p. The dual pairing of D1,p and D1,−p is denoted by 〈·, ·〉. For
each positive measure µ on M , let L2

1(dµ) be the family of all measurable 1-forms α with
‖α‖L2

1(dµ) <∞, where
(
α1, α2

)
L2

1(dµ)
:=

∫

M

(α1, α2)dµ

for measurable 1-forms α1, α2 and ‖α‖L2
1(dµ) = (α, α)

1/2

L2
1(dµ)

. Note that the Laplace-

Beltrami operator ∆ is expressed as ∆ = −δd where δ is the adjoint derivative of the
exterior derivative d in L2

1(dv).
For each smooth 1-form α and t ≥ 0, we define Xt(α) by the stochastic line integral∫

z[0,t]
α along the diffusion path {zs}0≤s≤t (see [15] for the precise definition of

∫
z[0,t]

α).

For each α ∈ D1,∞, {Xt(α)}t≥0 is a semimartingale. We denote its martingale part by
Yt(α) and its bounded variation part by At(α):

Xt(α) = Yt(α) + At(α).

Let Cp = C([0,∞) → D1,−p) be the Polish space of D1,−p-valued continuous functions
equipped with the compact uniform topology. Then we can regard Y = {Yt(α)}t≥0,α∈D1,∞
(resp. X = {Xt(α)}t≥0,α∈D1,∞ or A = {At(α)}t≥0,α∈D1,∞) as a Cp-valued random variable
for sufficiently large p as follows.

Proposition 2.1 ([16, 24])

(i) For p > d, there exists a Cp-valued random variable Ŷ = {Ŷt}t≥0 such that for each
t ≥ 0

〈Ŷt, α〉 = Yt(α), α ∈ D1,∞ a.s.

(ii) For p > d+1, there exist Cp-valued random variables X̂ = {X̂t}t≥0 and Â = {Ât}t≥0

such that for each t ≥ 0

〈X̂t, α〉 = Xt(α), α ∈ D1,∞ a.s.,

〈Ât, α〉 = At(α), α ∈ D1,∞ a.s.

For simplicity we use the same symbols X, Y and A for these versions. Thus we regard
X, Y and A as Cp-valued random variables in the sense above.

Let us observe some properties which shall be used later. These are given in [15, 24].

(i) For α ∈ D1,p, if α = du for some function u, then

Xt(α) = u(zt)− u(z0). (2.1)
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(ii) The quadratic variation 〈Y (α)〉t of the martingale part Yt(α) is given by

〈Y (α)〉t =

∫ t

0

|α| (zs)
2ds. (2.2)

(iii) For the bounded variation part At(α), we have

At(α) =

∫ t

0

(
(b̂, α)− 1

2
δα

)
(zs)ds, (2.3)

where b̂ is a 1-form corresponding to b via the natural identification between TM
and T ∗M .

2.2 The law of large numbers and the central limit theorem

For each α ∈ D1,p, e(α) is given as follows:

e(α) =

∫

M

(
(b̂, α)− 1

2
δα

)
dm. (2.4)

Note that the mapping e : α 7→ e(α) belongs to D1,−p when p > d/2 + 1. Then the law of
large numbers is given as follows.

Theorem 2.2 (the law of large numbers [14, 23]) For sufficiently large p, we have

lim
λ→∞

1

λ
Xλ = lim

λ→∞
1

λ
Aλ = e, lim

λ→∞
1

λ
Yλ = 0 a.s. in D1,−p.

Next, we state the central limit theorem. To describe the limit law, we give the
definition of D1,−∞-valued Wiener processes following Itô [18].

Definition 2.3 (D1,−∞-valued Wiener processes) A continuous D1,−∞-valued process
{Wt}t≥0 with stationary independent increments and W0 = 0 is called a D1,−∞-valued
Wiener process. It is characterized by its mean functional ζ and covariance functional σ
given by

ζ(α) = E[W1(α)],

σ(α1, α2) = E[(W1(α
1)− 〈ζ, α1〉D1,∞)(W1(α

2)− 〈ζ, α2〉D1,∞)].

We consider the differential equation
(

1

2
∆ + b

)
u = (b̂, α)− 1

2
δα− e(α) (2.5)

for each α ∈ D1,p. The equation (2.5) has a unique solution up to an additive con-
stant (see [13], for example). We denote it by uα and set Qα = duα. Then Q : D1,p →
D1,p becomes a continuous linear idempotent operator. Let Q∗ be the adjoint operator on
D1,−p. We use the same symbol Q∗ for the operator naturally extended on Cp.

For λ > 0, let us define scaled processes Xλ, Y λ and Aλ in the following:

Xλ
t (α) :=

1√
λ

(Xλt(α)− λt e(α)) , Y λ
t (α) :=

1√
λ
Yλt(α), Aλ

t (α) := Xλ
t (α)− Y λ

t (α).

Then, the central limit theorem is known in the following sense.
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Theorem 2.4 (the central limit theorem [14, 16])

(i) Take p > d. If λ tends to ∞, the probability law of Y λ on Cp converges weakly to
that of the D1,−∞-valued Wiener process W 1 with the mean functional ζ1 = 0 and
the covariance functional

σ1(α1, α2) =
(
α1, α2

)
L2

1(dm)
.

(ii) Take p > d + 1. If λ tends to ∞, the law of Xλ converges weakly to that of the
D1,−∞-valued Wiener process W 2 with the mean functional ζ2 = 0 and the covariance
functional

σ2(α1, α2) =
(
(1−Q)α1, (1−Q)α2

)
L2

1(dm)
.

(iii) Take p > d+1. If λ tends to ∞, the law of Aλ converges weakly to that of the D1,−∞-
valued Wiener process W 3 with the mean functional ζ3 = 0 and the covariance
functional

σ3(α1, α2) =
(
Qα1, Qα2

)
L2

1(dm)
.

Note that we can take W 1, W 2 and W 3 as Cp-valued random variable for each corre-
sponding p in a similar way as Proposition 2.1.

2.3 Statement of main results

Take a scaling parameter g(λ) > 0 with limλ→∞ g(λ) = ∞. Let us define {Ỹ λ}λ>0 by
Ỹ λ

t := g(λ)−1Y λ
t . Our main theorems assert the large deviations for Ỹ λ. First we state

the moderate deviation, or the case g(λ) = o(
√
λ) as λ → ∞, for {Ỹ λ}λ>0. We provide

the rate function in the following definition.

Definition 2.5 Let L1 : D1,−p → [0,∞] be given by

L1(ω) =





1

2

∫

M

|ω̌|2dm if ω ∈ H ′,

∞ otherwise,
(2.6)

where ω ∈ H ′ if and only if there exists ω̌ ∈ L2
1(dm) so that 〈ω, α〉 =

∫
M

(ω̌, α)dm for
each α ∈ D1,p. For ω ∈ Cp, let us define a rate function L by

L(w) =





∫ ∞

0

L1(ẇt)dt if wt =

∫ t

0

ẇsds with ẇs ∈ D1,−p for a.e.s ,

∞ otherwise,
(2.7)

where the integral
∫ t

0
ẇsds is the Bochner integral.
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Theorem 2.6 Suppose p > d. We assume g(λ) = o(
√
λ) as λ → ∞. Then, {Ỹ λ}λ>0

satisfies the large deviation principle in Cp with speed g(λ)2 and the convex good rate
function L uniformly in initial point x ∈M . That is, for any Borel sets A ⊂ Cp,

lim sup
λ→∞

1

g(λ)2
log

(
sup
x∈M

Px[Ỹ
λ ∈ A ]

)
≤ − inf

w∈Ā
L(w),

lim inf
λ→∞

1

g(λ)2
log

(
inf
x∈M

Px[Ỹ
λ ∈ A ]

)
≥ − inf

w∈A ◦
L(w),

where Ā (resp. A ◦) is the closure of A (resp. the interior of A ) in Cp.

Our next result is the large deviation for Ỹ λ when g(λ) =
√
λ. In this case, we use

the symbol Ȳ λ instead of Ỹ λ, namely,

Ȳ λ
t :=

1√
λ
Y λ

t =
1

λ
Yλt.

In order to state the theorem, we prepare some notations. Let (E ,Dom(E )) be a Dirichlet
form given by the closure of the following pre-Dirichlet form (Ẽ , C∞(M)):

Ẽ (f, g) =

∫

M

(df, dg) dv.

When f = g, the symbol E (f) indicates E (f, f). Let W be the set of all functions f
in Dom(E ) such that f ≥ 0 a.e. and

∫
M
f 2 dv = 1. Let M1 be the totality of Borel

probability measures on M . For ω ∈ D1,−p, we say ω ∈ Ω̃ if and only if there is µω ∈ M1

so that

〈ω, du〉+

∫

M

(
1

2
∆ + b

)
u dµω = 0 (2.8)

for all u ∈ C∞(M). As we will show in section 3.3.3, such µω ∈ M1 is unique for each
given ω ∈ Ω̃. For ω ∈ D1,−p, we say ω ∈ Ω if and only if ω ∈ Ω̃ and dµω = f 2dv for some
f ∈ W . We define a map χ : Ω → W by χ(ω) = f .

Definition 2.7 Let us define a functional I1 on D1,−p by

I1(ω) =





1

2

∫

M

|ω̂|2 dµω if ω ∈ H ,

∞ otherwise,
(2.9)

where ω ∈ H if and only if ω ∈ Ω and there is ω̂ ∈ L2
1(dµ

ω) so that

〈ω, α〉 =

∫

M

(ω̂, α)dµω (2.10)

for all α ∈ D1,p.
Also let us define I : Cp → [0,∞] by

I(w) =





∫ ∞

0

I1(ẇt)dt if wt =

∫ t

0

ẇsds with ẇs ∈ D1,−p for a.e.s,

∞ otherwise.
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Theorem 2.8 Suppose p > d. Then the large deviation principle for {Ȳ λ}λ>0 holds
as λ → ∞ in Cp uniformly in x ∈ M with speed λ and the convex good rate function
I : Cp → [0,∞]. That is, for each Borel set A ⊂ Cp, we have

lim sup
λ→∞

1

λ
log

(
sup
x∈M

Px

[
Ȳ λ ∈ A

]) ≤ − inf
w∈Ā

I(w),

lim inf
λ→∞

1

λ
log

(
inf
x∈M

Px

[
Ȳ λ ∈ A

]) ≥ − inf
w∈A ◦

I(w).

We remark that the large deviations for X and A will be shown in section 4 (Theo-
rem 4.1) as corollaries of Theorem 2.6 and Theorem 2.8.

Remark 2.9 We would like to take p as small as possible since the estimate becomes
more precise as p becomes smaller. Indeed, if we take p′ < p, the Cp′-topology is stronger
than the Cp-topology. Note that the lower bound of p in Theorem 2.6 or Theorem 2.8
essentially comes from the assumption of Proposition 2.1.

On the other hand, as a direct consequence of Theorem 2.6 or Theorem 2.8, we obtain
the large deviation estimates subordinate to the compact uniform topology of C([0,∞) →
D1,−∞) since the topology of C([0,∞) → D1,−∞) is weaker than that of Cp.

Remark 2.10 In almost the same way as Theorem 2.6, we can prove the large deviation
principle for the current-valued Wiener processes {g(λ)−1W 1}λ>0, where W 1 appears in
Theorem 2.4. Then its rate function coincides with L.

It is intuitively obvious that the coincidence occurs when the decay parameter g of Ỹ λ

increases much slower than λ, which causes the weak convergence. However, if we tried
to prove this fact as a consequence of Theorem 2.4, we needed to investigate the precise
rate of the weak convergence. Thus Theorem 2.6 asserts that when g(λ) = o(

√
λ) as

λ→∞ the growth of g is sufficiently slow to cause the coincidence of rate functions. As
we stated, when

√
λ = g(λ), Ỹ λ satisfies the large deviation with another rate function

I. As is seen in section 4, I is actually different from L even when M is a flat torus.

3 Proof of main theorems

Throughout this section, we fix p > d.

3.1 Basic lemmas

First we prepare some lemmas which play an important role in this section.

Lemma 3.1 We can take p0 and q with 0 < q < p0 < p which satisfy the following:

(i) Y takes its values in Cp0,

(ii) there exists C > 0 such that supx∈M |α|(x) ≤ C‖α‖q for all α ∈ D1,∞,

(iii) the canonical embedding D1,−p0 → D1,−p is compact,
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(iv) there is an orthonormal basis {αn}∞n=1 of D1,p0 so that
∑∞

n=1 n
γ‖αn‖2

q <∞ holds for
some γ > 0.

Proof. By Proposition 2.1, (i) follows for p0 > d. The Sobolev lemma on compact
manifolds implies that if q > d/2 then (ii) holds. From the compactness of the power of
the resolvent operator (1−∆1)

p0−p, (iii) holds for any p > p0.
As for (iv), let λn be the n-th eigenvalue of −∆1 and α̃n ∈ D1,∞ an eigenform corre-

sponding to λn which makes a complete orthonormal system of L2
1(dv). Then for α ∈ D1,∞

and r > 0,

‖α‖r =

{ ∞∑
n=1

(1 + λn)r (α, α̃n)2
L2

1(dv)

}1/2

.

Thus αn = (1 + λn)−p0α̃n forms a complete orthonormal system of D1,p0 . The Weyl

asymptotic formula (see [10]) implies that λ
d/2
n /n is bounded as n→∞. Thus, if we take

p0 − q > d/2, which is consistent with the condition for (i)-(iii), then (iv) holds. 〈q.e.d.〉
Lemma 3.2 There is a constant C1 > 0 such that

sup
x∈M

Px

[
sup

0≤s≤t
‖Ỹ λ

s ‖−p0 ≥ ρ

]
≤ C1 exp

(
−g(λ)2ρ2

C1t

)
, t > 0.

Proof. For each α ∈ D1,∞, the martingale representation theorem implies Yt(α) =
B〈Y (α)〉t where B· is a Brownian motion on R. Thus, by using (2.2) and (ii) of Lemma 3.1,
we have for any ρ > 0,

P
[

sup
0≤s≤t

|Ỹ λ
s (α)| > ρ

]
= P

[
sup

0≤s≤t
|B〈Ỹ λ(α)〉s | > ρ

]

≤ P

[
sup

0≤s≤C2‖α‖2qt/g(λ)2
|Bs| > ρ

]
≤ 2 exp

(
− g(λ)2ρ2

2C2‖α‖2
qt

)
.

The last inequality follows from the exponential inequality of the Brownian motion. Take
N :=

∑∞
n=1 n

γ‖αn‖2
q <∞ and bn := nγ‖αn‖2

q/N , where γ, q and {αn}n∈N are as in (iv) of
Lemma 3.1. Letting r = g(λ)2ρ2/2C2Nt, we have

Px

[
sup

0≤s≤t
‖Ỹ λ

s ‖−p0 > ρ

]
= Px

[
sup

0≤s≤t

( ∞∑
n=1

Ỹ λ
s (αn)2

)
> ρ2

]

≤
∞∑

n=1

Px

[
sup

0≤s≤t
Ỹ λ

s (αn)2 > ρ2bn

]

≤ 2
∞∑

n=1

exp

(
− g(λ)2ρ2bn

2C2‖αn‖2
qt

)

= 2
∞∑

n=1

e−rnγ

≤ 2e−r + 2

∫ ∞

1

e−rsγ

ds

= 2e−r

(
1 +

1

γr

∫ ∞

0

(s
r

+ 1
)(1−γ)/γ

e−sds

)
.
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Since the right-hand side of the last equality is independent of the choice of x, we obtain
the desired result for large r. As for small r, we can take C1 large enough to obtain desired
estimate since the left-hand side of the stated inequality is less than 1. 〈q.e.d.〉

Here we give a remark about the uniformity of our large deviations in initial data.

Remark 3.3 The large deviation principle we want to show is uniform in initial data.
Though most theorems concerning the existence of the large deviation usually take no
account of such uniformity, we can extend them by adding a uniformity assumption. For
example, we will give the notion of uniform exponential tightness in the next definition. It
is well-known that the usual exponential tightness and the weak large deviation imply the
full large deviation (see Lemma 1.2.18 of [4]). In the same way, the uniform exponential
tightness and the uniform weak large deviation imply the uniform full large deviation.
In this paper, we use such an extension many times. Since we can prove these extended
theorems along the same line as usual one, we omit proofs.

Definition 3.4 (Uniform exponential tightness) Let X be a Hausdorff topological
space. Let {µλ,γ}λ>0,γ∈Γ be a 2-parameter family of Borel probability measures on X .
Then, {µλ,γ}λ>0 is said to be exponentially tight with speed g(λ)2 uniformly in γ ∈ Γ if
for each R > 0 there exists a compact set K ⊂ X such that

lim sup
λ→∞

1

g(λ)2
log

(
sup
γ∈Γ

µλ,γ(K
c)

)
≤ −R.

By using Lemma 3.2, we shall prove the uniform exponential tightness.

Proposition 3.5 Under Px, {Ỹ λ}λ>0 is exponentially tight in Cp with speed g(λ)2 uni-
formly in x ∈M .

Proof. Given N ∈ N and a sequence {ck}k∈N decreasing to 0, we set

Dk :=

{
w ∈ Cp0 ; sup

|t−s|≤ck
0≤t,s≤k

‖wt − ws‖−p0
≤ 1

k
, w0 = 0

}
, k ∈ N

and D =
⋂∞

k=N Dk. For each T > 0, let ιT : Cp0 → C T
p0

:= C([0, T ] → D1,−p0) be
the canonical restriction. Then ιT (D) is uniformly bounded, equicontinuous family of
functions in C T

p0
. Thus, if we take arbitrary ε > 0, then there exists η > 0 with η−1T ∈ N

such that if |t−s| < η then ‖wt−ws‖−p0 < ε for all w ∈ ιT (D). Let h := sup{‖ws‖−p0 ; w ∈
D, s ∈ [0, T ]} and Bh := {ξ ∈ D1,−p0 ; ‖ξ‖−p0 ≤ h}. Then, by (iii) of Lemma 3.1, there
exists a finite set {ξ1, . . . , ξn} ⊂ Bh such that for each ξ ∈ Bh there is j ∈ {1, . . . , n}
which satisfies ‖ξj − ξ‖−p < ε. Then we can easily show that there is a constant C2 such
that a family

⋃
i`∈{1,...,n}

`=0,...,η−1T

{
wt = (1− τ

η
)ξik +

τ

η
ξik+1

if t = kη + τ, τ ∈ [0, η),

k = 0, . . . , η−1T − 1

}

forms C2ε-net of ιT (D) in C T
p .

12



Consequently, ιT (D) is precompact in C T
p and therefore so is D in Cp by diagonal

method. Thus it suffices to show

lim sup
λ→∞

1

g(λ)2
log

(
sup
x∈M

Px[Ỹ
λ ∈ Dc]

)
≤ −R

for each R > 0 by taking N and ck suitably.
Let Et,k := {w ∈ Cp0 ; supt≤s≤t+ck

‖ws − wt‖−p0 > (3k)−1} . Then we have Dc
k ⊂⋃

`∈Z,0≤`<c−1
k k E`ck,k. Thus, the Markov property and Lemma 3.2 imply

sup
x∈M

Px[Ỹ
λ ∈ E`ck,k] = sup

x∈M
Px[Pzs [Ỹ

λ ∈ E0,k]] ≤ C1 exp

(
− g(λ)2

9C1k2ck

)
.

Therefore, we have

sup
x∈M

Px[Ỹ
λ ∈ Dc

k] ≤
kC1

ck
exp

(
− g(λ)2

9C1k2ck

)
.

Now we take ck = k−3 and fix N sufficiently large such that for all k ≥ N

exp

(
−g(λ)2k

9C1

)
≤ 1

k2
exp

(
−g(λ)2k

18C1

)
≤ 1

k2
exp

(−Rg(λ)2
)

for sufficiently large λ. Consequently,

lim sup
λ→∞

1

g(λ)2
log

(
sup
x∈M

Px[Ỹ
λ ∈ Dc]

)
≤ lim sup

λ→∞

1

g(λ)2
log

( ∞∑

k=N

sup
x∈M

Px[Ỹ
λ ∈ Dc

k]

)

≤ −R.
〈q.e.d.〉

It should be noted that we need no assumption on the divergence rate of g(λ) for the
proof of Lemma 3.2 and Proposition 3.5.

3.2 Proof of Theorem 2.6

For the proof of Theorem 2.6, we shall use the following theorem due to Baldi [2, 4].

Theorem 3.6 ([2, 4]) Let {µλ}λ>0 be a family of probability measures on a topologi-
cal vector space V . We denote by V ′ the dual topological vector space of V . Take an
increasing function g : R+ → R+ with limλ→∞ g(λ) = +∞ and assume the following
properties:

(i) There exists

Λ(β) := lim
λ→∞

1

g(λ)2
log

(∫

V

exp
(
g(λ)2

V ′〈β, x〉V
)
dµλ(x)

)

for each β ∈ V ′ and it is finite in some neighborhood of 0.
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(ii) {µλ}λ>0 is exponentially tight.

(iii) Let L be the Legendre transform of Λ, given by

L (x) = sup
β∈V ′

( V ′〈β, x〉V −Λ(β)).

The totality of points where L is strictly convex is denoted by F . Namely, x ∈ V
is an element of F if and only if there exists α = α(x) ∈ V ′ so that

L (y) > L (x) + V ′〈α, y − x〉V
holds for all y 6= x. Then, infx∈G∩F L (x) = infx∈G L (x) holds for any open sets G.

Then, for every Borel set A ⊂ V ,

lim sup
λ→∞

1

g(λ)2
log µλ(A ) ≤ − inf

x∈Ā
L (x),

lim inf
λ→∞

1

g(λ)2
log µλ(A ) ≥ − inf

x∈A ◦
L (x).

We will apply Theorem 3.6 to the case that µλ is the law of Ỹ λ under Px and V = Cp.
To obtain the uniform large deviation in initial distribution, we need to verify that the
assumption of Theorem 3.6 holds uniformly in x ∈M (cf. Remark 3.3).

Let us define a functional H : C ′
p → R as follows:

H(µ) := lim
λ→∞

1

g(λ)2
log

(
Ex

[
exp

(
g(λ)2〈µ, Ỹ λ〉Cp

)])
,

where 〈·, ·〉Cp means the dual pairing between C ′
p and Cp. We shall calculate H(µ). First,

we treat the case µ = αδt, or µ is a vector-valued Dirac measure for some α ∈ D1,p and
t ∈ [0,∞). That is, 〈µ,w〉Cp = 〈wt, α〉 holds for any w ∈ Cp. The case t = 0 is trivial, we
assume t > 0.

Let Ξt = t−1
∫ t

0
δzsds be the mean empirical law of z·. We can regard {Ξt}t>0 as

probability measures on M . Then, by (2.2), 〈Y λ(α)〉t = t
∫

M
|α|2dΞλt holds. In order

to estimate the asymptotic behavior of the quadratic variation, we shall use the upper
estimate of the following Donsker-Varadhan large deviation principle.

Lemma 3.7 ([7]) For any Borel sets A in M1,

lim sup
λ→∞

1

λt
log

(
sup
x∈M

Px[Ξλt ∈ A ]

)
≤ − inf

ν∈Ā
J(ν).

Note that the good rate function J attains its minimum 0 only at m.

By using this lemma, we shall prove the following.

Proposition 3.8 If µ = αδt for some α ∈ D1,p and t > 0, then we have

H(µ) = lim
λ→∞

1

g(λ)2
log

(
sup
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ〉Cp

)])

= lim
λ→∞

1

g(λ)2
log

(
inf
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ〉Cp

)])
=

1

2
‖α‖2

L2
1(dm) t.
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Proof. Take ε > 0. We set Aε,λ :=
{∣∣∣〈Y λ(α)〉t − ‖α‖2

L2
1(dm) t

∣∣∣ < ε
}

and divide the

expectation into two parts, the main term and the remainder term.
As a first step, we estimate the remainder term. By using the Schwarz inequality, we

have

E
[
exp

(
g(λ)2〈µ, Ỹ λ〉Cp

)
; A c

ε,λ

]
= E

[
exp

(
g(λ)Y λ

t (α)
)

; A c
ε,λ

]

≤ E
[
exp

(
2g(λ)Y λ

t (α)
)]1/2 P[A c

ε,λ]
1/2

≤ E
[
exp

(
2g(λ)Y λ

t (α)− 2g(λ)2〈Y λ(α)〉t
)]1/2

× exp
(
g(λ)2tC2‖α‖2

q

)
P[A c

ε,λ]
1/2

= exp
(
g(λ)2tC2‖α‖2

q

)
P[A c

ε,λ]
1/2.

Lemma 3.7 implies that there exists c > 0 such that log
(
supx∈M Px[A c

ε,λ]
) ≤ −cλ for

sufficiently large λ. Since
√
λ/g(λ) →∞ holds as λ→∞ by assumption, we have

lim sup
λ→∞

1

g(λ)2
log

(
sup
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ

t 〉Cp

)
; A c

ε,λ

])
= −∞. (3.1)

Next let us turn to the estimate of the main term. Apparently we have

lim inf
λ→∞

1

g(λ)2
log

(
inf
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ

t 〉Cp

)
; Aε,λ

])

≥ lim inf
λ→∞

1

g(λ)2
log

(
inf
x∈M

Ex

[
exp

(
g(λ)Y λ

t (α)− g(λ)2

2
〈Y λ(α)〉t

)
; Aε,λ

])

+
1

2
‖α‖2

L2
1(dm) t−

ε

2
(3.2)

and

lim sup
λ→∞

1

g(λ)2
log

(
sup
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ

t 〉Cp

)
; Aε,λ

])
≤ 1

2
‖α‖2

L2
1(dm) t+

ε

2
. (3.3)

Now the following lemma, which follows from easy calculation, gives the final touch of
this estimate.

Lemma 3.9 Suppose that {a(λ)}λ>0 ⊂ R+ and {a′(λ)}λ>0 ⊂ R satisfy the following
properties:

(i) There exist η > 0 and a ∈ R such that |g(λ)−2 log a(λ)−a| < η holds for sufficiently
large λ,

(ii) limλ→∞ g(λ)−2 log |a′(λ)| = −∞.

Then, g(λ)−2 log(a(λ) + a′(λ)) ∈ (a− 2η, a+ 2η) for sufficiently large λ.
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Indeed, by applying Lemma 3.9 for a(λ) ≡ 1 and

a′(λ) = − sup
x∈M

Ex

[
exp

(
g(λ)Y λ

t (α)− g(λ)2

2
〈Y λ(α)〉t

)
; A c

ε,λ

]
,

we conclude that

lim
λ→∞

1

g(λ)2
log

(
inf
x∈M

Ex

[
exp

(
g(λ)Y λ

t (α)− g(λ)2

2
〈Y λ(α)〉t

)
; Aε,λ

])
= 0

since we can prove limλ→∞ g(λ)−2 log |a′(λ)| = −∞ in the similar way as (3.1). Thus the
right-hand side in (3.2) is equal to (‖α‖2

L2
1(dm) t− ε)/2. Finally, we use Lemma 3.9 again

with

a(λ) = inf
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ

t 〉Cp

)
; Aε,λ

]
,

a′(λ) = inf
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ

t 〉Cp

)
; A c

ε,λ

]

and with

a(λ) = sup
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ

t 〉Cp

)
; Aε,λ

]
,

a′(λ) = sup
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ

t 〉Cp

)
; A c

ε,λ

]
.

Note that a(λ) and a′(λ) satisfy the assumption of Lemma 3.9 in each case by (3.1), (3.2)
and (3.3). Then we conclude

1

2
‖α‖L2

1(dm) t− 2ε ≤ lim inf
λ→∞

1

g(λ)2
log

(
inf
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ

t 〉Cp

)])

≤ lim sup
λ→∞

1

g(λ)2
log

(
sup
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ

t 〉Cp

)])

≤ 1

2
‖α‖2

L2
1(dm) t+ 2ε.

〈q.e.d.〉

By using the Markov property, we obtain a similar estimate when µ is written by finite
sum of vector-valued Dirac measures.

Corollary 3.10 If µ =
∑n

k=1 αkδtk for αk ∈ D1,p, k = 1, . . . , n and 0 ≤ t1 ≤ · · · ≤ tn,
then we have

H(µ) = lim
λ→∞

1

g(λ)2
log

(
sup
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ〉Cp

)])

= lim
λ→∞

1

g(λ)2
log

(
inf
x∈M

Ex

[
exp

(
g(λ)2〈µ, Ỹ λ〉Cp

)])
=

1

2

∫ ∞

0

‖µs‖2
L2

1(dm) ds,

where µs =
∑

tk>s αk.
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Take µ ∈ C ′
p. We show that µ is a D1,p-valued measure on [0,∞). Recall that

C T
p = C([0, T ] → D1,−p) and ιT is the canonical restriction mapping from Cp to C T

p .
Since Cp is the projective limit of C T

p as T → ∞, we can regard µ as an element of
(C T

p )′ for some T . That is, there exists µ̃ ∈ C T
p for some T such that the equality

〈µ,w〉Cp = 〈µ̃, ιT (w)〉C T
p

holds. Hence we can identify µ with µ̃. We can verify the

continuity of the bilinear mapping from C([0, T ] → R)×D1,−p to Cp given by (ϕ, β) 7→ ϕβ
for ϕ ∈ C([0, T ] → R) and β ∈ D1,−p. Thus µ is considered as a continuous bilinear
functional on C([0, T ] → R)×D1,−p, or a continuous linear operator from C([0, T ] → R)
to D1,p. Therefore, µ is identified with a D1,p-valued measure whose support is contained
in [0, T ] by Theorem 2 in VI 7.2 of [8].

Let us define C ′
p,Π by

C ′
p,Π :=

{
µ =

n∑

k=1

αkδtk
for some n ∈ N, {αk}n

k=1 ⊂ D1,p

and {tk}n
k=1 ⊂ [0,∞)

}
.

The following lemma is a slight modification of that in the basic measure theory on [0,∞):

Lemma 3.11 For each µ ∈ C ′
p, there exists a sequence {µn}n∈N ⊂ C ′

p,Π such that µn
s

converges to µs in D1,p as n → ∞ uniformly in s ∈ [0,∞). In particular, we obtain
limn→∞ supx∈M,s∈[0,T ] |µn

s − µs|(x) = 0 for all T > 0.

The last assertion of Lemma 3.11 is a consequence of (ii) of Lemma 3.1.
Now we complete the calculation of H(µ).

Proposition 3.12

H(µ) = lim
λ→∞

1

g(λ)2
log

(
sup
x∈M

Ex

[
exp

{
g(λ)2〈µ, Ỹ λ〉Cp

}])

= lim
λ→∞

1

g(λ)2
log

(
inf
x∈M

Ex

[
exp

{
g(λ)2〈µ, Ỹ λ〉Cp

}])
=

1

2

∫ ∞

0

‖µs‖2
L2

1(dm) ds

for all µ ∈ C ′
p, where µs = µ((s,∞)) ∈ D1,p.

Proof. First we remark on some upper estimate. That is,

1

g(λ)2
log

(
sup
x∈M

Ex

[
exp

{
g(λ)2〈µ, Ỹ λ〉Cp

}])
≤ H̃(µ), (3.4)

where

H̃(µ) =
1

2

∫ ∞

0

sup
x∈M

|µs|(x)2ds.

In order to obtain (3.4), take the orthonormal basis {αn}n∈N of D1,p0 given in (iv) of
Lemma 3.1 and its dual basis {βn}n∈N in D1,−p0 . Then, the integration-by-parts formula
for semimartingales implies

〈µ, Y 〉Cp = 〈µ,
∞∑

n=1

Y (αn)βn〉Cp =
∞∑

n=1

∫ ∞

0

Ys(αn)dµβn(s)

=
∞∑

n=1

∫ ∞

0

µβn
s dYs(αn),
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where µβ is an R-valued signed measure determined by µβ(A) = 〈µ(A), β〉p for any Borel
sets A and µβ

s = µβ((s,∞)). By using it,

E
[
exp

{
g(λ)2〈µ, Ỹ λ〉Cp

}]
= E

[
exp

{
g(λ)

∞∑
n=1

∫ ∞

0

µβn
s dY λ

s (αn)

}]

= E

[
exp

{
g(λ)2

2

∞∑

n,k=1

∫ ∞

0

µβn
s µβk

s d〈Y λ(αn), Y λ(αk)〉s
}

× exp

{
g(λ)

∞∑
n=1

∫ ∞

0

µβn
s dY λ

s (αn)

− g(λ)2

2

∞∑

n,k=1

∫ ∞

0

µβn
s µβk

s d〈Y λ(αn), Y λ(αk)〉s
}]

.

Note that the infinite series
∑∞

n=1 µ
βn
s αn converges to µs uniformly on M and in D1,p0 for

each fixed s. Indeed, by virtue of (ii) and (iv) of Lemma 3.1, we have

lim
k→∞

sup
N≥k

N∑

n=k

|µβn
s | sup

x∈M
|αn|(x) ≤ C lim

k→∞
sup
N≥k

N∑

n=k

|µβn
s |‖αn‖q

≤ lim
k→∞

{ ∞∑

n=k

|µβn
s |2

}1/2 { ∞∑

n=k

‖αn‖2
q

}1/2

= 0.

Hence we have
∞∑

n,k=1

∫ ∞

0

µβn
s µβk

s d〈Y λ(αn), Y λ(αk)〉s =

∫ ∞

0

∞∑

n,k=1

µβn
s µβk

s (αn, αk)(zλs)ds

=

∫ ∞

0

|µs|2 (zλs)ds ≤
∫ ∞

0

sup
x∈M

|µs|2(x)ds.

Thus we conclude

E
[
exp

{
g(λ)2〈µ, Ỹ λ〉Cp

}]
≤ exp

{
g(λ)2

2

∫ ∞

0

sup
x∈M

|µs(x)|2ds
}

= exp
{
g(λ)2H̃(µ)

}
.

Take µ̂ ∈ C ′
Π. For a1 > 1 and a2 > 1 with a−1

1 + a−1
2 = 1, the Hölder inequality

and (3.4) imply

1

g(λ)2
log

(
sup
x∈M

Ex

[
exp

{
g(λ)2〈µ, Ỹ λ〉Cp

}])

≤ 1

a1g(λ)2
log

(
sup
x∈M

Ex

[
exp

{
a1g(λ)〈µ− µ̂, Y λ〉Cp

}])

+
1

a2g(λ)2
log

(
sup
x∈M

Ex

[
exp

{
a2g(λ)〈µ̂, Y λ〉Cp

}])

≤ a1H̃(µ− µ̂) + a2
1

(a2g(λ))2
log

(
sup
x∈M

Ex

[
exp

{
a2g(λ)〈µ̂, Y λ〉Cp

}])
.
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Applying Corollary 3.10 by using a2g instead of g, we have

lim
λ→∞

1

(a2g(λ))2
log

(
sup
x∈M

Ex

[
exp

{
a2g(λ)〈µ̂, Y λ〉Cp

}])
= H(µ̂).

Note that
sup

s∈[0,∞)

‖µs‖L2
1(dm) ≤ C sup

s∈[0,∞)

‖µs‖p <∞

holds and the support of µs is compact. Hence, approximating µ by µ̂, we conclude that
Lemma 3.11 implies that H̃(µ− µ̂) tends to 0 and H(µ̂) tends to H(µ). Thus we obtain
the upper bound by taking a2 ↓ 1.

As to lower bound, the estimate

a2
2

g(λ)2
log

(
inf
x∈M

Ex

[
exp

{
g(λ)

a2

〈µ̂, Y λ〉Cp

}])

≤ a1H̃(µ̂− µ) +
a2

g(λ)2
log

(
inf
x∈M

Ex

[
exp

{
g(λ)〈µ, Y λ〉Cp

}])

given by the Hölder inequality implies the conclusion in a similar way. 〈q.e.d.〉

To complete the proof of Theorem 2.6, we need to calculate the Legendre transform
of H. We call w ∈ Cp absolutely continuous when for each ε > 0 there exists ρ > 0
such that, for each partition 0 ≤ a1 < b1 ≤ · · · ≤ an < bn with

∑n
i=1(bi − ai) < ρ,∑n

i=1 ‖wbi
− wai

‖−p < ε holds. Note that, for w ∈ Cp with w0 = 0, there exists a

Bochner-integrable function ẇ : [0,∞) → D1,−p so that wt =
∫ t

0
ẇsds if and only if w

is absolutely continuous. This fact comes from the Radon-Nikodym theorem for vector-
valued measures (see [6]). Since D1,−p is a Hilbert space, the Radon-Nikodym theorem is
valid in this case.

Proposition 3.13 Define H∗(w) := supµ∈C ′p

(〈µ,w〉Cp −H(µ)
)
. Then H∗ = L holds.

Proof. Recall that L is given by (2.7). First, if w is not absolutely continuous then
H∗(w) = ∞ holds. Indeed, assume that there exists ε > 0 so that for any ρ > 0
we can take a partition 0 ≤ a1 < b1 ≤ · · · ≤ an < bn with

∑n
i=1(bi − ai) ≤ ρ and∑n

i=1 ‖wbi
− wai

‖−p ≥ ε. Let us define µ ∈ C ′
p as follows:

µ =
n∑

i=1

θi√
ρ
(δbi

− δai
),

where θi ∈ D1,p is the dual element of (wbi
−wai

)/‖wbi
−wai

‖−p. Note that ‖θi‖L2
1(dm) ≤ C

holds for some constant C. Then we have

∫ ∞

0

‖µs‖2
L2

1(dm) ds =
1

ρ

n∑
i=1

(bi − ai) ≤ C,

〈µ,w〉Cp =
1√
ρ

n∑
i=1

〈wbi
− wai

, θi〉 ≥ ε√
ρ
.
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Since we can take ρ arbitrary small for fixed ε > 0, we conclude that H∗(w) = ∞. Thus
we may assume that w is absolutely continuous with respect to ‖·‖−p. We denote the
Radon-Nikodym density of w by ẇ.

Take an orthonormal basis {ηn}n∈N of L2
1(dm) which consists of elements in D1,∞.

Take N > 0 and take µ ∈ C ′
p,N :=

{
ν ∈ C ′

p ; νηn = 0 for all n > N
}
. Then we have

H∗(w) ≥ sup
µ∈C ′p,N

(〈µ,w〉Cp −H(µ)).

Note that the calculation of the right-hand side of the last inequality has been reduced
to the classical finite-dimensional case. If w0 6= 0, there exists n0 ∈ N which satisfies
〈w0, ηn0〉 6= 0. Accordingly, by taking N > n0, H

∗(w) = ∞ follows. In the case of w0 = 0,
we have

sup
µ∈C ′p,N

(〈µ,w〉Cp −H(µ)) =
1

2

N∑
n=1

∫ ∞

0

|〈ẇs, ηn〉|2 ds,

where the right-hand side may diverge. Thus letting N →∞ we obtain

H∗(w) ≥ 1

2

∫ ∞

0

∞∑
n=1

|〈ẇs, ηn〉|2 ds. (3.5)

Thus H∗(w) = ∞ holds if the right hand side of (3.5) diverges. Note that ẇs ∈ H ′ holds
if and only if

∑∞
i=1 | 〈ẇs, ηn〉 |2 <∞ and we have

∑∞
i=1 | 〈ẇs, ηn〉 |2 = 2L1(ẇs) for ẇs ∈ H ′.

Finally, we consider the case
∫∞

0
L1(ẇs)ds < ∞. For µ ∈ C ′

p whose support is contained
in [0, T ], the integration-by-parts formula implies

〈µ,w〉Cp −H(µ) =
∞∑

n=1

(
1

2

∫ T

0

|〈ẇs, ηn〉|2 ds− 1

2

∫ T

0

|〈ẇs, ηn〉 − µηn
s |2 ds

)

≤ 1

2

∫ T

0

∞∑
n=1

|〈ẇs, ηn〉|2 ds.

Hence, combining with (3.5), we obtain the desired result. 〈q.e.d.〉

Now we call w ∈ F if and only if L(w) <∞, the support of w is compact, ẇ is absolutely
continuous with respect to ‖·‖−p, and the Radon-Nikodym derivative ẅ of ẇ takes its
values in D1,p for a.e.s. Then L is strictly convex at w for all w ∈ F . Indeed, for w ∈ F ,
take µ ∈ Cp which is determined by

∫
M

(µs, α)dm = 〈ẇs, α〉. Then, for any w′ ∈ Cp with
L(w′) <∞, we obtain

L(w′)− L(w) + 〈µ,w′ − w〉Cp =

∫ ∞

0

L1(ẇ
′
s − ẇs)ds ≥ 0

by easy calculation. Obviously the equality holds if and only if w′ = w.
In order to complete the proof of Theorem 2.6, we show infx∈G∩F L(x) = infx∈G L(x)

for all open set G ⊂ Cp. It is sufficient to prove that, for all w ∈ Cp with L(w) < ∞,
there exists a sequence {wn}n∈N ⊂ F such that wn tends to w in Cp and L(wn) tends to
L(w) as n goes to ∞. We prepare the following lemma for the proof.
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Lemma 3.14 Let S be a separable Hilbert space and S̃ a dense subspace of S. We define
a subset S of L2([0,∞) → S) such that w ∈ S if and only if w0 = 0, w is absolutely
continuous with respect to ‖·‖S, the support of w is compact, and ws ∈ S̃ for almost every
s. Then S is dense in L2([0,∞) → S).

Proof. We prove the orthogonal complement S ⊥ of S is equal to {0}. Take w ∈ S ⊥.
For 0 < a < b <∞ and α ∈ S̃, we take η̃n such that

η̃n
t =





nα t ∈ [a− 1
n
, a),

0 t ∈ [0, a− 1
n
) ∪ [a, b) ∪ [b+ 1

n
,∞),

−nα t ∈ [b, b+ 1
n
).

Then ηn ∈ S is defined by ηn
t =

∫ t

0
η̃n

s ds. Thus we have
∫∞

0
(ws, η

n
s )S ds = 0, and letting

n → ∞, we obtain
∫ b

a
(ws, α)S ds = 0. Since a and b are arbitrarily taken, (ws, α)S = 0

for almost all s. Since S is separable, we can take a countable dense subset {αn}n∈N ⊂ S̃
and we conclude that (ws, αn)S = 0 holds for all n for almost all s. Hence w = 0. 〈q.e.d.〉

For w, w̃ ∈ Cp with L(w) <∞ and L(w̃) <∞, we have

‖w̃t − wt‖−p ≤ sup
α∈D1,p
‖α‖p≤1

〈w̃t − wt, α〉

≤ C sup
α∈D1,p

‖α‖
L2

1(dm)
≤1

〈w̃t − wt, α〉

≤ C (2L1(w̃t − wt))
1/2

≤ C (2L(w̃ − w)t))1/2 . (3.6)

Last inequality follows from Jensen’s inequality since L1 is convex. By Lemma 3.14, we
can take a sequence {wn}n∈N ⊂ F so that limn→∞ L(wn−w) = limn→∞ L(wn)−L(w) = 0
holds. Then, combining with (3.6), wn converges to w in Cp. Thus we complete the proof
of Theorem 2.6.

3.3 Proof of Theorem 2.8

3.3.1 Existence of the large deviation for Ȳ λ

Our goal in this section is to prove the existence of the large deviation principle for Ȳ λ

in Theorem 2.8. First we prove the large deviation for the law of current-valued random
variables {Ȳ λ

1 }λ>0 in D1,−p.

Proposition 3.15 The law of {Ȳ λ
1 }λ>0 satisfies the large deviation principle as λ → ∞

in D1,−p under the measure Px uniformly in x ∈M with speed λ.

For the proof of Proposition 3.15, we prepare the following lemma.
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Lemma 3.16 Let Br(ζ) be a ball in D1,−p centered at ζ with radius r. There is a constant
C2 > 0 so that for all r > 0, ζ ∈ D1,−p, x, y ∈M , ε > 0 and λ > 1,

Px

[
Ȳ λ

1 ∈ Br(ζ)
] ≤ C2Py

[
Ȳ λ

1 ∈ Br+ε(ζ)
]
+ (1 + C2)C1 exp

(
−λ

2ε2

4C1

)
.

Proof. We have

Px

[
Ȳ λ

1 ∈ Br(ζ)
] ≤ Px

[
1

λ
(Yλ − Y1) ∈ Br+ε/2(ζ)

]
+ Px

[
1

λ
‖Y1‖−p ≥ ε

2

]
.

By Lemma 3.2, the following estimate holds:

Px

[
1

λ
‖Y1‖−p ≥ ε

2

]
≤ C1 exp

(
−λ

2ε2

4C1

)
. (3.7)

Note that the transition density pt(x, y) of zt is positive and continuous in x and y for each
fixed t > 0 (for example, see [17]). We set C2 := supx,y∈M p1(x, y)/ infx′,y′∈M p1(x

′, y′).
Then, the Markov property of {zt}t≥0 implies

Px

[
1

λ
(Yλ − Y1) ∈ Br+ε/2(ζ)

]
= Ex

[
Pz1

[
1

λ
Yλ−1 ∈ Br+ε/2(ζ)

]]

≤ C2Ey

[
Pz1

[
1

λ
Yλ−1 ∈ Br+ε/2(ζ)

]]

= C2Py

[
1

λ
(Yλ − Y1) ∈ Br+ε/2(ζ)

]

≤ C2

(
Py

[
Ȳ λ

1 ∈ Br+ε(ζ)
]
+ Py

[
1

λ
‖Y1‖−p ≥ ε

2

])
.

Thus, the estimate (3.7) implies the conclusion. 〈q.e.d.〉

Proof of Proposition 3.15. By virtue of Lemma 3.2, the family {Ȳ λ
1 }λ>0 is exponen-

tially tight uniformly in initial points x ∈M . Indeed, as a compact set, we can take a ball
in D1,−p0 for d < p0 < p centered at origin with sufficiently large radius. Thus we need
only to prove the weak large deviation. By the existence theorem of the large deviation
(Theorem 4.1.11 of [4], cf. Remark 3.3), it suffices to show the following:

sup
r>0

{
− lim sup

λ→∞

1

λ
log

(
sup
x∈M

Px

[
Ȳ λ

1 ∈ Br(ζ)
])}

= sup
r>0

{
− lim inf

λ→∞
1

λ
log

(
inf
x∈M

Px

[
Ȳ λ

1 ∈ Br(ζ)
])}

for all ζ ∈ D1,−p.

By using Lemma 3.2, we can prove that, for any T > 0,

lim
R→∞

sup
x∈M

sup
0≤t≤T

Px [‖Yt‖−p ≥ R] = 0.
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Then, an argument similar to the proof of Lemma 4.2.3 and Lemma 4.2.7 of [5] implies
the existence of the limit

lim
λ→∞

1

λ
log

(
inf
x∈M

Px

[
Ȳ λ

1 ∈ Br(ζ)
])

.

By Lemma 3.16, we obtain

lim sup
λ→∞

1

λ
log

(
sup
x∈M

Px

[
Ȳ λ

1 ∈ Br(ζ)
]) ≤ lim sup

λ→∞

1

λ
log

(
inf
y∈M

Py

[
Ȳ λ

1 ∈ Br+ε(ζ)
])

= lim inf
λ→∞

1

λ
log

(
inf
y∈M

Py

[
Ȳ λ

1 ∈ Br+ε(ζ)
])

for all ε > 0. Hence it yields Proposition 3.15. 〈q.e.d.〉
Remark 3.17 Let us define a functional Λ∗1 : D1,−p → [0,∞] by

Λ∗1(ω) = sup
r>0

{
− lim

λ→∞
1

λ
log

(
inf
x∈M

Px

[
Ȳ λ

1 ∈ Br(ω)
])}

.

Then Λ∗1 becomes the rate function which governs the large deviation for {Ȳ λ
1 }λ>0. By

the Markov property of {zt}t≥0, Λ∗1 is convex and lower semi-continuous (cf. Lemma 4.1.7
of [5]). Moreover, Λ∗1 is good since {Ȳ λ

1 }λ>0 is exponentially tight.

In the rest of this section, we extend the large deviation estimate for {Ȳ λ
1 }λ>0 to that for

{Ȳ λ}λ>0.

Proposition 3.18 The law of {Ȳ λ}λ>0 satisfies the large deviation principle as λ → ∞
in Cp under Px uniformly in x ∈M with speed λ.

Proof. By Proposition 3.5, the law of {Ȳ λ}λ>0 is exponentially tight in Cp uniformly in
x ∈M . In particular, goodness of the rate function follows once we prove the existence of
the large deviation. Let φn : (D1,−p)

n2n → Cp be the mapping to piecewise linear functions
of dyadic partitions. More precisely,

φn(w1, . . . , wn2n)t :=
n2n−1∑

k=0

(1 ∧ (2nt− k) ∨ 0) (wk+1 − wk).

Let πn : Cp → (D1,−p)
n2n

be an evaluation map given by πn(w) = {wk2−n}n2n

k=1. Let ρ be a
distance on Cp defined by

ρ(w, η) :=
∞∑

k=1

1

2k
( sup
0≤t≤k

‖wt − ηt‖−p ∧ 1). (3.8)

Then, by virtue of the approximation theorem of large deviation (Theorem 4.2.16 of [4],
cf. Remark 3.3) and the uniform exponential tightness, it suffices to show the uniform
large deviation for {φn ◦ πn(Y λ)}λ>0 and for each ε > 0

lim
n→∞

lim sup
λ→∞

1

λ
log

(
sup
x∈M

Px[ρ(Ȳ
λ, φn ◦ πn(Ȳ λ)) > ε]

)
= −∞. (3.9)
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Given a partition 0 = t0 < t1 < · · · < tn, a family of (D1,−p)
n-valued random variables

{Ȳ λ
t1
, . . . , Ȳ λ

tn}λ>0 satisfies the large deviation principle under Px, uniformly in x ∈M . It is
a consequence of the Markov property of {zt}t≥0. Since φn is continuous, the contraction
principle (Theorem 4.2.1 of [4], cf. Remark 3.3) implies that {φn ◦ πn(Ȳ λ)}λ>0 satisfies
the large deviation principle uniformly in x ∈M .

Let us turn to the proof of (3.9). We take N ∈ N such that
∑∞

k=N+1 2−k < ε/2. Then

{ρ(w, φn ◦ πn(w)) > ε} ⊂
{

N∑

k=1

1

2k
sup

0≤t≤k
‖wt − (φn ◦ πn(w))t‖−p >

ε

2

}

⊂
N⋃

k=1

{
sup

0≤t≤k
‖wt − (φn ◦ πn(w))t‖−p >

2k−1ε

N

}
.

In addition, for n > N and k = 1, . . . , N ,

sup
0≤t≤k

‖wt − (φn ◦ πn(w))t‖−p

= max
1≤j≤k2n

sup
0≤t<2−n

‖(wt+(j−1)2−n − w(j−1)2−n)− 2nt(wj2−n − w(j−1)2−n)‖−p

= max
1≤j≤k2n

sup
0≤t<2−n

‖2nt(wt+(j−1)2−n − wj2−n) + (1− 2nt)(wt+(j−1)2−n − w(j−1)2−n)‖−p

≤ max
1≤j≤k2n

sup
s,t∈[(j−1)2−n, j2−n)

‖wt − ws‖−p

≤ 2 max
1≤j≤k2n

sup
t∈[(j−1)2−n, j2−n)

‖wt − w(j−1)2−n‖−p.

Thus, with the aid of Lemma 3.2, we obtain

sup
x∈M

Px

[
ρ
(
Ȳ λ, φn ◦ πn(Ȳ λ)

)
> ε

]

≤
N∑

k=1

sup
x∈M

Px

[
sup

0≤t≤k

∥∥Ȳ λ
t − (φn ◦ πn(Ȳ λ))t

∥∥
−p
>

2k−1ε

N

]

≤
N∑

k=1

k2n∑
j=1

sup
x∈M

Px

[
sup

(j−1)2−n≤t≤j2−n

∥∥∥Ȳ λ
t − Ȳ λ

(j−1)2−n

∥∥∥
−p
>

2k−2ε

N

]

=
N∑

k=1

k2n sup
x∈M

Px

[
sup

0≤t≤2−n

∥∥Ȳ λ
t

∥∥
−p
>

2k−2ε

N

]

≤ C1

N∑

k=1

k2n exp

(
−4k−2ε2

C1N2
λ2n

)
.

Consequently, for each n > N ,

lim sup
λ→∞

1

λ
log

(
sup
x∈M

Px

[
ρ

(
Ȳ λ, φn ◦ πn

(
Ȳ λ

))
> ε

]) ≤ − ε2

4C1N2
2n

and hence the desired estimate (3.9) follows. 〈q.e.d.〉
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3.3.2 Extension of a variational formula

Let us define Λ1 : D1,p → R by

Λ1(α) := lim
t→∞

1

t
log

(
sup
x∈M

Px [exp (Yt(α))]

)
. (3.10)

Then we have
Λ∗1(ω) = sup

α∈D1,p

(〈ω, α〉 − Λ1(α)) . (3.11)

This is merely a consequence of Theorem 2.2.21 in [5] (cf. Remark 3.17).

Lemma 3.19 For α ∈ D1,p, Λ1(α) is equal to the principal eigenvalue of the operator
∆/2 + b+ α̌+ |α|2/2, where α̌ is a vector field corresponding to α.

Proof. Let us define a semigroup Tα
t by Tα

t f(x) = Ex[exp(Yt(α))f(zt)] for f ∈ C(M).
Then we can extend Tα

t to Lr-semigroup for all 1 ≤ r ≤ ∞. By (3.10), we have

Λ1(α) := lim
t→∞

1

t
log

(
sup
x∈M

Px

[
exp

(
Yt(α)− 1

2
〈Y (α)〉t +

1

2
〈Y (α)〉t

)])
.

Since the quadratic variation 〈Y (α)〉t is given by (2.2), the Girsanov formula and the
Feynman-Kac formula imply that Tα

t is the semigroup generated by ∆/2+ b+ α̌+ |α|2/2.
Now we have

Λ(α) = lim
t→∞

1

t
log ‖Tα

t 1‖L∞ = lim
t→∞

1

t
log ‖Tα

t ‖L∞→L∞ .

Then, by virtue of the ultracontractivity of the semigroup corresponding to ∆/2, we have
‖Tα

1 ‖L2→L∞ <∞. Thus we obtain

lim
t→∞

1

t
log ‖Tα

t ‖L∞→L∞ = lim
t→∞

1

t
log ‖Tα

t ‖L2→L2 . (3.12)

The spectral mapping theorem implies that the right-hand side of (3.12) is equal to the
principal eigenvalue of ∆/2 + b+ α̌+ |α|2/2. 〈q.e.d.〉

Given a smooth vector field β and a smooth function V on M , let λ∗ be a principal
eigenvalue of the operator ∆/2+β+V on L2(dv). Then the following variational formula
for λ∗ is well-known (see [12], for example).

−λ∗ = min
f∈W0

{∫

M

(
1

2
(df, df)− fβf +

1

2
|β̂|2f 2 − V f 2

)
dv − 1

2
σ2(β̂, f)

}

= min
f∈W0

{∫

M

(
1

2
(df, df) +

1

2
(|β̂|2 − δβ̂)f 2 − V f 2

)
dv − 1

2
σ2(β̂, f)

}
, (3.13)

where β̂ is the 1-form corresponding to β and

W0 :=

{
f ∈ C2(M) ; f > 0,

∫

M

f 2 dv = 1

}
,

σ2(α, f) := inf
U∈C1(M)

∫

M

|α− dU |2f 2 dv, α ∈ D1,∞.

We want to use the formula (3.13) for the calculation of the rate function Λ∗1. For this
purpose, we extend it to the following form.
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Proposition 3.20

−λ∗1 = inf
µ∈M1

[
1

2
E (µ) +

∫

M

{
1

2
(|β̂|2 − δβ̂)− V

}
dµ− 1

2
σ2(β̂, µ)

]
, (3.14)

where

E (µ) :=

{
E (f) if µ¿ v and dµ = f 2dv with f ∈ W ,

∞ otherwise,

σ2(α, µ) := inf
U∈C∞(M)

∫

M

|α− dU |2dµ

for µ ∈ M1 and α ∈ D1,∞.

We prepare some notations for the proof. Set E = {du ; u ∈ C∞(M)}. For f ∈ W ,
we denote L2

1(f
2dv)-closure of E by Ēf . The orthogonal projection to Ēf on L2

1(f
2dv) is

denoted by Pf .

Proof of Proposition 3.20. It is almost the same argument as the original proof of
the variational formula (3.13). Most part of the proof is devoted to extend the range of
minimum from W0 to W .

The Krein-Rutman theorem allows us to take a unique, L2(dv)-normalized, strictly
positive eigenfunction u0 corresponding to the principal eigenvalue λ∗. Note that u0 is
smooth by the hypoellipticity. Set ψ = − log u0. Then, with a bit of calculation, we
obtain

1

2
∆ψ − 1

2
(dψ, dψ) + (β̂, dψ)− V = −λ∗.

It is equivalent to the following:

1

2
∆ψ + min

α

{
(dψ, α) +

1

2
(β̂ − α, β̂ − α)− V

}
= −λ∗, (3.15)

where the range of the minimum above can be taken over any class of measurable 1-forms
containing β̂ − dψ = β̂ + u−1

0 du0, which attains the minimum. Let W ′ be the totality of
f ∈ W with f > 0 a.e. For each f ∈ W ′ we set αf = (1 − Pf )β̂ + f−1df . We will adopt
the family {αf ; f ∈ W ′} as the range of the minimum in (3.15), which is possible once

we show that there is f0 ∈ W ′ so that αf0 = β̂ − dψ.
Consider the following differential equation:

L ∗h =
1

2
∆h− (β̂ − du0

u0

, dh) +

(
δβ̂ − 2(β̂,

du0

u0

)

)
h = 0. (3.16)

Note that L ∗ is the adjoint operator of L := ∆/2 + β − gradψ on L2(u2
0dv). Since

the principal eigenvalue of L is 0, the Krein-Rutman theorem asserts that the principal
eigenvalue corresponding to L ∗ is also 0. Thus (3.16) has the L2(u2

0dv)-normalized,
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strictly positive smooth solution. We give W0 ∈ C∞(M) and f0 ∈ W ′ by the relations
W0 = (log h)/2 and f0 = u0 expW0. Then we have

∫

M

(β̂ − dW0, du)f
2
0dv =

∫

M

(
β̂ − dh

2h
, du

)
h u2

0dv =

∫

M

hL u u2
0dv = 0.

Accordingly, dW0 = Pf β̂ holds and therefore we obtain

β̂ − dψ = β̂ + u−1
0 du0 = (1− Pf )β̂ + f−1

0 df0

and hence αf0 = β̂ − dψ.
By (3.15), for each f ∈ W ′ we have

1

2
∆ψ + (dψ, αf ) +

1

2
(β̂ − αf , β̂ − αf )− V ≥ −λ∗.

Multiplying f 2 and integrating over M we obtain

1

2

∫

M

∆ψf 2 dv +

∫

M

(dψ, αf )f
2 dv +

∫

M

{
1

2
(β̂ − αf , β̂ − αf )− V

}
f 2 dv ≥ −λ∗.

On the left-hand side,

1

2

∫

M

∆ψf 2 dv +

∫

M

(dψ, αf )f
2 dv =

1

2

∫

M

∆ψf 2 dv +

∫

M

(dψ, (1− Pf )β̂ +
df

f
)f 2 dv

=

∫

M

(dψ, (1− Pf )β̂)f 2 dv = 0.

The second equality follows from the Green formula
∫

M

∆ψf 2 dv = −2

∫

M

(dψ, df)f dv,

which is proved by approximating f by smooth functions. Then we have

−λ∗ ≤
∫

M

{
1

2
(β̂ − αf , β̂ − αf )− V

}
f 2 dv. (3.17)

Since the equality holds in (3.17) when f = f0, we obtain

−λ∗ = inf
f∈W ′

∫

M

{
1

2
(β̂ − αf , β̂ − αf )− V

}
f 2 dv.

On the right-hand side, we have

1

2

∫

M

{
(β̂ − αf , β̂ − αf )− V

}
f 2 dv

=

∫

M

{
1

2
(df, df)− (Pf β̂, df)f +

1

2
|Pf β̂|2f 2 − V f 2

}
dv. (3.18)
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Here we have ∫

M

|Pf β̂|2f 2 dv =

∫

M

|β̂|2f 2 dv − σ2(β̂, f)

since σ2(β̂, f) = ‖(1− Pf )β̂‖2
L2(f2dv). On the other hand, the lemma below (Lemma 3.21)

asserts ∫

M

(Pf β̂, df)f dv =

∫

M

(β̂, df)f dv =
1

2

∫

M

δβ̂f 2 dv.

Thus, we conclude that

−λ∗ = inf
f∈W ′

[
1

2
E (f) +

∫

M

{
1

2

(
|β̂|2 − δβ̂

)
− V

}
f 2dv − 1

2
σ2(β̂, f)

]

= inf
µ∈M1

dµ=f2dv
f∈W ′

[
1

2
E (µ) +

∫

M

{
1

2

(
|β̂|2 − δβ̂

)
− V

}
dµ− 1

2
σ2(β̂, µ)

]
. (3.19)

Now we call the term in the infimum of (3.19) by Ψ(µ). We claim that Ψ(µ) is convex.
To prove it, all we need to show is the convexity of −σ2(β̂, µ) since the convexity of E (µ)
is well-known. For each U ∈ C1(M) fixed, the functional

∫
M
|α − dU |2dµ is linear with

respect to µ. By taking infimum over U , we conclude that σ2(α, ·) is concave. Thus we
prove the convexity of Ψ(µ).

In order to replace the range of infimum in (3.19) to the whole M1, first we extend W ′

to W . For each f ∈ W , we set fε = {(1− ε)f 2 + ε}1/2 ∈ W ′. Take µ ∈ M1 and µε ∈ M1

by dµ = f 2dv and dµε = f 2
ε dv. Then we obtain

−λ∗ ≤ Ψ(µε) ≤ (1− ε)Ψ(µ) + εΨ(v).

Letting ε → 0, Ψ(µ) ≥ −λ∗ follows and hence we can extend the range of infimum
from W ′ to W . Extension to the whole M1 needs only the fact that Ψ(µ) = ∞ unless
dµ = f 2dv for some f ∈ W . 〈q.e.d.〉

Lastly, we prove a lemma used in the proof of Proposition 3.20.

Lemma 3.21 For f ∈ W , ∫

M

(α, df)f dv = 0, α ∈ (
Ēf

)⊥
.

Proof. The method here is essentially due to that in the proof of Theorem 6.3.19 of [5].
For the proof, we require the following variational formula for the Dirichlet form E :

E (f) = sup

{
−

∫

M

∆u

u
f 2 dv ; u ∈ C∞(M), u ≥ 1

}
. (3.20)

By virtue of (3.20), we can take a sequence {un}n∈N ⊂ C∞(M) with un ≥ 1 so that
− ∫

M
u−1

n ∆unf
2 dv tends to E (f) as n goes to ∞. Then, by the definition of α and the

Schwarz inequality,∣∣∣∣
∫

M

(α, df)f dv

∣∣∣∣ =

∣∣∣∣
∫

M

(
α,
dun

un

)
f 2 dv −

∫

M

(α, df)f dv

∣∣∣∣

≤
{∫

M

|α|2f 2 dv

}1/2
{∫

M

∣∣∣∣f
dun

un

− df

∣∣∣∣
2

dv

}1/2

.
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Here we have

lim sup
n→∞

∫

M

∣∣∣∣f
dun

un

− df

∣∣∣∣
2

dv = lim sup
n→∞

{
E (f)−

∫

M

δ

(
dun

un

)
f 2 dv +

∫

M

|dun|2
u2

n

f 2 dv

}

= lim sup
n→∞

(
E (f) +

∫

M

∆un

un

f 2 dv

)
= 0.

〈q.e.d.〉

3.3.3 Rate function I

In this section we are going to complete the proof of Theorem 2.8 by giving a repre-
sentation of the rate function. Our first goal is in the following.

Proposition 3.22 Λ∗1 = I1.

Recall that Λ∗1 appears in (3.11) and I1 is given by (2.9). First we show that we may
restrict the range of supremum in (3.11) to D1,∞.

Lemma 3.23 The functional Λ1 : D1,p → R is continuous.

Proof. By Lemma 3.19 we can identify Λ1(α) with the principal eigenvalue of the differ-
ential operator ∆/2+ b+ α̌+ |α|2/2. The Krein-Rutman theorem implies that it is always
a simple eigenvalue. Thus we can apply the perturbation theory to prove the continuity
of Λ1.

Let {αn}n∈N be a family of elements in D1,p which converges to α∞ ∈ D1,p as n tends
to infinity. We consider associated differential operators Ln := ∆/2 + b + α̌n + |αn|2 /2
and L∞ := ∆/2 + b + α̌∞ + |α∞|2 /2. The perturbation theory asserts the continuity
limn→∞ Λ1(αn) = Λ1(α∞) once we prove the following claims (3.21) and (3.22) (see [20]
Chapter IV§3.5):

lim
n→∞

sup
u∈Dom(Ln)

‖u‖
L2(dv)

+‖Lnu‖
L2(dv)

=1

inf
w∈Dom(L∞)

(
‖u− w‖L2(dv) + ‖Lnu− L∞w‖L2(dv)

)
= 0, (3.21)

lim
n→∞

sup
w∈Dom(L∞)

‖w‖
L2(dv)

+‖L∞w‖
L2(dv)

=1

inf
u∈Dom(Ln)

(
‖u− w‖L2(dv) + ‖Lnu− L∞w‖L2(dv)

)
= 0. (3.22)

We give a proof only for (3.21) since we can prove (3.22) similarly. Note that Dom (Ln) =
Dom (L∞) = Dom(∆) holds. We give a constant C3 := max{‖b̂‖p , supn∈N∪{∞} ‖αn‖p}.
Recall that there is a constant C > 0 so that, for each α ∈ D1,p, supx∈M |α| (x) ≤
C ‖α‖p holds by the Sobolev embedding theorem. For u ∈ Dom (Ln) with ‖u‖L2(dv) +
‖Lnu‖L2(dv) = 1, we have

inf
w∈Dom(L∞)

(
‖u− w‖L2(dv) + ‖Lnu− L∞w‖L2(dv)

)

≤ ‖Lnu− L∞u‖L2(dv)

=

∥∥∥∥(αn − α∞, du) +
1

2

(|αn|2 − |α∞|2
)
u

∥∥∥∥
L2(dv)

≤ C
(
‖αn − α∞‖p ‖du‖L2

1(dv) + C3 ‖αn − α∞‖p ‖u‖L2(dv)

)
.
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Now we estimate the term ‖du‖L2
1(dv). We have

‖du‖2
L2

1(dv) = (∆u, u)L2(dv) = (Lnu, u)L2(dv) −
∫

M

(b̂+ αn, du)u dv − 1

2

∫

M

|αn|2 u2 dv.

On each term of the right-hand side, for each ε > 0, we have

∣∣∣ (Lnu, u)L2(dv)

∣∣∣ ≤ ‖Lnu‖L2(dv) ‖u‖L2(dv) ≤
(
‖Lnu‖L2(dv) + ‖u‖L2(dv)

2

)2

=
1

4
,

∣∣∣
∫

M

(b̂+ αn, du)u dv
∣∣∣ ≤ CC3 ‖du‖L2

1(dv) ‖u‖L2(dv) ≤ CC3ε ‖du‖2
L2

1(dv) + CC3
1

4ε
‖u‖2

L2(dv) ,

∣∣∣
∫

M

|αn|2 u2 dv
∣∣∣ ≤ C2

3 ‖u‖2
L2(dv) ≤ C2

3 .

Combining all these estimates with sufficiently small ε > 0 so that CC3ε < 1, we con-
clude (3.21). 〈q.e.d.〉

As a consequence of Lemma 3.23, we obtain

Λ∗1(ω) = sup
α∈D1,p

(〈ω, α〉 − Λ1(α)) = sup
α∈D1,∞

(〈ω, α〉 − Λ1(α))

since D1,∞ is dense in D1,p. By virtue of Proposition 3.20, we obtain the following repre-
sentation of Λ∗1:

Λ∗1(ω) = sup
α∈D1,∞

inf
µ∈M1

[
〈ω, α〉+

1

2
E (µ)

+

∫

M

{
1

2

(
|b̂+ α|2 − δ(b̂+ α)

)
− 1

2
|α|2

}
dµ− 1

2
σ2(b̂+ α, µ)

]

= sup
α∈D1,∞

inf
µ∈M1

[
− 1

2
σ2(α, µ) + 〈ω, α〉+

∫

M

(
(b̂, α)− 1

2
δα

)
dµ

+
1

2
E (µ)− 〈ω, b̂〉 − 1

2

∫

M

|b̂|2dµ
]
. (3.23)

We want to exchange the order of supremum and infimum by using the minimax theorem.
For this purpose, we define the functional Φ by

Φ(α, µ) := −1

2
σ2(α, µ) + 〈ω, α〉+

∫

M

(
(b̂, α)− 1

2
δα

)
dµ+

1

2
E (µ)− 〈ω, b̂〉 − 1

2

∫

M

|b̂|2dµ

and verify some properties.

Lemma 3.24 (i)For each µ ∈ M1 fixed, Φ(·, µ) is concave and continuous. (ii) For each
α ∈ D1,∞ fixed, Φ(α, ·) is convex and lower semi-continuous.
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Proof. (i) We may suppose E (µ) < ∞ and denote dµ = f 2dv with f ∈ W . Then
it suffices to show the continuity and the concavity of −σ2(α, µ) since other functionals
which appear in the definition of Φ are all linear and bounded. Recall that we can rewrite
σ2(α, µ) by ‖(1− Pf )α‖2

L2
1(dµ). This expression implies the continuity of σ2(·, µ). The

concavity follows from that of the functional α 7→ − ∫
M
|α − dU |2dµ by taking infimum

on U ∈ C∞(M).
(ii) It is well-known that E (µ) is convex and lower semi-continuous with respect to the

weak topology on M1. Thus it suffices to prove the lower semi-continuity and convexity
of −σ2(α, ·). Note that for each U ∈ C1(M) fixed, the functional

∫
M
|α − dU |2dµ is

continuous with respect to µ. By taking infimum over U , we conclude that σ(α, ·) is
upper semi-continuous. We can prove the convexity as well. 〈q.e.d.〉
Proof of Proposition 3.22. Take ω ∈ D1,−p with Λ∗1(ω) <∞. First we show ω ∈ H .
Since M1 and D1,∞ are convex and M1 is compact, we can apply the Sion minimax
theorem [25] to (3.23) by virtue of Lemma 3.24. Then we obtain

Λ∗1(ω) = inf
µ∈M1

sup
α∈D1,∞

[
− 1

2
σ2(α, µ) + 〈ω, α〉+

∫

M

(
(b̂, α)− 1

2
δα

)
dµ

+
1

2
E (µ)− 〈ω, b̂〉 − 1

2

∫

M

|b̂|2dµ
]
.

If the 1-form α is exact, namely α = du for some u ∈ C∞(M), then clearly σ(α, µ) = 0
holds for all µ ∈ M1. In this case, we have

Φ(du, µ) = 〈ω, du〉+

∫

M

(
1

2
∆u+ bu

)
dµ+

1

2
E (µ)− 〈ω, b̂〉 − 1

2

∫

M

|b̂|2dµ.

If ω /∈ Ω̃, then for each µ ∈ M1 there exists uµ ∈ C∞(M) so that

〈ω, duµ〉+

∫

M

(
1

2
∆ + b

)
uµ dµ 6= 0.

Thus we can conclude that supα∈D1,∞ Φ(α, µ) = +∞ for each µ by taking α = Rduµ with

R ∈ R and letting |R| → ∞. Since we assume Λ∗1(ω) <∞, ω must be in Ω̃. Hence there
exists µ ∈ M1 so that

〈ω, du〉+

∫

M

(
1

2
∆ + b

)
u dµ = 0 (3.24)

holds for all u ∈ C∞(M). Note that there is at most one µ ∈ M1 which satisfies (3.24).
Indeed, if both µ and ν satisfy the relation (3.24) then we have

∫

M

(
1

2
∆u+ bu

)
dµ =

∫

M

(
1

2
∆u+ bu

)
dν

for all u ∈ C∞(M). Given arbitrary φ ∈ C∞(M), there exists u ∈ C∞(M) which satisfies
the equation (

1

2
∆ + b

)
u = φ−

∫

M

φ dm (3.25)
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(see [13]). Recall that m is the normalized invariant measure of ∆/2 + b. Thus we
obtain

∫
M
φ dµ =

∫
M
φ dν for all φ ∈ C∞(M) and therefore µ = ν. We denote such

µ by µω. Thus we have supα∈D1,∞ Φ(α, ν) = +∞ for ν 6= µω. Therefore we must have
supα∈D1,∞ Φ(α, µω) < ∞ in order to satisfy Λ∗1(ω) < ∞. Hence we require ω ∈ Ω. Set
f = χ(ω). Then we obtain

Λ∗1(ω) = inf
µ∈M1

sup
α∈D1,∞

Φ(α, µ)

= sup
α∈D1,∞

{
− 1

2
‖(1− Pf )α‖2

L2
1(f2dv) + 〈ω, α〉+

∫

M

(b̂, α)f 2 dv −
∫

M

(α, df)f dv

+
1

2
E (f)− 〈ω, b̂〉 − 1

2

∫

M

|b̂|2f 2 dv

}
. (3.26)

Except 〈ω, α〉, the term appearing in Φ(α, µ) which depends on α is bounded on the set
{α ∈ D1,∞ ; ‖α‖L2

1(f2dv) ≤ 1}. Thus Λ∗1(ω) = ∞ if ω is not a bounded functional on

L2
1(f

2dv). Hence we conclude ω ∈ H .
Let us define ξf := limε↓0(f+ε)−1df ∈ L2

1(f
2dv). Then, for ω ∈ H , we have ω̂+b̂−ξf ∈

(Ēf )⊥ where ω̂ ∈ L2
1(f

2dv) is determined by (2.10). It is a consequence of (2.8) and (2.10).
Thus we have

〈ω, α〉+

∫

M

(b̂, α)f 2 dv −
∫

M

(α, df)f dv =

∫

M

(ω̂ + b̂− ξf , (1− Pf )α)f 2 dv.

By virtue of (2.10) and (3.26), we obtain

Λ∗1(ω) = −1

2

∫

M

|(1− Pf )α− ω̂ − b̂+ ξf |2f 2 dv +
1

2

∫

M

|ω̂ + b̂− ξf |2f 2 dv

+
1

2
E (f)−

∫

M

(ω̂, b̂)f 2 dv − 1

2

∫

M

|b̂|2f 2 dv.

Since {(1− Pf )α}α∈D1,∞ is dense in
(
Ēf

)⊥
, we claim

Λ∗1(ω) =
1

2

∫

M

|ω̂|2f 2 dv +
1

2
E (f) +

1

2

∫

M

|ξf |2f 2 dv −
∫

M

(ω̂ + b̂, ξf )f
2 dv. (3.27)

By virtue of Lemma 3.21, we have

∫

M

(ω̂ + b̂, ξf )f
2 dv = lim

ε↓0

∫

M

(
ω̂ + b̂,

df

f + ε

)
f 2 dv

=

∫

M

(ω̂ + b̂, df)f dv =

∫

M

(ξf , df)f dv =

∫

M

|ξf |2f 2 dv (3.28)

and

∫

M

|ξf |2 f 2 dv = lim
ε↓0

∫

M

∣∣∣∣
df

f + ε

∣∣∣∣
2

f 2 dv = lim
ε↓0

E (φε(f)) = E (f), (3.29)
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where φε(x) = x− ε log[(x+ ε)/ε] for ε > 0. Here the last equality in (3.29) follows from
the fact that limε→0 E (φε(f)− f) = 0. It is proved in the same way as Theorem 1.4.2 (v)
of [9]. Substituting (3.28) and (3.29) into (3.27), we obtain Λ∗1(ω) = I1(ω).

Now all we need to show is that Λ∗1 coincides with I1 on H because I1 is finite on H .
This assertion follows from the fact that the observation to obtain (3.27) from (3.23) is
all valid for ω ∈ H without assuming Λ∗1(ω) <∞. 〈q.e.d.〉
Remark 3.25 The rate function I1(ω) attains its minimum 0 only when ω = 0. Indeed,
by Definition 2.7, I1(ω) = 0 if and only if ω ∈ H and ω̂ = 0. In addition, (2.10) and (2.8)
assert that ω ∈ H and ω̂ = 0 is equivalent to ω = 0.

To complete the proof of Theorem 2.8, we prepare the space (D1,−p)
[0,∞), which is

the space of maps from [0,∞) to D1,−p with pointwise convergence topology. We may
regard {Ȳ λ}λ>0 as (D1,−p)

[0,∞)-valued random variables. As we remarked in the proof of
Proposition 3.18, for each partition 0 = t0 < t1 < · · · < tn, {(Ȳ λ

t1
, . . . , Ȳ λ

tn)}λ>0 satisfies
the large deviation. We can easily show that the corresponding rate function It1,...,tn is
described as follows:

It1,...,tn(w1, . . . , wn) =
n∑

`=1

(t` − t`−1)I1

(
w` − w`−1

t` − t`−1

)
,

where w0 = 0. Thus, in the same way as in Lemma 5.1.6 of [4], we can prove that {Ȳ λ}λ>0

satisfies the large deviation in (D1,−p)
[0,∞). Moreover, the rate function coincides with I

on Cp and attains infinity on (D1,−p)
[0,∞) \Cp. On the other hand, the canonical injection

from Cp to (D1,−p)
[0,∞) is clearly continuous. Thus, the contraction principle and the

uniqueness of rate function result that the rate function which governs the large deviation
in Cp coincides with I. This is just what we wanted to prove.

4 Applications

In this section we assume p > d+ 1 .

4.1 Large deviation for X and A

First we will establish large deviations for X and A. Recall that X is a current-valued
process determined by the stochastic line integrals themselves and A its bounded variation
part.

Define the scaled processes {X̃λ}λ>0, {Ãλ}λ>0, {X̄λ}λ>0 and {Āλ}λ>0 by the following:

X̃λ
t :=

1

g(λ)
Xλ

t ,

Ãλ
t :=

1

g(λ)
Aλ

t ,

X̄λ
t :=

1

λ
(Xλt − λt e) =

1

λ
Xλt − t e =

1√
λ
Xλ

t ,

Āλ
t :=

1

λ
(Aλt − λt e) =

1

λ
Aλt − t e =

1√
λ
Aλ

t ,
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where Xλ, Aλ and e are given in section 2.2. Let functionals LX1, LA1, IX1 and IA1 on
D1,−p be given by

LX1(ω) := inf
(1−Q∗)η=ω

L1(η),

LA1(ω) := inf
−Q∗η=ω

L1(η), (4.1)

IX1(ω) := inf
(1−Q∗)η=ω

I1(η),

IA1(ω) := inf
−Q∗η=ω

I1(η). (4.2)

Recall that Q∗ is defined in section 2.2. By using them we define rate functions LX , LA,
IX and IA as follows:

LX(w) :=





∫ ∞

0

LX1(ẇt)dt if wt =

∫ t

0

ẇsds with ẇs ∈ D1,−p for a.e.s,

∞ otherwise,

LA(w) :=





∫ ∞

0

LA1(ẇt)dt if wt =

∫ t

0

ẇsds with ẇs ∈ D1,−p for a.e.s,

∞ otherwise,

IX(w) :=





∫ ∞

0

IX1(ẇt)dt if wt =

∫ t

0

ẇsds with ẇs ∈ D1,−p for a.e.s,

∞ otherwise,

IA(w) :=





∫ ∞

0

IA1(ẇt)dt if wt =

∫ t

0

ẇsds with ẇs ∈ D1,−p for a.e.s,

∞ otherwise.

Theorem 4.1 (i) Suppose g(λ) = o(
√
λ). Then, the law of {X̃λ}λ>0 (resp. {Ãλ}λ>0)

satisfies the large deviation principle as λ→∞ in Cp under Px uniformly in x ∈M
with speed g(λ)2 and the rate function LX (resp. LA).

(ii) The law of {X̄λ}λ>0 (resp. {Āλ}λ>0) satisfies the large deviation principle as λ→∞
in Cp under Px uniformly in x ∈ M with speed λ and the rate function IX (resp.
IA).

Proof. Note that we have Q∗e = 0 and (1−Q∗) Ãλ
t = 0 a.e. by combining the definition

of Q and e with (2.3). Then, by (2.1),

X̃λ
t (α) = X̃λ

t (α−Qα) + X̃λ
t (Qα)

= Ỹ λ
t (α−Qα) +

1

g(λ)
√
λ

(uα(zλt)− uα(z0))

=
〈
(1−Q∗)Ỹ λ

t , α
〉

+
1

g(λ)
√
λ

(uα(zλt)− uα(z0)) . (4.3)

By the contraction principle, {(1−Q∗)Ỹ λ}λ>0 satisfies the large deviation principle with
rate function LX uniformly in x ∈ M . Note that supx∈M |uα(x)| ≤ C ‖α‖p holds. This
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fact comes from the hypoellipticity of ∆/2+b and the Sobolev embedding theorem. Thus,
by (4.3), we can easily show that, for each ε > 0,

lim sup
λ→∞

1

g(λ)2
log

(
sup
x∈M

Px

[
ρ(X̃λ, (1−Q∗)Ỹ λ) > ε

])
= −∞,

where ρ is a metric on Cp defined by (3.8). The equality above asserts that X̃λ and
(1 − Q∗)Ỹ λ are exponentially equivalent uniformly in x ∈ M (see Theorem 4.2.13 of [4];
cf. Remark 3.3). Thus {X̃λ}λ>0 satisfies the large deviation with the rate function LX .

As for Ãλ, we have

Ãλ
t (α) = Ãλ

t (Qα) = −
〈
Q∗Ỹ λ

t , α
〉

+
1

λ
(uα(zλt)− uα(z0)) .

Thus, in the same way, we conclude that Ãλ satisfies the large deviation with the rate
function LA, which governs the large deviation for {−Q∗Ỹ λ}λ>0 . The second assertion
also follows by the same argument. 〈q.e.d.〉

Remark 4.2 Rate functions LX1, LA1, IX1 and IA1 attain their minimum only at 0. It
is a consequence of the fact that Q∗ is a continuous linear operator and the goodness of
L1 or I1.

In the case of Ãλ, we can obtain more explicit form of LA1 or IA1 than (4.1) or (4.2).
First we deal with IA1.

Proposition 4.3

IA1(ω) =





1

2
E (f)−

∫

M

(b̂, df)f dv +
1

2

∫

M

|Pf b̂|2f 2 dv. if −ω ∈ HA and χ(−ω) = f ,

∞ otherwise,

where HA := Range(Q∗) ∩ Ω.

Proof. Take ω0 ∈ D1,−p with IA1(ω0) <∞. Then there is η ∈ H with −Q∗η = ω0. For
u ∈ C∞(M),

〈η, du〉 = 〈η,Q(du)〉 = 〈Q∗η, du〉 = −〈ω0, du〉 .
Thus −ω0 ∈ Ω and χ(η) = χ(−ω0) holds. In particular, −ω0 ∈ HA follows. Set f =
χ(−ω0). Now we have

I1(η) =
1

2

∫

M

|η̂|2f 2dv =
1

2

∫

M

|(1− Pf )η̂|2 f 2dv +
1

2

∫

M

|Pf η̂|2 f 2dv. (4.4)

Let η0 ∈ D1,−p ∩H be determined by

〈η0, α〉 = −
∫

M

(
Pf b̂− ξf , α

)
f 2dv. (4.5)
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Recall that ξf is given by ξf = limε↓0(f + ε)−1df ∈ L2
1(f

2dv). Note that, by Lemma 3.21,
ξf ∈ Ēf holds. Then

−〈η0, Qα〉 =

∫

M

(
b̂− ξf , Qα

)
f 2dv = 〈ω0, Qα〉 = 〈ω0, α〉

holds. This means −Q∗η0 = ω0. In addition, since we have η̂0 = ξf − Pf b̂,

∫

M

|(1− Pf )η̂0|2 f 2 dv = 0.

On the other hand, for each η ∈ H with −Q∗η = ω0,
∫

M

|Pf η̂|2f 2 dv = sup
α∈D1,∞

‖α‖
L2

1(f2dv)
=1

∣∣∣
∫

M

(Pf η̂, α)f 2 dv
∣∣∣
2

= sup
α∈Range(Pf )

‖α‖
L2

1(f2dv)
=1

∣∣∣
∫

M

(η̂, α)f 2 dv
∣∣∣
2

= sup
α∈E

‖α‖
L2

1(f2dv)
=1

|〈η, α〉|2 = sup
α∈E

‖α‖
L2

1(f2dv)
=1

|〈ω0, α〉|2

=

∫

M

|Pf b̂− ξf |2f 2 dv.

The last equality follows from the relation (2.8). Therefore, the second term in (4.4) is
independent of the choice of η. Hence we obtain

IA1(ω0) =
1

2

∫

M

|Pf b̂− ξf |2f 2 dv =
1

2
E (f)−

∫

M

(b̂, df)f dv +
1

2

∫

M

|Pf b̂|2f 2 dv (4.6)

with the aid of (3.29).
To complete the proof, we need to show that IA1(ω) < ∞ holds if −ω ∈ HA. For

f = χ(−ω) we define η0 by (4.5). Then, as we proved, η0 ∈ H and −Q∗η0 = ω. Hence
we obtain IA1(ω) <∞ by the definition of IA1. 〈q.e.d.〉

Remark 4.4 Note that −ω ∈ HA holds if and only if ω is given by

〈ω, α〉 =

∫

M

(
(b̂, α)− 1

2
δα

)
f 2dv − e(α) (4.7)

for some f ∈ W . Indeed, when ω is given by (4.7), clearly −ω ∈ HA. Conversely, when
ω ∈ HA, by virtue of (2.5), we have

〈ω, α〉 = 〈ω, duα〉 =

∫

M

(
1

2
∆ + b

)
uαf

2dv =

∫

M

(
(b̂, α)− 1

2
δα

)
f 2dv − e(α).

Proposition 4.3 implies −ω ∈ HA if and only if IA1(ω) < ∞. Theorem 4.1 yields H ∩
Range(Q∗) ⊂ HA since IA1(ω) < ∞ when −ω ∈ H ∩ Range(Q∗). However, in order
to obtain ω ∈ H ∩ Range(Q∗) for given ω ∈ HA, we require that |e(α)| ≤ C‖α‖L2

1(f2dv)

holds with χ(ω) = f for some constant C by (4.7). Hence H ∩ Range(Q∗) = HA does
not hold in general.
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Next we discuss LA1. Let us denote the Radon-Nikodym density of m with respect to
v by ϕ2. Recall that we can take ϕ to be smooth and strictly positive.

We say ω ∈ H ′
A if and only if

〈ω, α〉 =

∫

M

(
(b̂, α)− 1

2
δα

)
Fdm

for some F ∈ Dom(E ) with
∫

M
Fdv = 0. We define a map χ̃ : H ′

A → Dom(E ) by
χ̃(ω) = F .

Proposition 4.5

LA1(ω) =





1

8

∫

M

|dF |2dm− 1

2

∫

M

(
b̂− dϕ

ϕ
, dF

)
F dm

+
1

2

∫

M

∣∣∣∣Pϕ

[
F

(
b̂− dϕ

ϕ

)]∣∣∣∣
2

dm if ω ∈ H ′
A, χ̃(ω) = F,

∞ otherwise.

Moreover, H ′
A = H ′ ∩ Range(Q∗) holds.

Proof. Take ω ∈ D1,−p with LA1(ω) < ∞. Then there exists η ∈ H ′ with −Q∗η = ω.
For α ∈ D1,p, we have

〈ω, α〉 = 〈Q∗ω, α〉 = 〈ω,Qα〉 = −〈η,Qα〉 = −
∫

M

(η̌, Qα)dm.

Accordingly,
|〈ω, α〉| ≤ C ‖Qα‖L2

1(dm) ≤ C ‖α‖L2
1(dm)

holds for some constant C. The last inequality follows from the fact that we can extend
Q to a continuous operator on L2

1(dm). Thus ω ∈ H ′ follows. Hence, by virtue of (4.1),
LA1(ω) <∞ occurs if and only if ω ∈ H ′ ∩ Range(Q∗).

The space of all signed measures µ on M with µ(M) = 0 is denoted by M0. Also let
us define a map ι : M0 → D1,−p as follows:

〈ι(µ), α〉 =

∫

M

(
(b̂, α)− 1

2
δα

)
dµ. (4.8)

By definition, each Ãλ take its values in ι(M0). Note that LA1 is given by the following
Legendre transform:

LA1(ω) = sup
α∈D1,p

(〈ω, α〉 − ΛA1(α)) ,

ΛA1(α) := lim
λ→∞

1

g(λ)2
log

(
Ex

[
exp

(
g(λ)2Ãλ

1(α)
)])

.

If ω /∈ ι(M0)
D1,−p

, then there is α ∈ D1,p which annihilates on ι(M0)
D1,−p

and 〈ω, α〉 = 1.
Then for R > 0 we have 〈ω,Rα〉 − ΛA(Rα) = R and therefore LA1(ω) = ∞ holds. Thus

we may assume ω ∈ ι(M0)
D1,−p

.
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Accordingly, we can take a sequence {Fn}n∈N ⊂ C∞(M) with
∫

M
Fn dm = 0 so that

the corresponding ωn ∈ D1,−p defined by

〈ωn, α〉 =

∫

M

(
(b̂, α)− 1

2
δα

)
Fnϕ

2dv

converges to ω in D1,−p. Let Hr(M) be the r-th order L2(dv)-Sobolev space of functions
on M with norm ‖ · ‖r for each r ∈ R. Then,

∥∥ϕ2(Fn − Fk)
∥∥
−p+1

= sup
‖h‖p−1≤1R
M hdm=0

∣∣∣
〈
ϕ2(Fn − Fk), h

〉
Hp−1(M)

∣∣∣

≤ sup
u∈C∞(M)
‖du‖p≤C

∣∣∣∣∣
〈
ϕ2(Fn − Fk) ,

(
1

2
∆ + b

)
u

〉

Hp−1(M)

∣∣∣∣∣

≤ sup
‖du‖p≤C

|〈ωn − ωk, du〉| ≤ C ‖ωn − ωk‖−p

for some constant C. Since the multiplication of ϕ−2 is continuous on H−p+1(M), {Fn}n∈N
forms a Cauchy sequence in H−p+1(M). We denote the limit by F . Then

〈ω, α〉 =

〈
ϕ2F , (b̂, α)− 1

2
δα

〉

Hp−1(M)

holds. Since ω ∈ H ′, (b̂ − d/2)(ϕ2F ) ∈ L2
1(dv) holds. Here, the multiplication of b̂ and

the exterior derivative d are operated in the sense of distribution. Thus, by using the
G̊arding inequality iteratively, we find that F is in H1(M) = Dom(E ) and therefore

〈ω, α〉 =

∫

M

(
F

(
b̂− dϕ

ϕ

)
− 1

2
dF , α

)
dm =

∫

M

(
(b̂, α)− 1

2
δα

)
F dm.

For η ∈ H ′ with −Q∗η = ω, we have

L1(η) =
1

2

∫

M

|(1− Pϕ)η̌|2 dm+
1

2

∫

M

|Pϕη̌|2 dm.

Then
1

2

∫

M

|Pϕη̌|2 dm =
1

2

∫

M

∣∣∣∣Pϕ

(
F

(
b̂− dϕ

ϕ

)
− 1

2
dF

)∣∣∣∣
2

dm.

This fact comes from the same argument as in the proof of Proposition 4.3. On the other
hand, we can take η0 ∈ H ′ with η̌0 = −Pϕ[F (b̂ − ϕ−1dϕ) − dF/2]. Then, we can easily
verify that −Q∗η0 = ω and (1− Pϕ)η̌0 = 0. Therefore, we obtain

LA1(ω) =
1

2

∫

M

∣∣∣∣Pϕ

[
F

(
b̂− dϕ

ϕ

)
− 1

2
dF

]∣∣∣∣
2

dm

=
1

8

∫

M

|dF |2dm− 1

2

∫

M

(
b̂− dϕ

ϕ
, dF

)
F dm+

1

2

∫

M

∣∣∣∣Pϕ

[
F

(
b̂− dϕ

ϕ

)]∣∣∣∣
2

dm.

〈q.e.d.〉
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4.2 Comparison of rate functions

In this section, we compare the rate function I, IX and IA with those corresponding
to the moderate deviations. As we have seen in Definition 2.7, the rate function I which
governs the sample path large deviation in Cp is expressed by using the rate function I1.
Here, Proposition 3.15 and Proposition 3.22 ensure that I1 governs the large deviation
for 1-dimensional distribution evaluated at time 1. We remark that the same observation
is still true for other sample path large deviations we proved. Thus, to investigate the
difference of rate functions, it is sufficient to concentrate on the rate functions I1, L1 and
so on.

First we compare the explicit form of IA1 with that of LA1. By Remark 4.4, −ω ∈ HA

if and only if

〈ω, α〉 =

∫

M

(
(b̂, α)− 1

2
δα

)(
f 2

ϕ2
− 1

)
dm

for f = χ(−ω). We can express the rate function IA1(ω) by using f̃ := f/ϕ as follows:

IA1(ω) =
1

2

∫

M

|df̃ |2dm−
∫

M

(
b̂− dϕ

ϕ
, df̃

)
f̃ dm+

1

2

∫

M

∣∣∣∣Pf

[
b̂− dϕ

ϕ

]∣∣∣∣
2

f̃ 2dm. (4.9)

This expression is similar to that of LA1. But two functions f̃ and F are quite different.
Indeed,

∫
M
f̃dm = 1 holds while

∫
M
Fdm = 0.

Given f ∈ W with f 2/ϕ2− 1 ∈ Dom(E ), we can take ω ∈ D1,−p through (4.7). In this
case, −ω ∈ H ′

A ∩HA holds. But, as we will see in Example 4.8, there is no domination
between IA1(ω) and LA1(ω) in general even when b = 0.

Next, we investigate some relations between rate functions.

Proposition 4.6 Take ω ∈ D1,−p.

(i) When Q∗ω = 0, ω ∈ H is equivalent to ω ∈ H ′ and I1(ω) = L1(ω).

(ii) Suppose that b̂ is an exact 1-form.

(a) If LX1(ω) <∞ then ω ∈ H ′∩Range(1−Q∗) and LX1(ω) = L1(ω). Moreover,
{ω ∈ D1,−p ; LX1(ω) <∞} = H ′ ∩ Range(1−Q∗) holds.

(b) The domain H ′
A is equal to H ′ ∩ Range(Q∗). Moreover, LA1(ω) = L1(−ω)

holds when −ω ∈ H ′
A.

(c) The domain HA is equal to H ∩Range(Q∗). Moreover, IA1(ω) = I1(−ω) holds
when −ω ∈ HA.

(d) IX1 ≤ LX1.

Proof. (i) Since ω ∈ Ker(Q∗), (2.8) implies that ω ∈ Ω and χ(ω) = ϕ. Hence, the
existence of ω̂ ∈ L2

1(dm) is equivalent to that of ω̌ ∈ L2
1(dm) and ω̌ = ω̂ holds when either

of them exists.
(ii-a) We can easily verify that, when b̂ is an exact 1-form, the ranges of Q and (1−Q)

are orthogonal in L2
1(dm) each other. Thus, the extension Q̄ of Q to the continuous
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operator on L2
1(dm) becomes an orthogonal projection. Then, for η ∈ H ′, Q∗η ∈ H ′

and

〈Q∗η, α〉 =

∫

M

(Q̄ω̌, α)dm

holds. For ω ∈ Range(1−Q∗) ∩H ′ and η ∈ H ′ with (1−Q∗)η = ω, we have

∫

M

|η̌|2dm =

∫

M

|ω̌ + Q̄η̌|2dm =

∫

M

|ω̌|2dm+

∫

M

|Q̄η̌|2dm

since ω̌ ∈ Range(1− Q̄). Hence we obtain

inf
(1−Q∗)η=ω

L1(η) = L1(ω)

and the conclusion follows.
(ii-b) This is proved in the same way as (ii-a). Note that, as we proved in Proposi-

tion 4.5, the former assertion holds without the assumption on b̂.
(ii-c) By virtue of Remark 4.4, it suffices to show HA ⊂ H ∩Range(Q∗) and IA1(ω) =

I1(−ω) for ω ∈ HA. Take ω ∈ HA. Since b̂ = ϕ−1dϕ, we obtain e = 0. Thus we can
rewrite (4.7) as follows:

〈ω, α〉 =

∫

M

(
b̂− ξf , α

)
f 2dv.

In addition, b̂ − ξf ∈ L2
1(f

2dv) and Pf b̂ = b̂ hold. Thus ω ∈ H holds and a direct
calculation yields I1(−ω) = IA1(ω).

(ii-d) Take ω with LX1(ω) <∞. Then (ii-a) and (i) imply LX1(ω) = I1(ω). Thus the
conclusion comes from the definition of IX1 in Theorem 4.1. 〈q.e.d.〉

Remark 4.7 As we will see in Example 4.9, in the case of IX1, such a relation as (ii-a)-
(ii-c) of Proposition 4.6 fails in general even when b = 0. This example also provides the
case that IX1 = LX1 does not hold.

Example 4.8 Let us consider the case that M is equal to the unit circle S1 ' [0, 1]/{0 ∼
1} with flat metric. We assume b = 0. Given f ∈ W , we define ω ∈ H by

〈ω, α〉 = −
∫

M

(α, df)f dv. (4.10)

Then

L1(ω) = LA1(−ω) =
1

2

∫

M

|df |2f 2 dv

obviously holds. As for I1(ω), we can easily check that ω ∈ H , ω̂ = ξf and χ(ω) = f .
Thus we obtain

I1(ω) = IA1(−ω) =
1

2
E (f).
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(i) Let f1 : [0, 1] → R with f1(0) = f1(1) be given by f1(x) = 4
√

5(x − 1/2)2. In the
case of f = f1 we have

L1(ω) =
1

2

∫

S1

|df1|2f 2
1dv =

200

7
,

I1(ω) =
1

2

∫

S1

|df1|2dv =
40

3
,

and therefore L1(ω) > I1(ω).

(ii) Next we take f = f2 by f2(x) =
√

3(1− |2x− 1|). Then, for ω given by (4.10), we
have

L1(ω) =
1

2

∫

S1

|df2|2f 2
2dv = 6,

I1(ω) =
1

2

∫

S1

|df2|2dv = 6,

and therefore L1(ω) = I1(ω). More generally, if df in (4.10) has a constant length,
then L1(ω) = I1(ω) holds on an arbitrary compact manifold M when b = 0.

(iii) Let f3 =
√

2/3(1 + cos(2πx)). Then, for ω corresponding to f3,

L1(ω) =
1

2

∫

S1

|df3|2f 2
3dv =

5π2

9
,

I1(ω) =
1

2

∫

S1

|df3|2dv =
2π2

3
,

and therefore L1(ω) < I1(ω).

Example 4.9 Let M be a 2-dimensional torus S1 × S1 with flat metric. Assume b = 0.
Take a function h : [0, 1] → R which has its support in (1/3, 2/3) and

∫ 1

0
|h(x)|2dx = 52.

Consider a current ω given as follows:

〈ω, α〉 =

∫

S1×S1

(β, α) dv

where β = h(y)dx. Then obviously LX1(ω) = L1(ω) = I1(ω) = 26 holds. On the other
hand, for f ∈ W with f > 0 on S1 × [1/3, 2/3] and 1/f ∈ L2(S1 × [1/3, 2/3], dv), we
define η ∈ H by

〈η, α〉 =

∫

S1×S1

(β, α) dv +

∫

S1×S1

(α, df) fdv.

Then (1−Q∗)η = ω, χ(η) = f and η̂ = f−2β + ξf holds. Thus

IX1(ω) ≤ I1(η) =
1

2

∫

S1×S1

|β|2
f 2

dv +
1

2
E (f).

Let f = f(x, y) = f2(y). Here f2 is the same one as Example 4.8 (ii). Then

I1(η) ≤ 1

2

(
E (f) +

∫ 2/3

1/3

|h(y)|2
3(1− |2y − 1|)2

dy

)
≤ 51

2
< 26 = I1(ω)

and therefore IX1(ω) < I1(ω), namely, IX1(ω) < LX1(ω).
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As we have seen in this subsection, the essential difference between I1(ω) and L1(ω)
comes from the action of ω on exact 1-forms. It is closely related to the asymptotic
behavior of the bounded variation part A, which is determined by occupation time inte-
grals. Intuitively, in the case of moderate deviation, the empirical law converges to the
normalized invariant measure faster than the rate of decay. Thus the invariant measure
always appears in the rate function L1. In other words, we can observe no information
about the position of the process in the rate function since it is homogenized. However,
in the case of g(λ) =

√
λ, we can find the information of the trajectory of the process

affecting the value of the rate function I1. It is not homogenized. These observation gives
us an intuitive reason why such phenomena as mentioned in Remark 4.7 occur only on
IX1 since IX1 is given by IX1(ω) = inf(1−Q∗)η=ω I1(η).

4.3 Empirical laws

Here we give a remark on the connection with the large deviation for empirical law.
Recall that M0 is the totality of all signed measures µ on M with µ(M) = 0 and ι is
determined by (4.8). Consider M0-valued stochastic processes {Ξλ}λ>0 given by

Ξλ
t =

1

g(λ)
√
λ

(∫ λt

0

δzsds− λt m

)
.

We use the same symbol ι to denote an extended operator from C([0,∞) → M0) to Cp.

Then we have ι(Ξλ) = Ãλ. In particular, when g(λ) =
√
λ, we have ι(Ξλ) = Āλ. Hence

we can consider the large deviation or the moderate deviation for occupation measure
processes {Ξλ}λ>0 by regarding them as current-valued processes through the embedding
ι.

We should point out that the large deviation for Āλ
1 is a generalization of the large

deviation for mean empirical laws in M1 under the weak topology. To see it, we define
the map S : M1 → M0 by S(µ) = µ −m. Then we have Āλ

1 = ι ◦ S(λ−1
∫ λ

0
δzsds). In

other words, Āλ
1 is the image of the mean empirical law of the diffusion {zt}t≥0 by the map

ι◦S. If we can apply the inverse contraction principle, the large deviation for empirical law
follows as a consequence of our result. For this purpose, we need to verify the assumptions
of the inverse contraction principle listed in the following (cf. Remark 3.3):

(i) ι ◦ S is injective.

(ii) {IA1 <∞} ⊂ Range(ι ◦ S).

(iii) ι ◦ S is continuous.

(iv) {λ−1
∫ λ

0
δzsds}λ>0 is exponentially tight uniformly in x ∈M .

First we prove the injectivity of ι ◦ S. It suffices to show the injectivity of ι. Indeed,
suppose that there are µ, ν ∈ M0 so that ι(µ) = ι(ν) holds. For each φ ∈ C∞(M), take
a solution u of (3.25) and substitute α = du in (4.8). Then we obtain

∫
M
φ dµ =

∫
M
φ dν

and therefore µ = ν. The assumption (ii) follows from Remark 4.4. For (iii) and (iv),
we need a careful treatment since these statements depend on topologies we consider on
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D1,−p or M1. When we consider the weak topology on M1, (iv) automatically follows
since M1 is compact. However, ι is not continuous under the norm topology on D1,−p.
Thus, in order to obtain the continuity, we need to consider the weak topology on D1,−p.
Fortunately, the large deviation is preserved when the topology is weakened.

Thus we conclude the following. It is a special case of the Donsker-Varadhan law [7].

Corollary 4.10 Suppose that M1 is equipped with a weak topology. Then the mean em-
pirical law of the diffusion {zt}t≥0 satisfies the large deviation principle in M1 under Px

uniformly in x ∈M with the rate function given by IA1 ◦ ι ◦ S.

We can easily check that IA1 ◦ ι ◦ S coincides with the rate function which was de-
veloped in Chapter 6.3 of [5]. They considered diffusion processes whose generator has
a Hörmander form satisfying the Hörmander condition. Their results are more general
than Corollary 4.10 in this respect.

Remark 4.11 The reason why we weaken the topology is to obtain the exponential
tightness for empirical laws. Indeed, under the norm topology on D1,−p, ι is continuous
even when we consider the total variation distance on M0 or M1.

4.4 The law of the iterated logarithm

As an application of the sample path moderate deviation estimate, we prove the law
of the iterated logarithm in our framework.

Theorem 4.12 Let g(λ) =
√

log log λ.

(i) For p > d, the family {Ỹ λ}λ>0 is almost surely relatively compact in Cp and the
limit set

{
w ∈ Cp ; there exists {λn}n∈N with λn →∞ such that lim

n→∞
Ỹ λn = w

}

almost surely coincides with K given by K := {w ∈ Cp ; L(w) ≤ 1}.
(ii) For p > d+ 1, the family {X̃λ}λ>0 is almost surely relatively compact in Cp and the

limit set almost surely coincides with KX := {w ∈ Cp ; LX(w) ≤ 1}.
(iii) For p > d+ 1, the family {Ãλ}λ>0 is almost surely relatively compact in Cp and the

limit set almost surely coincides with KA := {w ∈ Cp ; LA(w) ≤ 1}.

We shall give only the outline of the proof of the first assertion here. Other assertions
are similarly proved. Taking it into consideration that L is a good rate function, we can
prove the following proposition in the same way as in [3].

Proposition 4.13 For every ε > 0 and T > 0, there exists a positive real number λ0

almost surely such that for any λ > λ0, we have infw∈K sup0≤t≤T ‖Ỹ λ
t − wt‖−p ≤ ε.

Thus, the limit set of Ỹ λ is contained in K . It is enough to prove the following
proposition for the inverse inclusion.
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Proposition 4.14 Take an arbitrary w ∈ K with L(w) < 1. Then, for any ε > 0, there
exists c > 1 such that

P
[
lim sup

n→∞

{
sup

0≤t≤T
‖Ỹ cn

t − wt‖−p ≤ ε

}]
= 1.

For the proof, we use the uniformity of the large deviation and the fact that Y is an
additive functional of {zt}t≥0 instead of the Markov property used in [3].

Proof of Proposition 4.14. By a version of the Borel-Cantelli lemma, it suffices to
show that

∑∞
n=1 P[sup0≤t≤T ‖Ỹ cn

t − wt‖−p ≤ ε|Fcn−1T ] = ∞, where Ft = σ{zs ; 0 ≤ s ≤
t}. We have

{
sup

0≤t≤T
‖Ỹ cn

t − wt‖−p ≤ ε

}

=

{
sup

0≤t≤c−1T

‖Ỹ cn

t − wt‖−p ≤ ε

}
∩

{
sup

c−1T≤t≤T

‖Ỹ cn

t − wt‖−p ≤ ε

}

⊃
{

sup
0≤t≤c−1T

‖Ỹ cn

t − wt‖−p ≤ ε

2

}

∩
{

sup
c−1T≤t≤T

‖(Ỹ cn

t − Ỹ cn

c−1T )− (wt − wc−1T )‖−p ≤ ε

2

}

= A (n)
1 ∩A (n)

2 .

Then, the Markov property of zt implies

P
[

sup
0≤t≤T

‖Ỹ cn

t − wt‖−p ≤ ε

2

∣∣Fcn−1T

]
≥ 1

A
(n)
1
Pzcn−1T

[
Ỹ cn ∈ Eε

]
,

where

Eε =

{
η ∈ Cp ; sup

0≤t≤(1−c−1)T

‖ηt − (wt+c−1T − wc−1T )‖−p ≤ ε

2

}
.

There is a constant C3 so that

‖wt‖2
−p ≤ C3 ‖w̌t‖2

L2
1(dm) ≤ 2C3

{∫ t

0

L1(ẇs)
1/2ds

}2

≤ 2C3tL(w) ≤ 2C3t,

and Proposition 4.13 implies that for sufficiently large n we have

sup
0≤t≤c−1T

‖Ỹ cn

t ‖−p ≤
√
cn−1g(cn−1)√
cng(cn)

sup
0≤t≤T

‖Ỹ cn−1

t ‖−p

≤ 1√
c


 sup

ϕ∈K
0≤t≤T

‖ϕt‖−p + 1


 ≤ 1√

c
(2C3T + 1).
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Thus, if we fix c > 0 large enough, the event A (n)
1 occurs for all sufficiently large n.

On the other hand, there is ψ ∈ Eε so that L(ψ) < 1. Indeed, we can take ψ as
follows:

ψt =

{
wt+c−1T − wc−1T t ∈ [0, (1− c−1)T ),

wT − wc−1T t ∈ [(1− c−1)T,∞).

Hence Theorem 2.6 implies that there exists 0 < β < 1 so that

Pzcn−1T
[Eε] ≥ exp

{−βg(cn)2
}

(4.11)

holds for sufficiently large n. Since the right-hand side of (4.11) is not summable, the
conclusion follows. 〈q.e.d.〉

As an application, Theorem 4.12 refines Theorem 2.2 as follows.

Corollary 4.15

lim
λ→∞

1

h(λ)
(Xλt − λte) =

1

h(λ)
(Aλt − λte) =

1

h(λ)
Yλt = 0

Px-almost surely in Cp for all x ∈M if limλ→∞ h(λ)/
√
λ log log λ = ∞ holds. In particu-

lar,

lim
λ→∞

1

λa
(Xλt − λte) =

1

λa
(Aλt − λte) =

1

λa
Yλt = 0

Px-almost surely in Cp for all x ∈M if and only if a > 1/2.

4.5 Long time asymptotics of the Brownian motion on Abelian
covering manifolds

Let N be a noncompact Riemannian covering manifold of M with its covering trans-
formation group Γ being Abelian. In this section, we apply our theorems to the study of
long time asymptotics of the Brownian motion on N .

For this purpose, we give some preparations following [21]. Let π be the canonical
projection from N to M . Take x0 ∈ N and let x1 = π(x0). We denote the fundamental
group of M with the base point x1 by π1(M,x1) and that of N with the base point
x0 by π1(N, x0). For simplicity, we abbreviate the base point and write π1(M,x1) =
π1(M) and π1(N, x0) = π1(N). In this framework, there is a surjection ρ from π1(M)
to Γ ' π1(M)/π∗(π1(N)). Since Γ is Abelian, it induces the surjective mapping ρ̄ from
the first homology group H1(M ;Z) ' π1(M)/[π1(M), π1(M)] to Γ. Here [π1(M), π1(M)]
is the commutator subgroup of π1(M). Moreover, we obtain the extended map ρ̄⊗R :
H1(M ;R) → Γ ⊗ R by taking tensor product with R. For simplicity, we denote the
extension ρ̄⊗R by the same symbol ρ̄. Then we obtain the adjoint injective map ρ̄T :
Hom(Γ,R) → H1(M ;R). Note that the first cohomology group H1(M ;R) is identified
with the totality of harmonic 1-forms H1(M) (see [26], for example). Since H1(M) is
regarded as a subspace of D1,p, we can pull-back the norm on Hom(Γ,R). Note that the
induced topology on Hom(Γ,R) coincides with what comes from L2

1(dv) since ‖α‖p =
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‖α‖L2
1(dv) holds for each α ∈ H1(M). Then, it determines the dual norm on Γ ⊗ R that

makes Γ⊗ R a normed space. We define the map ϕ : N → Γ⊗ R by

Γ⊗R〈ϕ(x), α〉Hom(Γ,R) =

∫

c

π∗(ρ̄T (α)) (4.12)

for each α ∈ Hom(Γ,R). Here, π∗(ρ̄T (α)) is the pull-back of ρ̄T (α) by π and c is a
piecewise smooth path from x0 to x. Note that the line integral in (4.12) is independent
of the choice of c.

According to [21], through the spectral-geometric approach, we know the following
precise long time asymptotics of the heat kernel p(t, x, y) associated with ∆/2 on N :

lim
t↑∞

{
(2πt)r/2p(t, x, y)− C(N) exp{−dΓ(x, y)2/2t}} = 0

uniformly in x and y. Here r = rank Γ and C(N) is a constant determined explicitly in
terms of Γ and the Riemannian metric. dΓ is determined by dΓ(x, y) := |ϕ(x)−ϕ(y)|Γ⊗R.
Roughly speaking, this asymptotic behavior indicates us that the heat kernel p(t, x, y)
approaches to the pull-back of the heat kernel on Γ⊗R by ϕ. Thus, we expect that there
is a connection between the long time asymptotics of the heat kernel and the asymptotics
of ϕ(Bt), where (Bt, P̄x0) is the Brownian motion on N starting at x0. We would like to
give a probabilistic approach to this problem and our main theorem gives some information
about the asymptotics of ϕ(Bt).

We remark that Γ⊗R〈ϕ(Bt), α〉Hom(Γ,R) coincides with the stochastic line integral of α

along π(B). Note that {π(Bt)}t≥0 is a Brownian motion on M starting at x1 under P̄x0 .
Fix t > 0. The approximation theorem of stochastic line integrals (Theorem 6.1 of [15])
guarantees the existence of the sequence of random paths {c(`)}`∈N on M which are all

piecewise geodesics and c
(`)
t = π(Bt) so that

lim
`→∞

Ēx0

[
sup

0≤s≤t

∣∣∣∣
∫

c(`)[0,s]

ρ̄T (α)−
∫

π(B)[0,s]

ρ̄T (α)

∣∣∣∣
2
]

= 0,

where
∫

π(B)[0,t]
ρ̄T (α) is the stochastic line integral of ρ̄T (α) ∈ H1(M) along π(B). Now

we have

Γ⊗R〈ϕ(Bt), α〉Hom(Γ,R) =

∫

c(`)[0,t]

α

for all ` by virtue of the independence of the choice of the path c in (4.12). Thus we
obtain

Γ⊗R〈ϕ(Bt), α〉Hom(Γ,R) =

∫

π(B)[0,t]

α t ≥ 0, a.s. (4.13)

Let us define ρ̃ : D1,−p → Γ⊗ R by

Γ⊗R〈ρ̃(ω), α〉Hom(Γ,R) =
〈
ω, ρ̄T (α)

〉
.

Then, for the current-valued process Xt associated with π(Bt), ϕ(Bt) = ρ̃(Xt) holds
almost surely since the left hand side of (4.13) is clearly continuous with respect to α.
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Moreover ρ̃(Xt) = ρ̃(Yt) holds by (2.1), the explicit form of the bounded variation part of
Xt. Note that ρ̃ is continuous since so is ρ̄T as a map from Hom(Γ,R) to D1,p.

Accordingly, we can apply our main theorem with the aid of the contraction principle
and obtain the following estimate for ϕ(Bt).

Corollary 4.16 We set Ṽ λ
t := g(λ)−1λ−1/2ϕ(Bλt). Assume g(λ) = o(

√
λ) as λ → ∞.

Then, we have

lim sup
λ→∞

1

g(λ)2
log P̄x0 [Ṽ

λ ∈ A ] ≤ − inf
w∈Ā

L̃(w),

lim inf
λ→∞

1

g(λ)2
log P̄x0 [Ṽ

λ ∈ A ] ≥ − inf
w∈A ◦

L̃(w)

for any Borel set A ⊂ C([0,∞) → Γ⊗ R). Here

L̃(w) =





1

2

∫ ∞

0

|ẇs|2Γ⊗Rds if w0 = 0 and w is absolutely continuous,

∞ otherwise.

Proof. All we need to prove is inf ρ̃(ηt)=wt L(η) = L̃(w). It follows in the similar way
as (ii-a) of Proposition 4.6. Indeed, let P be the orthonormal projection on L2

1(dv) to the
range of ρ̄T . Then for ω ∈ Γ⊗ R and η ∈ L2

1(dv) with ρ̃(η) = ω, we have

‖η‖2
L2

1(dv) = ‖Pη‖2
L2

1(dv) + ‖(1− P )η‖2
L2

1(dv)

and

‖Pη‖L2
1(dv) = sup

‖α‖
L2

1(dv)
=1

∣∣∣(η, Pα)L2
1(dv)

∣∣∣ = sup
|γ|Hom(Γ,R)=1

∣∣∣ Γ⊗R〈ω, γ〉Hom(Γ,R)

∣∣∣

= |ω|Γ⊗R .

Next we will construct an element η0 ∈ D1,−p∩H ′ with (1−P )η̌0 = 0 and ρ̃(η0) = ω. Let
ω̂ ∈ Hom(Γ,R) be an element corresponding to ω ∈ Γ⊗R. We define η0 by the following
relation:

〈η0, α〉p =

∫

M

(ρ̄T (ω̂), α)dv, α ∈ D1,p.

Then, (1− P )η̌0 = (1− P )ρ̄T (ω̂) = 0 clearly holds. In addition,

Γ⊗R〈ρ̃(η0), γ〉Hom(Γ,R) =

∫

M

(ρ̄T (ω̂), ρ̄T (γ))dv = (ω̂, γ)Hom(Γ,R)

= Γ⊗R〈ω, γ〉Hom(Γ,R) .

Thus the conclusion follows. 〈q.e.d.〉

Remark 4.17 In the same way as in the proof of the Corollary 4.16, we can prove
the large deviation for V̄ λ

t := λ−1ϕ(Bλt). But the rate function is more complicatedly
described, which is given in [1].
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In the same manner as section 4.4, we can prove the following law of the iterated
logarithms.

Corollary 4.18 Let g(λ) =
√

log log λ. Then the limit set of {Ṽ λ}λ>0 coincides with the
compact set K1 given by

K1 := {w ∈ C([0,∞) → Γ⊗ R) ; L1(w) ≤ 1}.

Note that we have the following relation between dΓ(·, ·) and the Riemannian distance
dist(·, ·): there are positive constants c1, c2 and c3 such that for all x, y ∈ N

c1dΓ(x, y) ≤ dist(x, y) ≤ c2dΓ(x, y) + c3 (4.14)

(see [21]). Now Corollary 4.18 gives us some information about the divergence order of
the Brownian motion on N .

Corollary 4.19 There is a nonrandom constant c with c1 ≤ c ≤ c2 so that

lim sup
t→∞

dist(Bt, B0)√
2t log log t

= c

P̄x0-almost surely.

Proof. Note that the invariant σ-field of the Brownian motion on N is trivial. It is a
consequence of [19]. This fact ensures the existence of the constant c ∈ [0,∞]. By virtue
of (4.14), the rest to be proved is

lim sup
t→∞

dΓ(Bt, B0)√
2t log log t

= lim sup
t→∞

∣∣∣∣
ϕ(Bt)√

2t log log t

∣∣∣∣
Γ⊗R

= 1.

But Corollary 4.16 asserts that

lim sup
t→∞

∣∣∣∣
ϕ(Bt)√

2t log log t

∣∣∣∣
Γ⊗R

=
1√
2

sup
w∈K1

|w1|Γ⊗R ≤ sup
w∈K1

√
L(w) = 1.

The inequality above comes from the Schwarz inequality and we can easily show that the
equality actually holds. 〈q.e.d.〉
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