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Abstract

In this paper, we show a stochastic expression of radial processes of Brow-
nian motions on RCD∗(K,N)-spaces. The expression holds under the law for
all starting point provided the reference point is sufficiently regular. We fur-
ther prove that the regularity condition is satisfied for almost every reference
point on RCD∗(K,N)-space. Our results extend the comparison theorems over
Alexandrov spaces proved by [30,37].

1 Introduction

In this paper, we show a stochastic expression of radial processes of Brownian mo-
tions on RCD∗(K,N)-spaces and its applications. Let (M, g) be a complete smooth
Riemannian manifold and d(x, y) = dg(x, y), x, y ∈ M is its Riemannian distance.
We put rp(x) := d(x, p) for x, p ∈ M and call rp a radial function. Let us consider
the Brownian motion X = (Xt,Px) on M starting from x ∈ M , which is a diffusion
processes associated with the Laplace-Bertrami operator ∆M . Then rp(Xt) is called
the radial process of X. It is proved in [26, Theorem 1.1] that the radial process on
M has the following expression:

rp(Xt)− rp(X0) =
√
2Bt +

∫ t

0

∆Mrp(Xs) ds− Lt, t < ζ. (1.1)

Here Bt is a one-dimensional standard Brownian motion, Lt is a non-decreasing process
which increases only at Xt ∈ C(p), where C(p) is the cut-locus of (M, g) with respect
to p, and ζ is the life time of X. Moreover, ∆Mrp = 0 is assumed at the point on
which rp is not differentiable.

The radial process of a Brownian motion on a Riemannian manifold has played an
important role in many applications to differential geometry. As an application of the
expression of radial process, under the lower bound of Ricci curvature (resp. upper
bound of sectional curvature), we can compare the radial process to that of the space
form of constant curvature, consequently we obtain a comparison of the heat kernel
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to that of the space form of constant curvature. From the heat kernel comparison,
S. Y. Cheng’s eigenvalue comparison theorem follows under the lower bound of Ricci
curvature. Moreover, the stochastic expression of radial process yields a stochastic
proof of S. Y. Cheng’s Liouville theorem for sublinear growth harmonic functions.

The stochastic expression of radial processes like (1.1) has been also expected on
singular metric measure spaces with a lower curvature bound, such as Alexandrov
spaces or more generally for RCD∗(K,N)-spaces. Due to the technical reason, this
was not accomplished yet, because the cut-locus may be dense even on an Alexandrov
space. However, we can consider another (but similar) type of stochastic expression of
radial processes based on the Laplacian comparison theorem holding for RCD∗(K,N)-
spaces, in particular, we prove the semimartingale property of radial processes on
RCD∗(K,N)-spaces.

Laplacian comparison theorem on Alexandrov spaces was done by von Renesse [37]
under an additional condition. He proved a heat kernel comparison and comparison of
radial processes of weaker type, because the semimartingale property of radial pro-
cesses was not proved in [37]. The Laplacian comparison theorem, which asserts
∆rp ≤ (N − 1) cotκ ◦ rp in a distributional sense (see (2.5) below), for Alexandrov
spaces was done by [30] without assuming the additional assumption as in [37], how-
ever a comparison of radial processes of weak type is only announced, because of the
lack of semimartingale property of radial processes. Laplacian comparison theorem on
RCD(K,N)-space was proved by Gigli [19, Theorem 5.14] based on the technique of
optimal mass transport theory. Since RCD∗(K,N)-space coincides with RCD(K,N)-
space by Cavalletti-Milman [9], Laplacian comparison theorem holds for RCD∗(K,N)-
space (see [19, Remark 5.16] also).

Hereafter we take an RCD∗(K,N)-space (X, d,m), which is a geodesic metric mea-
sure space having a notion of lower Ricci bound by K ∈ R together with a notion
of upper bound of dimensions by N ∈ [1,∞[ (see Subsection 2.1 for the precise def-
inition). Based on the Laplacian comparison theorem on RCD∗(K,N)-space, we first
prove the following stochastic expression of the radial process:

rp(Xt)− rp(X0) =
√
2Bt + (N − 1)

∫ t

0

cotκ ◦ rp(Xs) ds− At (1.2)

holds until Xt hits p under the law Px for all quasi-every starting point x ∈ X \ {p}.
Here At is a positive continuous additive functional. The expression (1.2) is different
from (1.1), because we do not use the notion of cut-locus. Under a condition (R1)
(see Definition 3.5 below) to the reference point p, we can strengthen the statement
so that (1.2) holds for all time t ∈ [0,+∞[ under the law Px for quasi-every starting
point x ∈ X. These statements are very weak in applying, since it has to neglect some
exceptional set among all possible starting points. We further refine the statement so
that (1.2) holds until Xt hits p under the law Px for all x ∈ X \ {p}, and it holds for
t ∈ [0,+∞[ under the law Px for all x ∈ X provided p verifies a stronger condition (R2)
than (R1) (see Definition 4.5 for (R2)). These refinements will be done by the global
upper Gaussian estimate for the heat kernel of RCD∗(K,N)-space established in [24].
From (1.2), we prove a comparison of radial processes, comparison of heat kernels,
S.Y. Cheng’s eigenvalue comparison theorem and S.Y. Cheng’s Liouville theorem for
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sublinear growth harmonic functions. Note that the comparison of radial processes
is not a weak type, because the radial process is a semimartingale in view of (1.2)
provided p verifies the condition (R2).

Let (X, d) be an N -dimensional Alexandrov space with curv(X) ≥ κ and N ≥ 2,
which is a metric space having a notion of lower sectional curvature bound by κ ∈ R
(see [29,30] and the references therein for the definition of Alexandrov spaces). Then,
for the N -dimensional Hausdorff measure m = HN , (X, d,m) is an RCD∗(K,N)-space
with K = (N − 1)κ as proved by [35] (see [44] and [1] also). Moreover, (X, d,m)
satisfies the Bishop inequality (3.2). In particular, the condition (R2) is satisfied for
any reference point p ∈ X for Alexandrov space (X, d,m) (see Lemma 4.6 and a
comment after it). This means that (1.2) holds for all t ∈ [0,+∞[ under Px for all
points x, p ∈ X for Alexandrov space (X, d).

The constitution of this paper as follows. In the next section we introduce our
framework and state our main result in a simplified form. Most of notations we require
in our argument are summarized there. In Section 3, we will prove a preliminary
version of theorem. We first give a deeper study of the Laplacian comparison theorem,
which will be used in the subsequent section, and prove an expression of the radial
process from quasi-every starting points. The key idea is to realize the Laplacian to
the radial function as a Radon measure. By checking the smoothness of the measure,
we can consider the additive functional corresponding to it. Then we can obtain a
more detailed description of the Fukushima decomposition for the radial process. In
order to refine the preliminary result, we will provide some estimates of resolvent
operators in Section 4. Based on it, we will show that the Radon measure describing
the Laplacian comparison theorem is a smooth measure in the strict sense. The global
Gaussian heat kernel upper bound plays a prominent role there. The proof of our
main theorem will be finished in Section 5. We also discuss some related results.
In Section 6, we will show applications of our main theorem. As mentioned above,
we prove comparison theorems and a Liouville type theorem. Note that, both in
Sections 3 and 5, we state our theorem in two different ways: a weaker expression (up
to the hitting time to the reference point) and a stronger result (beyond the hitting
time) under an additional assumption. In Section 7, we will discuss when we can
obtain our expression of the radial process beyond the hitting time to the reference
point. We consider two situations: The case that the Brownian motion does not hit the
reference point and the case that the assumption of our main theorem for a stronger
result is satisfied. In both cases, we require a detailed analysis based on very recent
results on a local structure of RCD spaces. The reason why we arranged this section
at this position is on this fact. Indeed, the argument looks somewhat different from
the ones in other sections. In our paper, we try to cover general situations among
RCD spaces as much as possible. On the other hand, the case N = 1, where N is the
upper dimension bound of the space, is somewhat exceptional from the viewpoint of
the Laplacian comparison theorem. To deal with this case, we classify such spaces in
appendix by refining the previous result [27].
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2 Framework and Main Results

In this section, we will introduce our framework and state the main result. In the
next subsection we define the RCD spaces. There are already many papers on RCD
spaces and we try to make our description minimal. In Subsection 2.2, we state our
main results together with a small observation. In Subsection 2.3, we prepare some
properties of RCD spaces which will be used in the sequel.

2.1 Framework

Let (X, d,m) be a metric measure space, i.e., (X, d) is a complete and separable metric
space and m is a σ-finite Borel measure on X. Suppose that m(Br(x)) ∈]0,∞[ for any
metric ball Br(x) of radius r > 0 centered at x ∈ X. In particular, suppm = X.
Suppose also that d is a geodesic distance, i.e., for any x0, x1 ∈ X, there exists γ :
[0, 1] → X such that γ(i) = xi (i = 0, 1) and d(γ(s), γ(t)) = |s − t|d(x0, x1). We call
such γ a minimal geodesic joining x0 and x1.

To define RCD spaces, we introduce the Cheeger’s energy functional. Let CLip(X)
be the set of Lipschitz functions on X. Let Ch : L2(X;m) → [0,∞] be given by

Ch(f) :=
1

2
inf

{
lim
n→∞

∫
X

|Dfn|2 dm
∣∣∣∣ fn ∈ CLip(X) ∩ L2(X;m), fn → f in L2(X;m)

}
,

D(Ch) :={f ∈ L2(X;m) | Ch(f) <∞},

where |Dg| : X → [0,∞] is local Lipschitz constant of g : X → R defined by

|Dg|(x) := lim
y→x

|f(x)− f(y)|
d(x, y)

.

For f ∈ L2(X;m) with Ch(f) <∞, we have |Df |w ∈ L2(X;m) such that

Ch(f) =
1

2

∫
X

|Df |2w dm. (2.1)

We call |Df |w minimal weak upper gradient of f . To state the precise definition of
|Df |w, we need some notions in optimal transport, and it is done in Subsection 2.3 be-
low. We call (X, d,m) to be infinitesimally Hilbertian, if Ch satisfies the parallelogram
law. Note that minimal weak upper gradients also satisfies the parallelogram law if
(X, d,m) is infinitesimally Hilbertian (see [4]). It means that there exists a bilinear
form ⟨D·, D·⟩ : D(Ch)×D(Ch) → L1(X;m) such that ⟨Df,Df⟩ = |Df |2w. We denote
the (non-positive definite) selfadjoint operator associated with 2Ch by ∆. Throughout
this paper, we will assume K ∈ R and N ∈ [1,∞[.

Definition 2.1 We call that (X, d,m) is RCD∗(K,N) space if it satisfies the following
conditions:

(i) (X, d,m) is infinitesimally Hilbertian.

(ii) There exists x0 ∈ X and a constant c, C > 0 such that Vr(x0) ≤ Cecr
2.

4



(iii) If f ∈ D(Ch) satisfies |Df |w ≤ 1 m-a.e., then f has a 1-Lipschitz representative.

(iv) For any f ∈ D(∆) with ∆f ∈ D(Ch) and g ∈ D(∆) ∩ L∞(X;m) with g ≥ 0 and
∆g ∈ L∞(X;m),

1

2

∫
X

|Df |2∆g dm−
∫
X

⟨Df,D∆f⟩g dm ≥ K

∫
X

|Df |2wg dm+
1

N

∫
X

(∆f)2g dm.

The condition (iv) of Definition 2.1 is a weak form of the Bochner inequality and
it is well known that it holds on Riemannian manifolds with Ric ≥ K and dim ≤
N . The corresponding characterization by Bakry-Émery Ricci tensor also exists for
weighted Riemannian manifolds. See [7, 14] and references therein for more details,
related results and other equivalent conditions. For N < ∞, this sort of condition is
first introduced in [19] as RCD(K,N) space. It is an infinitesimally Hilbertian space
satisfying CD(K,N) condition introduced in [42] (see [31] also). As mentioned in the
introduction, recently, F. Cavalletti and E. Milman [9] show that RCD(K,N) condition
is indeed equivalent to RCD∗(K,N) condition.

When N = 1, we may (and will) assume K = 0 because RCD∗(K, 1) space (X, d,m)
is isomorphic to R, [0,+∞[, S1(r) = {(x, y) ∈ R2 | x2+y2 = r2} for some r > 0, or [0, ℓ]
for some ℓ > 0 and m is the one-dimensional Hausdorff measure (see Proposition A.1
below; This is a refinement of [27]).

Let E := 2Ch and F := D(Ch). Then (E ,F) is strongly local regular Dirichlet
form. Indeed, quasi-regularity is shown in [2] when N = ∞ and the regularity follows
from the facts that Lipschitz functions in L2(X;m) is dense in F with respect to the
Sobolev norm ∥ · ∥W 1,2 (see [5]) and that (X, d) is locally compact by the Bishop-
Gromov inequality in the next subsection. The condition (ii) of Definition 2.1 ensures
that (E ,F) is conservative (see [3, Theorem 4.20]). We bring several concepts and
notations in the theory of Dirichlet form from [17].

2.2 Main Results

For p ∈ X, let the radial function rp : X → R be given by rp(x) := d(p, x). Let

κ :=


K

N − 1
(N > 1),

0 (N = 1),

sκ(t) := sin(
√
κt)/

√
κ and cotκ(t) := (log sk(t))

′ = s′k(t)/sk(t). We interpret s0(t) as
limκ→0 sκ(t)(= t).

Let X = (Ω,M, (Xt)t≥0, (Px)x∈X) with a filtration (Ft)t≥0 be the diffusion process
canonically associated with (E ,F). Let σp be the first hitting time of X to {p}. Our
main theorem is a stochastic expression of the radial process rp(Xt). A simplified
version can be stated as follows:

Theorem 2.2 (Stochastic expression of radial process (simplified version))
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(i) For all x ∈ X \ {p}, there exists a positive continuous additive functional At in
the strict sense and a one-dimensional standard Brownian motion B such that

rp(Xt)− rp(X0) =
√
2Bt + (N − 1)

∫ t

0

cotκ ◦ rp(Xs) ds− At (2.2)

holds for all t ∈ [0, σp[ Px-a.s.

(ii) Suppose (R2) in Definition 4.5 below holds. Then (2.2) holds for all t ∈ [0,+∞[
Px-a.s. for all x ∈ X. In particular, rp(Xt) is a semimartingale.

Readers may wonder how restrictive the condition (R2) is. Indeed, it is not extremely
restrictive since m-a.e. p ∈ X verifies (R2) when the space is not essentially one-
dimensional (see Proposition 7.2 below).

A version of Theorem 2.2 for f(rp(Xt)) with f ∈ C2(R) (Theorem 3.11) admitting
only q.e. starting points is shown in Section 3. As a corollary of it, we extend the
Laplacian comparison theorem (Corollary 3.13). By using it, we will show the full
version (that is, for f(rp(Xt))) of Theorem 2.2 (Theorem 5.3). Note that Corollary 3.13
completely extends the one proved in [37, Theorem I] on a class of Alexandrov spaces.

2.3 Basic properties

As mentioned after Definition 2.1 above, RCD condition extends the class of spaces
from Riemannian manifolds with a lower Ricci curvature bound. Indeed, many geo-
metric or analytic properties on Riemannian manifolds are extended to RCD∗(K,N)
spaces. We would like to review some of them which will be required in this paper.
First we see geometric properties for diameter and volume growth:

• (Bonnet-Myers theorem) When K > 0,

diam(X) ≤ π√
κ
, (2.3)

where diam(X) := supx,y∈X d(x, y).

• (Bishop-Gromov inequality) For 0 < r < R < π/
√
κ+ and x ∈ X,

VR(x)

Vr(x)
≤ V̄R
V̄r
, (2.4)

where V̄r :=
∫ r

0

sN−1
κ (u) du. Note that V̄r under N ∈ N differs from the volume

of a metric ball or radius r on a space form up to a multiplicative constant.

These are indeed a consequence of the measure contraction property MCP(K,N) in
[34, 42] which is weaker than RCD∗(K,N) condition (see [10, 14]). Note that the
Bishop-Gromov inequality implies that m satisfies the volume doubling property locally
uniformly, that is, for each R > 0, there exists CD > 0 such that m(B2r(x)) ≤
CDm(Br(x)) for any x ∈ X and r ≤ R. As an important consequence of this property,
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(X, d) is locally compact. Thus RCD∗(K,N) space is compact if K > 0 by the Bonnet-
Myers theorem.

We turn to analytic properties. The most important one in relation with our result
is the following Laplacian comparison theorem: When N > 1, we have rp ∈ Floc∩C(X)
and

E(rp, v) ≥ −(N − 1)

∫
X

cotκ ◦ rp v dm (2.5)

holds for any v ∈ CLip
c (X \ {p})+ (see [19, Corollary 5.15]). We will extend this

in Proposition 3.7 below. Next we mention some properties of minimal weak upper
gradient. It is immediate from the definition that

|Df |w ≤ |Df | (2.6)

holds for f ∈ CLip(X) ∩ L2(X;m). For rp, |Drp| ≤ 1 obviously holds and in addition

|Drp|w = 1 m-a.e. (2.7)

(see [19, The proof of Corollary 5.15]). Let (Pt)t≥0 be the semigroup of contractions on
L2(X;m) generated by ∆, which can be extended to contraction operators on Lq(X;m)
for 1 ≤ q ≤ ∞. As in Bakry-Émery theory based on the Bochner inequality, Pt satisfies
the following L1-gradient estimate:

|DPtf | ≤ e−KtPt(|Df |w) for f ∈ F ∩ L∞(X;m) (2.8)

(see [39, Corollary 4.3]). It should be remarked that a local Lipschitz constant appears
in the left hand side. Pt can be expressed as integral operator (see [2, Section 7.1];
see [4] also), and its density (or the heat kernel density) pt(x, y) satisfies the following
Gaussian heat kernel upper bound: There exists C1, C2, C3 > 0 such that, for t > 0
and x, y ∈ X,

pt(x, y) ≤
C1

V√t(x)
exp

(
−d(x, y)

2

C2t
+ C3t

)
(2.9)

(see [24]). In particular, our diffusion process X satisfies the absolute continuity con-
dition in [17, Section 4.2].

Before closing this subsection, we introduce some notions in optimal transport.
Note that these are used only in Section 6. The L2-Wasserstein distance W2(µ0, µ1)
between two probability measures µ0, µ1 on X is given by

W2(µ0, µ1)
2 := inf

{∫
X×X

d(x, y)2 dπ(x, y)

∣∣∣∣∣ π ∈ Π(µ0, µ1)

}
,

where Π(µ0, µ1) is the set of couplings of µ0 and µ1. That is, π ∈ Π(µ0, µ1) means that
π is a probability measure on X ×X and that π(A×X) = µ0(A), π(X ×B) = µ1(B)
for A,B ∈ B(X). In duality with Bakry-Émery’s L2-gradient estimate we have the
following estimate in W2 of heat flows:

W2(µ0Pt, µ1Pt) ≤ e−KtW2(µ0, µ1), (2.10)
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where µiPt is a dual action of Pt to a probability measure µi on X (i = 0, 1) (see [2,
(7.2)]). For t ∈ [0, 1], let et : C([0, 1] → X) → X be the evaluation map given by
et(γ) := γt. We say that π ∈ P(C([0, 1] → X)) be a 2-test plan if π is concentrated
on 2-absolutely continuous curves AC2((0, 1) → X), there exists Cπ > 0 such that
(et)♯π ≤ Cπm for all t ∈ [0, 1], and∫ (∫ 1

0

|γ̇s|2 ds
)
π(dγ) <∞

(see [19, Definition 2.4]). We call that a Borel measurable function f : X → R belongs
to 2-Sobolev class if there exists G ∈ L2(X;m) such that∫

|f(γ1)− f(γ0)|π(dγ) ≤
∫ ∫ 1

0

G(γs)|γ̇s| dsπ(dγ)

for any 2-test plan. We call G (2-)weak upper gradient. It is known that there exists
a minimal G in m-a.e. sense for each f in 2-Sobolev class (see [3, Section 5]). We call
such G minimal weak upper gradient and denote it by |Df |w. It is also known that
f ∈ D(Ch) belongs to the 2-Sobolev class and we have (2.1) (see [3, Section 6]). Note
that |Df |2w or ⟨Df,Dg⟩ enjoys the Leibniz rule and the chain rule. See [3, 4, 19] for
more details and other properties of |Df |w.

3 Laplacian comparison and its applications

In this section, we will extend the Laplacian comparison theorem in order to apply it to
our problem. Proposition 3.9 and Corollary 3.13 are main assertions in this direction.
On the way, we also show a preliminary version of our main theorem (Theorem 3.11).

We begin with the following auxiliary lemma. We give a proof for completeness,
but it is well-known for experts.

Lemma 3.1 m has no atoms.

Proof. Let p ∈ X. Since (X, d) is a geodesic space, we have qn ∈ X with d(p, qn) =
1/n for each sufficiently large n ∈ N. By the Bishop-Gromov inequality (2.4),

V(n−1)/n2(q) +m({p}) ≤ V(n+1)/n2(q) ≤
V̄(n+1)/n2Vn−1/n2(q)

V̄(n−1)/n2

.

Thus we have

m({p}) ≤
(
V̄(n+1)/n2

V̄(n−1)/n2

− 1

)
V(n−1)/n2(qn) ≤

(
V̄(n+1)/n2

V̄(n−1)/n2

− 1

)
V2(p).

Since limr→0 V̄r/r
N = 1 and V2(p) < ∞, the conclusion follows by letting n → ∞ in

the last inequality. □

The next lemmas are required for studying Laplacian comparison theorems.
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Lemma 3.2 Fix q ∈ [1,+∞[ and suppose cotκ ◦ rp ∈ Lqloc(X;m).

(i) limn→∞ nqm(B 1
n
(p)) = 0 holds. In particular, we have N > q.

(ii) If q ≥ 2, then {p} is polar.

Proof. (i): Since cotκ(t) ∼ 1/t as t → 0, cotκ ◦ rp ∈ Lqloc(X;m) implies 1/rp ∈
Lqloc(X;m). Hence

m(B 1
n
(p)) ≤ 1

nq

∫
B 1

n
(p)

dm

rqp

Applying this with Lebesgue’s dominated convergence theorem with Lemma 3.1 in
mind, we see

nqm(B 1
n
(p)) ≤

∫
B 1

n
(p)

dm

rqp
→ 0 as n→ ∞.

Applying the Bishop-Gromov inequality (2.4), we see

m(B 1
n
(p)) ≥ V̄ 1

n

m(B1(p))

V̄1
∼ 1

nN
m(B1(p))

V̄1
as n→ ∞.

This yields N > q.
(ii): For the polarity of {p}, it suffices to prove Cap({p}) = 0 by [17, Theorems 4.1.2
and 4.2.4]. From [17, Lemma 2.2.7(ii)], we have

Cap({p}) = inf{E1(f, f) | f ∈ CLip
c (X), f ≥ 1 on p}

≤ E1((1− nrp)+, (1− nrp)+)

=

∫
B 1

n
(p)

n2|Drp|2 dm+

∫
B 1

n
(p)

(1− nrp)
2
+ dm

≤ (n2 + 1)m(B 1
n
(p)) ≤ (nq + 1)m(B 1

n
(p)) → 0 as n→ ∞.

Hence the conclusion holds. □

Lemma 3.3 cotκ ◦ rp ∈ L1
loc(X \ {p};m). In particular, rp cotκ ◦ rp ∈ L1

loc(X;m).

Proof. When N = 1, we have cotκ ◦ rp = r−1
p and hence the assertion obviously

holds. Thus we consider the case N > 1. The latter assertion, the local integrability
of rp cotκ ◦ rp, comes from the fact that t| cotκ t| ≤ 2 for sufficiently small t > 0. If
κ ≤ 0, there is nothing to prove, because cotκ ◦ rp is bounded on any compact subset
of X \ {p}. Thus we consider only the case κ > 0. Recall the Bonnet-Myers’ diameter
bound (2.3). If supx∈X d(p, x) < π/

√
κ, again the assertion obviously holds. Let us

suppose that there is p′ ∈ X with d(p, p′) = π/
√
κ. Then the problem is reduced to

show ∫
Bπ/(2

√
κ)(p

′)

dm

sin(rp
√
κ)

<∞ (3.1)

and this is indeed shown in the proof of [19, Lemma 5.11]. □
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Remark 3.4 The assertion of Lemma 3.3 remains true even if (X, d,m) satisfies
merely MCP(K,N)-condition instead of RCD(K,N) condition.

We now introduce a condition which ensures the Laplacian comparison of rp on the
whole X instead of X \{p}. In other words, it ensures a stochastic expression of rp(Xt)
beyond σp,

Definition 3.5 We say that p ∈ X verifies the condition (R1) if cotκ ◦ rp ∈ L1
loc(X;m).

We will give a sufficient condition for (R1) in terms of volume growth exponent.

Lemma 3.6 Fix q ∈ [1,+∞[. Suppose that there exist C > 0 and ε, δ > 0 such that
Vr(p) ≤ Crε+q for all r ∈]0, δ[. Then 1

rp
∈ Lqloc(X;m). In particular, (R1) holds if this

assumption is verified for some q.

Note that the assumption in Lemma 3.6 holds if the Bishop inequality

m(Br(p)) ≤ ϖN V̄r (r ∈ [0, π/
√
κ+[) (3.2)

holds, where ϖN := πN/2/Γ(1 + N/2). In particular, for N ∈ N, it holds on N -
dimensional Alexandrov spaces (X, d) with m = HN (see [43, (1.3)]), or more generally,
on anyN -dimensional Alexandrov space (X, d) withN ≥ 2 equipped with the weighted
measure m = e−VHN on X, where V : X → R is lower semi-continuous. Note here
that there is no need to require the RCD-condition for the weighted Alexandrov space
(X, d,m) in showing Lemma 3.6.

Proof. The second assertion follows from Lemma 3.3. For the first one,∫
Bδ(p)

dm

rqp
=

∞∑
n=1

∫
{δ/2n≤rp<δ/2n−1}

dm

rqp
≤

∞∑
n=1

(
2n

δ

)q
V δ

2n−1
(p)

≤ C

∞∑
n=1

(
2n

δ

)q (
δ

2n−1

)q+ε
= C2q(2δ)ε

∞∑
n=1

(
1

2ε

)n
<∞

and thus the conclusion holds. □
Proposition 3.7 (Laplacian comparison I) We have rp ∈ Floc ∩ C(X) and (2.5)
holds for any v ∈ CLip

c (X \{p})+. If (R1) holds, then (2.5) holds for any v ∈ CLip
c (X)+.

Proof. As mentioned in Subsection 2.3, the first assertion is already proved when
N > 1. The case N = 1 can be shown easily since (X, d,m) is very much specified (see
Proposition A.1 below). We now prove the latter assertion. The condition cotκ ◦ rp ∈
L1
loc(X;m) excludes the case N = 1 by Lemma 3.2. Note that the both sides of

(2.5) are always meaningful for v ∈ CLip
c (X) under (R1). Take v ∈ CLip

c (X)+. Set
vn := v(1− 1∧ (2− 2nrp)+). Then vn ∈ CLip

c (X \ {p}). Applying Lemma 3.2 together
with Lemma 3.3, we have

|E(rp, v − vn)| ≤
∫
X

|D(1 ∧ (2− 2nrp)+)v| dm

≤
∫
X

|D(1 ∧ (2− 2nrp)+)| · |v| dm+

∫
X

|Dv|(1 ∧ (2− 2nrp)+) dm

= 2∥v∥∞ nm(B 1
n
(p)) + ∥Dv∥∞m(B 1

n
(p)) → 0 as n→ ∞
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and

|(cotκ ◦ rp, v − vn)m| ≤
∫
X

| cotκ ◦ rp|(1 ∧ (2− 2nrp)+)|v| dm

≤ ∥v∥∞
∫
B 1

n
(p)

| cotκ ◦ rp| dm → 0 as n→ ∞.

Clearly, vn ≥ 0 under v ≥ 0. Therefore, we obtain

E(rp, v) = lim
n→∞

E(rp, vn) ≥ −(N − 1) lim
n→∞

(cotκ ◦ rp, vn)m ≥ −(N − 1)(cotκ ◦ rp, v)m

for v ∈ CLip
c (X)+. □

Remark 3.8 The proof of the first assertion of Proposition 3.7 including the case
N = 1 can be done alternatively along the method of the proof of [30, Proposition 3.1]
(see [19, Remark 5.16] also) based on the fact that Cheeger’s Lipschitz differentiability
theorem remains valid for RCD∗(K,N)-space for K ∈ R and N ∈ [1,+∞[. Cheeger’s
Lipschitz differentiability theorem over RCD∗(K,N)-space for K ∈ R and N ∈ [1,+∞[
follows from the volume doubling condition for m and a local weak (1, 1)-Poincaré
inequality. Note here that a local weak (1, 1)-Poincaré inequality for CD(K,∞)-space
was proved by Rajala [36, Theorem 1.2] and RCD∗(K,N)-space for K ∈ R and N ∈
[1,+∞[ is an RCD(K,∞)-space by [14, Theorem 7].

Let S0(X) or S0(XX\{p}) be the family of positive smooth measures of finite energy
integrals associated to (E ,F) or the part (EX\{p},FX\{p}) of (E ,F) on X \{p} (see [17,
Section 2.2])) respectively, i.e., ν ∈ S0(X) (resp. ν ∈ S0(XX\{p})) if and only if there
exists C > 0 such that∫

X

|v| dν ≤ C
√

E1(v, v) for v ∈ F ∩ Cc(X) (resp. v ∈ FX\{p} ∩ Cc(X \ {p}).

For ν ∈ S0(X) (resp. ν ∈ S0(XX\{p})) with α > 0, there exists Uαν ∈ F (resp. Uαν ∈
FX\{p}) such that Eα(Uαν, v) = ⟨ν, v⟩ for any v ∈ F ∩Cc(X) (resp. v ∈ FX\{p}∩Cc(X \
{p}), which is called the α-potential of ν with respect to (E ,F) (resp. (EX\{p},FX\{p})).
Let S(X) or S(XX\{p}) be the family of positive smooth measures (see [17, Section
2.2]) associated to (E ,F) or the part (EX\{p},FX\{p}) of (E ,F) on X \ {p} (see [17,
Section 4.4])) respectively. It is known that for any µ ∈ S(X) there exists a positive
continuous additive functional Aµt (PCAF in short) admitting exceptional set such
that

⟨fµ, v⟩ = lim
t→0

1

t
Evm

[∫ t

0

f(Xs)dA
µ
s

]
for any γ-excessive function v (γ ≥ 0) (3.3)

(see [17, Theorems 5.1.1–5.1.4]). The relation µ ∈ S(X) ↔ (Aµt )t≥0 characterized by
(3.3) is called the Revuz correspondence. By definition, if for any relatively compact
open subset G satisfying G ⊂ X (resp. G ⊂ X \ {p}), 1Gν ∈ S0(X) (resp. ν ∈
S0(XX\{p})) holds, then ν ∈ S(X) (resp. ν ∈ S(XX\{p})).

11



Proposition 3.9 (A realization of ∆rp) (i) There exists a positive Radon mea-
sure ν on X \ {p} such that

E(rp, v) + (N − 1)

∫
X

cotκ ◦ rp v dm =

∫
X

v dν (3.4)

holds for v ∈ CLip
c (X \ {p}). If (R1) holds, then ν can be regarded as a positive

Radon measure on X such that (3.4) holds for v ∈ CLip
c (X) and ν({p}) = 0.

(ii) The positive Radon measure ν specified in (i) belongs to S(XX\{p}). In addition,
| cotκ ◦ rp|m ∈ S(XX\{p}), rp| cotκ ◦ rp|m ∈ S(X) and rpν ∈ S(X). If (R1) holds,
then | cotκ ◦ rp|m ∈ S(X) and ν ∈ S(X).

Proof. (i): Set L := CLip
c (X \ {p}) and I(v) := E(rp, v) + ((N − 1) cotκ ◦ rp, v)m

for v ∈ L. Then L is a vector lattice satisfying that u ∈ L implies u ∧ 1 ∈ L.
Lemma 3.3 implies I(v) < ∞ for any v ∈ L. We claim that I is a Daniell integral.
That is, for u ∈ L, u ≥ 0 implies I(u) ≥ 0, and for un ∈ L with un ≥ un+1 ≥ 0,
limn→∞ un = 0 implies limn→∞ I(un) = 0. The former property is an immediate
consequence of Proposition 3.7. For the latter one, take such a sequence {un}n. Then
{un}n uniformly converges to 0 as n → ∞ and supp[un] ⊂ supp[u1] ⊂ X \ {p}. Take
v ∈ CLip

c (X) such that v = 1 on supp[u1]. Then 0 ≤ I(un) ≤ ∥un∥∞I(v) → 0 as
n → ∞. Thus the claim holds. It is known that the Daniell integral on L admits a
measure ν on the Baire σ-field Ba(X \ {p}) generated by L (see [13, Theorem 4.5.2],
[11, 32,38]), that is,

I(v) =

∫
X

v(x) ν(dx) for any v ∈ L.

Since L is dense in Cc(X\{p}), the Baire σ-field Ba(X\{p}) coincides with B(X\{p}).
Take any compact subset K of X\{p}. Let w ∈ L = CLip

c (X\{p})+ such that w = 1 on
K. Then 1K ≤ w on X \ {p} implies ν(K) ≤

∫
X
w(x) ν(dx) = I(w) < ∞. Therefore

the former assertion holds. Under cotκ ◦ rp ∈ L1
loc(X;m), the proof of the existence of

a positive Radon measure ν on X satisfying (3.4) for v ∈ CLip
c (X) is similar as above.

By using Lemma 3.2, we have

ν({p}) ≤
∫
B 1

n
(p)

(1− nrp)+ dν

= E(rp, (1− nrp)+) + (N − 1)(cotκ ◦ rp, (1− nrp)+)m

≤ n

∫
B 1

n
(p)

⟨Drp, Drp⟩ dm+ (N − 1)

∫
B 1

n
(p)

cotκ ◦ rp dm

≤ nm(B 1
n
(p)) + (N − 1)

∫
B 1

n
(p)

cotκ ◦ rp dm → 0 as n→ ∞.

Hence ν({p}) = 0 follows.
(ii): Firstly, we prove that ν ∈ S(XX\{p}). We may assume N > 1, because the proof
for the case N = 1 can be an easy modification of it. Note first that | cotκ ◦ rp|m is a
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positive Radon measure on X \ {p} under N > 1 by Lemma 3.3. Thus it suffices to
show that ν charges no set of zero capacity. Let G be a relatively compact open set
satisfying G ⊂ X \ {p}. Then there exists a constant CG > 0 such that∫

X

|v| dν ≤ CG

√
E(v, v) +

∫
X

v2| cotκ ◦ rp| dm for v ∈ CLip
c (G). (3.5)

Indeed, since |Drp| ≤ 1 on X, we have

|E(rp, |v|)| =
∣∣∣∣∫
X

⟨Drp, D|v|⟩ dm
∣∣∣∣ ≤ ∫

G

|Drp| · |D|v|| dm

≤
√

m(G)

√∫
X

|D|v||2 dm ≤
√
m(G)

√
E(v, v)

and

(N − 1)|(cotκ ◦ rp, |v|)m| ≤ (N − 1)

√∫
G

| cotκ ◦ rp| dm

√∫
X

v2| cotκ ◦ rp| dm.

Then the claim holds with CG :=
√
2
(√

m(G) + (N − 1)
√∫

G
| cotκ ◦ rp| dm

)
. (3.5)

implies that ν charges no exceptional set with respect to the part space (ĚG, F̌G) on
G for the Dirichlet form (Ě , F̌) on L2(X; | cotκ ◦ rp|m) associated to the time changed
process (X̌X\{p}, | cotκ ◦ rp|m). Note here that polarity with respect to XX\{p} is equiv-
alent to the polarity with respect to (X̌X\{p}, | cotκ ◦ rp|m). Consequently, ν charges
no exceptional set with respect to XX\{p} in view of [17, Theorem 4.4.3(ii)], which
implies ν ∈ S(XX\{p}).

Secondly, we show | cotκ ◦ rp|m ∈ S(XX\{p}) and rp| cotκ ◦ rp|m ∈ S(X). We con-
sider only the latter one since the former one can be shown in the same way. Recall
that rp cotκ ◦ rp ∈ L1

loc(X;m) holds by Lemma 3.3. With the aid of this, we can show
that rp| cotκ ◦ rp|m is a positive Radon measure charging no exceptional set in a similar
manner as we did for ν ∈ S(XX\{p}). It implies rp| cotκ ◦ rp| ∈ S(X).

Thirdly, we prove rpν ∈ S(X). Let G be a relatively compact open set. For
v ∈ CLip

c (G),

|E(rp, |v|rp)| =
∣∣∣∣∫
X

⟨Drp, D|v|rp⟩ dm
∣∣∣∣ ≤ ∫

G

|D|v|rp| dm

≤

√∫
G

r2p dm

√∫
X

|D|v||2 dm+
√

m(G) ·

√∫
G

v2 dm

≤

√∫
G

r2p dm+m(G) ·
√
E1(v, v)

and

(N − 1)|(cotκ ◦ rp, |v|rp)m| ≤ (N − 1)

√∫
G

rp| cotκ ◦ rp| dm

√∫
X

v2rp| cotκ ◦ rp| dm.
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These inequalities imply∫
X

|v|rp dν ≤ CG

√
E1(v, v) +

∫
X

v2rp| cotκ ◦ rp| dm for v ∈ CLip
c (G) (3.6)

with CG :=
√
2
(√∫

G
r2p dm+m(G) + (N − 1)

√∫
G
rp| cotκ ◦ rp| dm

)
. So we can con-

clude that the Radon measure rpν charges no exceptional set with respect to X by the
same argument as above. This implies rpν ∈ S(X).

Finally we prove the last assertion. Under (R1), | cotκ ◦ rp|m is a positive Radon
measure onX. The assertion | cotκ ◦ rp|m ∈ S(X) follows from the fact that any Radon
measure charging no exceptional set belongs to S(X). By (i), we know ν({p}) = 0.
Since ν is a positive Radon measure on X, ν is decomposed into the sum ν0 + 1Nνν of
a positive Radon measure ν0 ∈ S(X) and an exceptional set Nν by [18, Lemma 2.1].
Since ν ∈ S(XX\{p}), we see ν(Nν \ {p}) = 0. Combining this with ν({p}) = 0, we
obtain ν = ν0 ∈ S(X). □

Remark 3.10 Under κ ≤ 0 or diam(X) < π/
√
κ+, we can see from the proof of

Proposition 3.9 (i) that for any relatively compact open subset G satisfying G ⊂ X\{p},
1Gν ∈ S0(XG) and 1G| cotκ ◦ rp|m ∈ S0(XG) because of cotκ ◦ rp ∈ L∞

loc(X \ {p};m).
If there exists a point p′ ∈ X with d(p, p′) = π/

√
κ under κ > 0, then 1Gν ∈ S0(XG)

and 1G| cotκ ◦ rp|m ∈ S0(XG) hold for any relatively compact open set G satisfying
G ⊂ X \ {p, p′}.

We are now ready to prove a version of our main theorem corresponding to Theo-
rem 2.2. Let Aνt be the PCAF associated to ν ∈ S(XX\{p}) (see [17, Chapter 5]). We
use the same symbol Aνt for the PCAF associated with ν ∈ S(X).

Theorem 3.11 (Stochastic expression of radial process I)
(i) There exists a martingale additive functional B in the strict sense behaving as

a one-dimensional standard Brownian motion under each Px and a continuous
additive functional N rp in the strict sense locally of zero energy such that

rp(Xt)− rp(X0) =
√
2Bt +N

rp
t (3.7)

holds for all t ∈ [0,∞[ Px-a.s. for every x ∈ X.

(ii) For f ∈ C2(R),

f(rp(Xt))− f(rp(X0)) =
√
2

∫ t

0

f ′(rp(Xs)) dBs +

∫ t

0

f ′′(rp(Xs)) ds

+ (N − 1)

∫ t

0

f ′(rp(Xs)) cotκ(rp(Xs)) ds−
∫ t

0

f ′(rp(Xs)) dA
ν
s (3.8)

holds for all t ∈ [0, σp[ Px-a.s. for q.e. x ∈ X \ {p}. In particular, f(rp) is
a semimartingale up to σp. If (R1) holds, then (3.8) holds for all t ∈ [0,+∞[
Px-a.s. for q.e. x ∈ X. In particular, f(rp) is a semimartingale.
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Proof. (i) Since rp ∈ CLip(X) ⊂ Floc ∩ C(X), we have the Fukushima decomposition
under X by [17, Theorem 5.5.1]:

rp(Xt)− rp(X0) =M
rp
t +N

rp
t t ∈ [0,+∞[, Px-a.s. (3.9)

for q.e. x ∈ X. Here M rp
t (resp. N rp

t ) is a martingale additive functional locally of finite
energy (resp. continuous additive functional locally of zero energy) and both of them
are local additive functionals and the decomposition is unique up to the equivalence
of local additive functionals with respect to X (cf. [17, Theorem 5.5.1]). According
to (2.7), the energy measure µ⟨rp⟩ = 2|Drp|2wm with respect to X satisfies µ⟨rp⟩ = 2m
on X. Since X is a conservative diffusion process and m is a smooth measure in the
strict sense (i.e. m ∈ S1(X), see Section 5 for S1(X)), we can apply [15, Theorem 2.1]
so that (3.9) holds for all x ∈ X, and M rp

t and N rp
t can be redefined as local additive

functionals in the strict sense. The quadratic variational process ⟨M rp⟩ of M rp under
X satisfies ⟨M rp⟩t = 2t. This implies that there exists a one dimensional standard
Brownian motion Bt under Px for all x ∈ X such that M rp

t =
√
2Bt, t ∈ [0,+∞[ under

Px for all x ∈ X in view of Lévy’s Theorem.
(ii) We first prove (2.2) with At = Aνt holds for t ∈ [0, σp[ Px-a.s. for q.e. x ∈ X\{p}.

Recall that | cotκ ◦ rp|m ∈ S(XX\{p}) by Proposition 3.9 (ii). Next we set µ := µ1−µ2

with µ1 := ν + (N − 1) cot−κ ◦ rpm ∈ S(XX\{p}) and µ2 := (N − 1) cot+κ ◦ rpm ∈
S(XX\{p}). Here cot+κ (t) := max{cotκ(t), 0} and cot−κ (t) := max{− cotκ(t), 0}. Then
we see

E(rp, v) =
∫
X

v dµ for v ∈ CLip
c (X \ {p}).

Applying [16, Theorem 6.3] or [17, Corollary 5.5.1] to the signed Radon smooth mea-
sure µ := µ1 − µ2,

N
rp
t = (N − 1)

∫ t

0

cotκ ◦ rp(Xs) ds− Aνt (3.10)

holds for t ∈ [0, σp[ under Px-a.s. for q.e. x ∈ X \ {p}. Therefore, (2.2) holds for
t ∈ [0, σp[ Px-a.s. for q.e. x ∈ X \ {p}. Since X is a diffusion process, σp is predictable
(Ft)t≥0-stopping time. Thus there is an increasing sequence {σnp } of (Ft)t≥0-stopping
times such that σnp < σp and limn→∞ σnp = σp hold under Px for all x ∈ X. Since (2.2)
holds for all t ∈ [0, σp[ under Px for q.e. x ∈ X \ {p}, t 7→ rp(Xt∧σn

p
) is an (Ft)t≥0-

semimartingale under Px for q.e. x ∈ X \ {p}. Applying Itô’s formula to rp(Xt∧σn
p
),

we can deduce that (3.8) holds for t ∈ [0, σp[ Px-a.s. for q.e. x ∈ X \ {p}.
Under (R1), we already know ν ∈ S(X) and | cotκ ◦ rp|m ∈ S(X) by Proposition 3.9

(ii). Then one can deduce that (2.2) holds for all t ∈ [0,+∞[ Px-a.s. for q.e. x ∈ X.
Here we use the conservativeness of X under RCD∗(K,N)-condition for (X, d,m). (R1)
also implies that we can decompose cotκ ◦ rp into the sum of an integrable function
and a continuous function. Thus, by virtue of the Fubini theorem together with L1-
contraction of the heat semigroup Pt, t 7→

∫ t
0
cotκ ◦ rp(Xs) ds is of bounded variation

Px-a.s. Hence the conclusion follows by the applying the Itô formula as we did in the
proof of (i). □
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Remark 3.12 On Riemannian manifolds, we can decompose Aν as follows:

Aνt =

∫ t

0

((N − 1) cotκ ◦ rp(Xs)−∆rp(Xs)) ds+ Lt,

where Lt can be regarded as the local time at the cut locus of p (see [12, 26]). It is
not clear whether we can have the same sort of expression. One difficulty may arise
from the fact that the cut locus (we may be able to define it somehow) can be dense
in X in RCD spaces. It is also not clear whether we can separate Lt and the additive
functional corresponding to ∆rp or not.

As a first application of Theorem 3.11, we can extend the Laplacian comparison
theorem as follows:

Corollary 3.13 (Laplacian comparison II) We have the following:

(i) For f ∈ C2(R),

E(f(rp), v) = ⟨f ′ ◦ rp ν, v⟩ − (s1−Nκ (sN−1
κ f ′)′ ◦ rp, v)m (3.11)

holds for any v ∈ CLip
c (X \{p}). If (R1) holds, then (3.11) holds for v ∈ CLip

c (X).

(ii) For f ∈ C2(R) with f ′(t) ≥ 0 for t ≥ 0,

E(f(rp), v) ≥ −(s1−Nκ (sN−1
κ f ′)′ ◦ rp, v)m (3.12)

holds for any v ∈ CLip
c (X \{p})+. Moreover, (3.12) holds for v ∈ CLip

c (X)+ under
(R1).

To prove Corollary 3.13, we need the following lemma holding for general regular
Dirichlet forms:

Lemma 3.14 Let Aµt be a PCAF admitting exceptional set associated to a Radon
measure µ ∈ S(X). Let G ⊂ X be a relatively compact open nearly Borel. Suppose
that 1Gµ ∈ S0(XG). Then for any f ∈ C(X)

⟨fµ, v⟩ = lim
t→0

1

t
Evm

[∫ t

0

f(Xs) dA
µ
s : t < τG

]
for v ∈ FG ∩ Cc(G),

where τG is the first exit time from G of X.

Proof. In view of [17, Lemma 5.1.10 (ii)] with [17, Theorem 5.1.3 (i)⇔(iii)], t 7→ Aµt∧τG
is a PCAF with respect to XG associated to 1Gµ ∈ S0(XG) (see also [17, Lemma 5.5.2
(iii)] for the additivity of t 7→ Aµt∧τG). Applying [17, Theorem 5.1.3 (iii)⇔(vi)] to XG,
under 1Gµ ∈ S0(XG), we have that

⟨fµ, v⟩ = lim
t→0

1

t
Evm

[∫ t

0

f(Xs) dA
µ
s∧τG

]

16



holds for any v ∈ FG ∩ Cc(G). Note here that ⟨µ, |v|⟩ < ∞ for v ∈ FG ∩ Cc(G).
Applying [17, Lemma 4.5.2(i)] to XG, we have

lim
t→0

1

t
Pv2 m(t ≥ τG) =

1

t

∫
G

v(x)2(1− PG
t 1(x))m(dx) = 0 (3.13)

because our process X has no killing inside, where (PG
t )t≥0 is the transition semigroup

of XG. With keeping this fact in mind, we have

1

t
E|v|m

[∫ t

0

|f(Xs)| dAµs∧τG : t ≥ τG

]
≤ sup

x∈G
|f(x)| · 1

t
Em

[
|v(X0)|Aµt∧τG : t ≥ τG

]
≤ sup

x∈G
|f(x)|

√
1

t

∫
G

Ex[(Aµt∧τG)2]m(dx)

√
1

t
Pv2 m(t ≥ τG).

Because 1Gµ ∈ S0(XG) implies that t 7→ Aµt∧τG is a CAF of zero energy with respect
to XG (see [17, pp. 245]), the right hand side of the last inequality converges to 0 as
t→ 0. Therefore, we obtain the desired conclusion. □

Proof of Corollary 3.13. (ii) is a simple consequence of (i). We only prove (i).
First we suppose κ ≤ 0 or diam(X) < π/

√
κ under κ > 0. Take v ∈ CLip

c (X \ {p}).
Let G be relatively compact open sets satisfying supp[v] ⊂ G ⊂ G ⊂ X \ {p}. We can
construct rGp ∈ CLip

c (X \ {p}) such that rp = rGp on G. Note that we have

lim
t→0

1

t
Evm

[∫ t

0

f ′(rGp (Xs)) dBs : t < τG

]
= lim

t→0

1

t
Evm

[∫ t

0

f ′(rGp (Xs)) dBs : t ≥ τG

]
= 0,

because t 7→
∫ t
0
f ′(rGp (Xs)) dBs is a martingale additive functional of finite energy and

lim
t→0

1

t

∣∣∣∣∣Evm
[∫ t

0

f ′(rGp (Xs)) dBs : t ≥ τG

]∣∣∣∣∣
≤ lim

t→0

√√√√1

t
Em

[(∫ t

0

f ′(rGp (Xs)) dBs

)2
]√

1

t
Pv2 m(t ≥ τG)

= lim
t→0

√
1

t
Em

[∫ t

0

|f ′(rGp (Xs))|2 ds
]√

1

t
Pv2 m(t ≥ τG)

= lim
t→0

√∫
G

|f ′(rGp )|2 dm ·
√
0 = 0 (3.14)
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holds by virtue of (3.13). From (3.8) and (3.14), we see that

E(f(rp), v) = E(f(rGp ), v)

= lim
t→0

1

t
Evm

[
(f(rGp (X0))− f(rGp (Xt))) : t < τG

]
= lim

t→0

1

t
Evm

[∫ t

0

f ′(rGp (Xu)) dA
ν
u −

√
2

∫ t

0

f ′(rGp (Xu)) dBu

−(N − 1)

∫ t

0

f ′(rGp (Xu)) cotκ(r
G
p (Xu)) du

−
∫ t

0

f ′′(rGp (Xu)) du : t < τG

]

= lim
t→0

1

t
Evm

[∫ t

0

f ′(rGp (Xu)) dA
ν
u

−(N − 1)

∫ t

0

f ′(rGp (Xu)) cotκ(r
G
p (Xu)) du

−
∫ t

0

f ′′(rGp (Xu)) du : t < τG

]
= ⟨f ′(rGp )ν, v⟩ − ((N − 1)f ′(rGp ) cotκ(r

G
p ) + f ′′(rGp ), v)m

= ⟨f ′ ◦ rp ν, v⟩ − (s1−Nκ (sN−1
κ f ′)′ ◦ rp, v)m,

where we use Lemma 3.14 under 1G ν ∈ S0(XG), 1G| cotκ ◦ rp|m ∈ S0(XG) and 1Gm ∈
S0(XG) by Remark 3.10 in the fifth equality. Then we obtain (3.11) for v ∈ CLip

c (X \
{p}).

Next we assume that κ > 0 and there exists a point p′ ∈ X such that d(p, p′) =
π/

√
κ. In this case, we can show that 1G ν ∈ S0(XG), 1G| cotκ ◦ rp|m ∈ S0(XG) and

1Gm ∈ S0(XG) for any relatively compact open set G satisfying G ⊂ X \ {p, p′}
by Remark 3.10. Then we obtain (3.11) for v ∈ CLip

c (X \ {p, p′}). The proof of
(3.11) for v ∈ CLip

c (X \ {p}) under κ > 0 can be done by approximating v by vℓ :=
vψ(1−1∧ (2−2ℓrp′)+), where vℓ is a function similarly defined for the point p′ instead
p as in the proof of Proposition 3.7. Note that p′ verifies the condition (R1) in view of
(3.1). Indeed, the convergences

lim
ℓ→∞

E(f(rp), v − vℓ) = 0 and lim
ℓ→∞

(s1−Nκ (sN−1
κ f ′)′ ◦ rp, v − vℓ)m = 0

hold similarly as in the proof of Proposition 3.7. Moreover,

|⟨f ′(rp)ν, v − vℓ⟩| ≤ ⟨|f ′(rp)|ν, (1 ∧ (2− 2ℓrp′)+)|v|⟩
≤ ∥v∥∞ sup

x∈supp[v]
|f ′(rp(x))|ν(B 1

ℓ
(p′)) → 0 as ℓ→ ∞,

because limℓ→∞ ν(B 1
ℓ
(p′)) = ν({p′}) = 0. Thus we obtain (3.11) for v ∈ CLip

c (X \{p}).
The proof of (3.11) for v ∈ CLip

c (X) under (R1) can be done by approximating v
by vn := vψ(1 − 1 ∧ (2 − 2nrp)+), where vn is the function defined in the proof of
Proposition 3.7. The proof is similar as above. We omit it. □

18



4 Estimates involving the resolvent kernel

Let (Rα)α>0 be the resolvent operator of ∆ with the integral kernel rα(x, y). In this
section, we consider some regularity properties of ν (Lemma 4.4 and Proposition 4.7
below) which are used in Section 5 for a refinement of Theorem 3.11. We begin with
the following proposition.

Proposition 4.1 Let ν be the smooth measure specified in Proposition 3.9 (i). Then
we have the following:

(i) There exists α > 0 such that, for φ ∈ CLip
c (X \ {p})+,

sup
x∈supp[φ]

∫
X

rα(x, y)φ(y) ν(dy) <∞

and

sup
x∈supp[φ]

∫
X

rα(x, y)φ(y)| cotκ ◦ rp(y)|m(dy) <∞.

(ii) There exists α > 0 such that, for φ ∈ CLip
c (X)+,

sup
x∈supp[φ]

∫
X

rα(x, y)φ(y)rp(y) ν(dy) <∞

and

sup
x∈supp[φ]

∫
X

rα(x, y)φ(y)rp(y)| cotκ ◦ rp(y)|m(dy) <∞.

We begin with a basic estimate. By (2.9) and the definition of rα, for any measurable
g : [0,+∞[→ [0,+∞],∫

X

rα(x, y)g(rp(y))φ(y) ν(dy) =

∫ ∞

0

e−αt
(∫

X

pt(x, y)g(rp(y))φ(y) ν(dy)

)
dt

≤
∫ ∞

0

C1e
−αt+C3t

V√t(x)

(∫
X

exp

(
−d(x, y)

2

C2t

)
g(rp(y))φ(y) ν(dy)

)
dt. (4.1)

Since exp(−r2x/(C2t))φ ∈ CLip
c (X \{p}) ⊂ F ∩L∞(X;m) and |Drz| ≤ 1 for any z ∈ X,

the definition of ν together with (2.6) yields

0 ≤
∫
X

exp

(
−d(x, y)

2

C2t

)
φ(y) ν(dy)

=

∫
X

⟨
D

(
exp

(
− r2x
C2t

)
φ

)
, Drp

⟩
dm+ (N − 1)

∫
X

cotκ(rp) exp

(
− r2x
C2t

)
φ dm

≤ 2

C2t

∫
X

rx exp

(
− r2x
C2t

)
φ dm+

∫
X

exp

(
− r2x
C2t

)
|Dφ| dm

+ (N − 1)

∫
X

cotκ(rp) exp

(
− r2x
C2t

)
φ dm. (4.2)
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From (4.2), we have

(N − 1)

∫
X

| cotκ(rp)| exp
(
− r2x
C2t

)
φ dm

≤ 2

C2t

∫
X

rx exp

(
− r2x
C2t

)
φ dm+

∫
X

exp

(
− r2x
C2t

)
|Dφ| dm

+ 2(N − 1)

∫
X

cot+κ (rp) exp

(
− r2x
C2t

)
φ dm. (4.3)

Similarly, (3.11) with f(t) = t2 and v = φ exp(−r2x/(C2t)) yields

0 ≤
∫
X

exp

(
− r2x
C2t

)
2rpφ dν

=

∫
X

⟨
D

(
exp

(
− r2x
C2t

)
φ

)
, Dr2p

⟩
dm

+ 2(N − 1)

∫
X

rp cotκ(rp) exp

(
− r2x
C2t

)
φ dm+ 2

∫
X

exp

(
− r2x
C2t

)
φ dm

≤ 4

C2t

∫
X

rx exp

(
− r2x
C2t

)
rpφ dm+ 2

∫
X

exp

(
− r2x
C2t

)
|Dφ|rp dm

+ 2(N − 1)

∫
X

rp cotκ(rp) exp

(
− r2x
C2t

)
φ dm+ 2

∫
X

exp

(
− r2x
C2t

)
φ dm. (4.4)

From (4.4), we have

2(N − 1)

∫
X

rp| cotκ(rp)| exp
(
− r2x
C2t

)
φ dm

≤ 4

C2t

∫
X

rx exp

(
− r2x
C2t

)
rpφ dm+ 2

∫
X

exp

(
− r2x
C2t

)
|Dφ|rp dm

+ 4(N − 1)

∫
X

rp cot
+
κ (rp) exp

(
− r2x
C2t

)
φ dm+ 2

∫
X

exp

(
− r2x
C2t

)
φ dm. (4.5)

Note here that cot+κ ◦ rp is bounded from above by a positive constant on supp[φ]
for φ ∈ CLip

c (X \ {p})+. Thus (4.2) and (4.3) imply that there is a constant C∗ =
C∗(p, φ) > 0 satisfying∫

X

exp

(
− r2x
C2t

)
φ dν ≤ C∗√

t ∧ 1

∫
supp[φ]

exp

(
− r2x
(C2 + 1)t

)
dm, (4.6)∫

X

exp

(
− r2x
C2t

)
φ| cotκ ◦ rp| dm ≤ C∗√

t ∧ 1

∫
supp[φ]

exp

(
− r2x
(C2 + 1)t

)
dm (4.7)

for all x ∈ supp[φ] and t > 0. Similarly, since rp cot+κ ◦ rp is bounded from above
above on supp[φ] for φ ∈ CLip

c (X), (4.4) and (4.5) imply that there is a constant
C∗ = C∗(p, φ) > 0 satisfying∫

X

exp

(
− r2x
C2t

)
φrp dν ≤ C∗√

t ∧ 1

∫
supp[φ]

exp

(
− r2x
(C2 + 1)t

)
dm, (4.8)∫

X

exp

(
− r2x
C2t

)
φrp| cotκ ◦ rp| dm ≤ C∗√

t ∧ 1

∫
supp[φ]

exp

(
− r2x
(C2 + 1)t

)
dm (4.9)
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for all φ ∈ CLip
c (X)+, x ∈ supp[φ] and t > 0.

By combining (4.6)–(4.9) with (4.1), we can reduce the proof of Proposition 4.1
into the following two lemmas, by taking α > C3.

Lemma 4.2 For each α0, C > 0 and any compact set K ⊂ X,

sup
x∈K

∫ ∞

1

e−α0t
1

V√t(x)

∫
K

exp

(
− r2x
Ct

)
dm dt <∞. (4.10)

Lemma 4.3 For each C > 0 and any compact set K,

sup
x∈K

∫ 1

0

1√
tV√t(x)

∫
K

exp

(
− r2x
Ct

)
dm dt <∞. (4.11)

Take R > 1 so that d(z, w) < R for any z, w ∈ K. Then K ⊂ BR(x) for any
x ∈ K.

Proof of Lemma 4.2. By the Bishop-Gromov inequality (2.4),∫ ∞

1

e−α0t
1

V√t(x)

∫
K

exp

(
− r2x
Ct

)
dm dt

≤
∫ ∞

1

e−α0t
1

V√t(x)

∫
BR(x)

exp

(
− r2x
Ct

)
dm dt

≤ V̄R
V̄1

∫ ∞

1

e−α0t dt ≤ e−α0

α0

· V̄R
V̄1
.

□

Proof of Lemma 4.3. By the Fubini theorem,∫
K

exp

(
− r2x
Ct

)
dm ≤

∫
BR(x)

exp

(
− r2x
Ct

)
dm

≤
∫
BR(x)

(∫ ∞

d(x,y)

2u

Ct
exp

(
− u2

Ct

)
du

)
m(dy)

=
2

Ct

∫ R

0

m(Bu(x))u exp

(
− u2

Ct

)
du+ VR(x) exp

(
−R

2

Ct

)
=

2

C

∫ R/
√
t

0

V√ts(x)se
−s2/C ds+ VR(x) exp

(
−R

2

Ct

)
,

where the first identity follows from dividing the domain [d(x, y),∞[ of the integral in
u-variable into [d(x, y), R] and [R,∞[. By the Bishop-Gromov inequality (2.4),∫ 1

0

VR(x)√
tV√t(x)

exp

(
−R

2

Ct

)
dt ≤

∫ 1

0

V̄R√
tV̄√t

exp

(
−R

2

Ct

)
dt <∞.
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Thus it suffices to prove the following claim:

sup
x∈K

∫ 1

0

1√
tV√t(x)

∫ R/
√
t

0

V√ts(x)se
−s2/C ds dt <∞. (4.12)

We now divide the domain of the integral in s variable into two parts. Take
β = 1/(2N + 2) and first consider the integral on [0, t−β]. By virtue of the Bishop-
Gromov inequality (2.4), we have∫ 1

0

1√
tV√t(x)

∫ t−β

0

V√ts(x)se
−s2/C ds dt

=

∫ 1

0

Vt−β+1/2(x)√
tV√t(x)

∫ t−β

0

V√ts(x)

Vt−β+1/2(x)
se−s

2/C ds dt

≤
∫ 1

0

Vt−β+1/2(x)√
tV√t(x)

∫ t−β

0

se−s
2/C ds dt

≤ C

2

∫ 1

0

V̄t−β+1/2√
tV̄√t

dt. (4.13)

Recall lims↓0 V̄s/s
N = 1. Thus, by taking β < 1/2 into account, we have

V̄t−β+1/2√
tV̄√t

= O(t−(Nβ+1/2)) as t→ 0.

Hence the integral in the right hand side of (4.13) is finite by our choice of β.
Next we deal with the integral on [t−β, R/

√
t]. Again by the Bishop-Gromov in-

equality (2.4),∫ 1

0

1√
tV√t(x)

∫ R/
√
t

t−β

V√ts(x)se
−s2/C ds dt ≤

∫ 1

0

1√
t

∫ R/
√
t

t−β

V̄√ts
V̄√t

se−s
2/C ds dt

≤ CV̄R
2

∫ 1

0

1√
tV̄√t

exp

(
− 1

Ct2β

)
dt.

Then the last integral is finite by using the asymptotic behavior of V̄s as s→ 0 again.
Hence the claim (4.12) holds by combining these two estimates. □

Let S00(X) or S00(XX\{p}) be the family of positive smooth finite measures of finite
energy integrals with bounded potential associated to (E ,F) or the part (EX\{p},FX\{p})
of (E ,F) on X \ {p} (see [17, Section 2.2])) respectively, i.e., ν ∈ S00(X) if and
only if ν ∈ S0(X), ν(X) < ∞ and Uαν ∈ L∞(X;m) (α > 0). By definition,
S00(XX\{p}) ⊂ S(XX\{p}) and S00(X) ⊂ S(X).

We now turn to the proof of Proposition 4.7 below. We are interested in a refined
property of ν in Proposition 3.9. We show the following lemma as an application of
Proposition 4.1.
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Lemma 4.4 Let ν be the smooth measure specified in Proposition 3.9 (i). Then,
for any relatively compact open set G with G ⊂ X \ {p}, 1G ν ∈ S00(XX\{p}) and
1G| cotκ ◦ rp|m ∈ S00(XX\{p}). Moreover, for any relatively compact open set G ⊂ X,
1Grp ν ∈ S00(X) and 1Grp| cotκ ◦ rp|m ∈ S00(X).

Proof. Note that for each relatively compact open G with G ⊂ X \ {p}, there exists
φ ∈ CLip

c (X \ {p})+ such that 1G ≤ φ ≤ 1. Indeed, φ(x) := (1 − nd(x,G))+ does the
job for n > 1/d(p,G).

First we prove Rα(φν) is bounded on X \ {p}. By Proposition 4.1, we already
know that Rα(φν) is bounded on the support of φ. Let Aν be the PCAF admitting
(properly) exceptional set Nν associated to ν in Revuz correspondence with respect to
XX\{p}. Let K be the support of φ. Since Px(XσK ∈ K, σK < ∞) = Px(σK < ∞) for
x ∈ X (see [17, Lemma A.2.7]), we then see that for x ∈ X \ (Nν ∪ {p})

Rα(φν)(x) = Ex
[∫ ∞

0

e−αtφ(Xt) dA
ν
t

]
= Ex

[∫ ∞

σK

e−αtφ(Xt) dA
ν
t

]
= Ex

[
e−ασKEXσK

[∫ ∞

0

e−αtφ(Xt) dA
ν
t

]]
≤ sup

y∈K
Rα(φν)(y) <∞.

Noting that Rα(φν) is a finely continuous function and m has full topological support
with respect to the fine topology under absolute continuity condition, we can conclude
that supx∈X\{p}Rα(φν)(x) <∞. Similarly, we can obtain

sup
x∈X\{p}

Rα(φ| cotκ ◦ rp|m)(x) <∞.

By Proposition 3.9 (i), we know φν ∈ S(XX\{p}) and φ| cotκ ◦ rp|m ∈ S(XX\{p}).
Thus φν charges no exceptional set with respect to XX\{p}.

Next we claim φν ∈ S00(XX\{p}). As a first step, we prove Rα(φν) ∈ F . Since
Rα(φν) is bounded on X \ {p}, we have Rα(φν) ∈ L∞(X;m), because of m({p}) = 0
by Lemma 3.1. Then

∥Rα(φν)∥22 ≤ ∥Rα(φν)∥∞∥Rα(φν)∥1 = ∥Rα(φν)∥∞⟨φν,Rα1⟩

=
1

α
∥Rα(φν)∥∞

∫
X

φ dν <∞.

Thus, it suffices to show

sup
β>0

E (β)
α (Rα(φν), Rα(φν)) <∞,

where E (β)
α (u, v) := β(u−βRβ+αu, v)m for u, v ∈ L2(X;m). It actually holds as follows:

sup
β>0

E (β)
α (Rα(φν), Rα(φν)) = sup

β>0
β(Rβ+α(φν), Rα(φν))m = ∥Rα(φν)∥∞ sup

β>0
β⟨φν,Rβ+α1⟩

≤ ∥Rα(φν)∥∞
∫
X

φ dν <∞,
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and henceRα(φν) ∈ F . To conclude φν ∈ S00(XX\{p}), it suffices to show Eα(Rαφν, v) =
⟨φν, v⟩ for v ∈ F∩Cc(X). It indeed implies φν ∈ S0(X) and hence Rα(φν) = Uα(φν).
For any v ∈ F ∩ Cc(X), we have

Eα(Rα(φν), v) = lim
β→∞

E (β)
α (Rα(φν), v) = lim

β→∞
β(Rβ+α(φν), v)m = lim

β→∞
β⟨φν,Rβ+αv⟩.

Since βRβv converges to v with respect to E1, there exists a subsequence {βn}n such
that βnRβn+αv → v m-a.s. By the definition of Rα, we have α|Rαv(x)| ≤ ∥v∥∞ for
every x ∈ X. Thus the dominated convergence theorem together with the definition
of ν yields

lim
n→∞

βn⟨φν,Rβn+αv⟩ = ⟨φν, v⟩.

Hence Uα(φν) = Rα(φν) and φν ∈ S00(XX\{p}) hold. In particular, 1G ν ∈ S00(XX\{p})
for each relatively compact open set G ⊂ X \ {p}. All other assertions can be shown
in a similar way by using Proposition 4.1. □

Now we introduce the following condition on p ∈ X to discuss a further precision
of our results.

Definition 4.5 We say that p ∈ X verifies the condition (R2) if there exist ξ0 > 0
and Cξ0 > 0 such that

1

Vξ(p)

∫
Bξ(p)

dm

rp
≤ Cξ0

ξ

for any ξ ∈]0, ξ0[.

Note that (R2) immediately implies (R1) by Lemma 3.3. Before entering further
arguments, we provide a sufficient condition to (R2) in terms of volume growth expo-
nent.

Lemma 4.6 Suppose N > 1 and that there exists CV > 0 and δ > 0 such that
Vr(p) ≤ CV r

N holds for r ∈ [0, δ[. Then p ∈ X verifies the condition (R2).

Note that this sufficient condition holds for any p ∈ X on N -dimensional Alexandrov
spaces equipped with N -dimensional Hausdorff measure with N ≥ 2 (Recall (3.2)).

Proof. By the Fubini theorem, we have∫
Bξ(p)

dm

rp
=

∫
Bξ(p)

(
1

ξ
+

∫ ξ

rp

du

u2

)
dm =

(∫ ξ

0

Vu(p)

u2
du+

Vξ(p)

ξ

)
. (4.14)

By the Bishop-Gromov inequality (2.4), there exists C ′ > 0 such that

1

Vξ(p)
≤ V̄δ
Vδ(p)V̄ξ

≤ C ′ξ−N

for ξ ∈]0, δ[. Then the assertion holds by this estimate, our assumption and (4.14). □
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Proposition 4.7 Suppose that p ∈ X verifies (R2). Then, for any relatively compact
open set G ⊂ X, 1G ν ∈ S00(X) and 1G| cotκ ◦ rp|m ∈ S00(X).

To prove Proposition 4.7, we prepare the following auxiliary lemma.

Lemma 4.8 Suppose that p ∈ X verifies (R2). Then there exists C ′
ξ0
> 0 such that∫

Bu(x)∩Bξ(p)

dm

rp
≤
C ′
ξ0
V5u(x)

u

for any x ∈ X and u ∈]0, ξ0/6[.

Proof. Let δ = d(x, p). We divide the proof into two cases. We first consider the
case u ∈]0, δ/2]. Since rp(y) ≥ δ/2 for any y ∈ Bu(x), we have∫

Bu(x)∩Bξ(p)

dm

rp
≤ 2

δ
m(Bu(x)) ≤

V5u(x)

u
.

Next, let u > δ/2. In this case, we have Bu(x) ⊂ B3u(p) ⊂ B5u(x). Thus∫
Bu(x)∩Bξ(p)

dm

rp
≤
∫
B3u(p)

dm

rp
≤ Cξ0V3u(p)

3u
≤ Cξ0V5u(x)

3u
,

where the second inequality follows from the condition (R2). Hence we complete the
proof by combining these two cases. □

Proof of Proposition 4.7. As mentioned, (R2) implies (R1). Thus Proposition 4.1
(ii) ensures ν, | cotκ ◦ rp|m ∈ S(X).

We first show 1G| cotκ ◦ rp|m ∈ S00(X). Since
∫
G
| cotκ ◦ rp| dm < ∞, it suffices to

show

∥Rα(1G| cotκ ◦ rp|)∥∞ <∞. (4.15)

Indeed, the rest of arguments, namely, showing 1G| cotκ ◦ rp|m ∈ S0(X), goes along
the same line as in the proof of Lemma 4.4. For this claim, we may assume G = Bξ(p)
for sufficiently small ξ > 0 by virtue of Lemma 4.4. In addition, we can reduce the
proof of (4.15) to the following estimate:

sup
x∈Bξ(p)

Rα

(
1Bξ(p)

1

rp

)
(x) <∞

for some ξ ∈]0, ξ0/12[. Indeed, the change of the range of the supremum can be done
as in the proof of Lemma 4.4. By the Gaussian heat kernel upper bound, this estimate
holds if we have the following:

sup
x∈Bξ(p)

∫ ∞

0

e−(α−C3)t

V√t(x)

(∫
Bξ(p)

exp

(
− r2x
C2t

)
dm

rp

)
dt <∞ (4.16)
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for α > C3. Set α0 = α−C3 and let x ∈ Bξ(p). By the Fubini theorem and Lemma 4.8,∫
Bξ(p)

exp

(
−d(x, y)

2

C2t

)
1

rp(y)
m(dy) =

∫
Bξ(p)

(∫ ∞

rx

2u

C2t
exp

(
− u2

C2t

)
du

)
dm

rp

=
2

C2t

∫ 2ξ

0

u exp

(
− u2

C2t

)(∫
Bu(x)∩Bξ(p)

dm

rp

)
du

≤
2C ′

ξ0

C2t

∫ 2ξ

0

V5u(x) exp

(
− u2

C2t

)
du. (4.17)

Thus the proof of (4.16) is reduced to the following two estimates:

sup
y∈Bξ(p)

∫ ∞

1

e−(α−C3)t

tV√t(y)

(∫ 2ξ

0

V5u(y) exp

(
− u2

C2t

)
du

)
dt <∞, (4.18)

sup
y∈Bξ(p)

∫ 1

0

1√
tV√t(y)

(∫ 10ξ/
√
t

0

V√ts(y) exp

(
− s2

25C2

)
ds

)
dt <∞. (4.19)

We may suppose ξ < 1/10 without loss of generality, and thus∫ ∞

1

e−(α−C3)t

tV√t(x)

(∫ 2ξ

0

V5u(x) exp

(
− u2

C2t

)
du

)
dt ≤ 2ξ

∫ ∞

1

e−(α−C3)t dt.

This means (4.18). We can show (4.19) in the same way as we did for (4.12).
We next prove 1G ν ∈ S00(X). It suffices to show φν ∈ S00(X) for a suitably chosen

φ ∈ CLip
c (X)+. As above, we can reduce the proof to showing ∥Rα(φν)∥∞ < ∞. By

(4.1) and (4.2) together with Lemmas 4.2 and 4.3, (4.16) also implies it. Thus we
complete the proof. □

5 Refinement of stochastic expression of radial processes

In this section, we establish a refined stochastic expression of radial process. Let
S1(X) or S1(XX\{p}) be the family of positive smooth measures in the strict sense
(see [17, p. 238]) associated to (E ,F) or the part (EX\{p},FX\{p}) of (E ,F) on X \{p},
respectively. Note that S1(X) ⊂ S(X) and S1(XX\{p}) ⊂ S(XX\{p}). It is known that
for any µ ∈ S1(X), its associated PCAF Aµ under Revuz correspondence (3.3) can
be taken to be in the strict sense (i.e. (Aµt )t≥0 can be defined under Px-a.s. for any
x ∈ X) in our present framework (see [17, Theorems 5.1.6 and 5.1.7]). By definition,
if for any relatively compact open subset G satisfying G ⊂ X (resp. G ⊂ X \ {p}),
1Gν ∈ S00(X) (resp. ν ∈ S00(XX\{p})) holds, then ν ∈ S1(X) (resp. ν ∈ S1(XX\{p})).

Theorem 5.1 The measure ν in Proposition 3.9 (i) and | cotκ ◦ rp|m belong to S1(XX\{p}).
Moreover, rp ν ∈ S1(X) and rp| cotκ ◦ rp|m ∈ S1(X). If (R2) is verified at p, then ν
and | cotκ ◦ rp|m belong to S1(X).

Proof. Let {Gn} be an increasing sequence of relatively compact open subsets satis-
fying Gn ⊂ X \ {p}, n ∈ N. By Lemma 4.4, 1Gnν ∈ S00(XX\{p}) and 1Gn cotκ ◦ rp ∈
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S00(XX\{p}). Therefore, we obtain ν ∈ S1(XX\{p}) and | cotκ ◦ rp|m ∈ S1(XX\{p})
by [17, Theorem 5.1.7 (iii)]. Similarly, we can obtain rpν ∈ S1(X) and rp| cotκ ◦ rp|m ∈
S1(X). □

Before stating our main theorem, we provide a condition alternative to (R2) in
Theorem 5.1.

Proposition 5.2 Suppose that p verifies (R1) and that {p} is non-polar. Then ν and
| cotκ ◦ rp|m belong to S1(X).

As we see in Theorem 7.1, {p} is typically polar. Thus there seems to be less
opportunity to apply Proposition 5.2, while it states a supplementary result to Theo-
rem 5.1.

Proof. By (R1), | cotκ ◦ rp|m ∈ S(X) and ν ∈ S(X) holds by Proposition 3.9 (ii).
Then the associated PCAF

∫ t
0
cotκ ◦ rp(Xs) ds and Aνt admitting common exceptional

set Np,ν are defined. We already know | cotκ ◦ rp|m ∈ S1(XX\{p}) and ν ∈ S1(XX\{p}).
This means that

∫ t
0
| cotκ ◦ rp|(Xs) ds and Aνt can be regarded to be PCAFs of XX\{p}

in the strict sense. Since {p} is non-polar, p ∈ X\Np,ν . Therefore,
∫ t
0
| cotκ ◦ rp|(Xs) ds

and Aνt are defined to be PCAFs of X in the strict sense, consequently, | cotκ ◦ rp|m ∈
S1(X) and ν ∈ S1(X) by [17, Theorem 5.1.7(i)]. □

Now the following refinement follows immediately from Theorem 5.1.

Theorem 5.3 (Stochastic expression of radial process II) Let Aνt be the PCAF
in the strict sense associated to ν ∈ S1(XX\{p}). Then, for f ∈ C2(R), we have
that (3.8) holds for all t ∈ [0, σp[ Px-a.s. for all x ∈ X \ {p}, where B is given in
Theorem 3.11 (i). In particular, f(rp) is a semimartingale up to σp. Moreover, if (R2)
is verified at p, then (3.8) holds for t ∈ [0,+∞[ Px-a.s. for x ∈ X. In particular, f(rp)
is a semimartingale.

Proof. In the proof of Theorem 3.11, we already know that (3.7) holds for all
x ∈ X and (3.10) holds for t ∈ [0, σp[ for q.e. x ∈ X \ {p}. By Lemma 4.4, we have
1G ν ∈ S00(XX\{p}) and 1G| cotκ ◦ rp|m ∈ S00(XX\{p}) for any relatively compact open
set G with G ⊂ X \ {p}. We have 1G µ⟨rp⟩ = 21Gm ∈ S00(XX\{p}) for such G. Then,
we can apply [17, Theorem 5.5.5] to the part process XX\{p}. At this stage, N rp can
be redefined as a local additive functional in the strict sense locally of zero energy with
respect to XX\{p} such that (3.10) holds for t ∈ [0, σp[ under Px-a.s. for all x ∈ X \{p}.
Therefore, (2.2) with A = Aν holds for t ∈ [0, σp[ Px-a.s. for x ∈ X \{p}. Then we can
derive (3.8) for t ∈ [0, σp[ Px-a.s. for x ∈ X \ {p} in the same manner as in the proof
of Theorem 3.11. The latter assertion under (R2) follows similarly. □

Although we require (R2) in Theorem 5.3 not to exclude p ∈ X, we do not require
such an additional condition for a class of f .

Definition 5.4 We say that f ∈ C2(R) enjoys the condition (F) if 1G|f ′(rp) cotκ(rp)|m
and 1G|f ′(rp)| ν belong to S00(X) for each relatively compact open set G. Under (F),∫ t
0
f ′(rp(Xs)) dA

ν
s can be regarded as a CAF in the strict sense with respect to X.
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Corollary 5.5 (Stochastic expression III) Let Aνt be the PCAF in the strict sense
associated to ν ∈ S1(XX\{p}). For f ∈ C2(R), we have that (3.8) holds for all t ∈
[0,+∞[ Px-a.s. for all x ∈ X and f(rp) is a semimartingale, provided (F) is verified.
In particular, we always have that

r2p(Xt)− r2p(X0) = 2
√
2

∫ t

0

rp(Xs) dBs + 2(N − 1)

∫ t

0

rp(Xs) cotκ ◦ rp(Xs) ds

− 2

∫ t

0

rp(Xs) dA
ν
s + 2t (5.1)

for t ∈ [0,+∞[ Px-a.s. for x ∈ X.

Remark 5.6 The second term of the right hand side of (3.8) and (5.1) does not appear
respectively, provided N = 1.

Proof of Corollary 5.5. First we will show that our assumption enables us to give a
Fukushima decomposition of f(rp) in the strict sense. Suppose 1G|f ′(rp) cotκ ◦ rp|m ∈
S00(X) and 1G|f ′(rp)| ν ∈ S00(X) for each relatively compact open set G. In particular,
|f ′(rp) cotκ ◦ rp|m and |f ′(rp)| ν are positive Radon smooth measures on X in the
strict sense. Since (2.7) holds, we see µ⟨f(rp)⟩ = |f ′(rp)|2 m. Set µf := µf1 − µf2 with
µf1 := f ′(rp)+ ν+(s1−Nκ (sN−1

κ f ′)′)−◦ rpm and µf2 := f ′(rp)− ν+(s1−Nκ (sN−1
κ f ′)′)+◦ rpm.

The estimate |µfi | ≤ |f ′(rp)|ν +(N − 1)|f ′(rp) cotκ(rp)|m+ |f ′′(rp)|m, (i = 1, 2) shows
that µf1 , µ

f
2 ∈ S1(X), hence µf is a signed Radon smooth measure on X in the strict

sense. By Corollary 3.13 (i), we see

E(f(rp), v) =
∫
X

v dµf for v ∈ CLip
c (X).

Note that 1G µf(rp) = 1G|f ′(rp)|2 m ∈ S00(X) for each relatively compact open set G.
Applying [17, Theorem 5.5.5] to X for µf = µf1 − µf2 , we have

f(rp(Xt))− f(rp(X0)) =M
f(rp)
t +N

f(rp)
t t ∈ [0,+∞[, Px-a.s. for all x ∈ X.

Here

N
f(rp)
t =

∫ t

0

(s1−Nκ (sN−1
κ f ′)′)(Xs) ds−

∫ t

0

f ′(Xs) dA
ν
s

= (N − 1)

∫ t

0

f ′(rp(Xs)) cotκ(rp(Xs)) ds+

∫ t

0

f ′′(rp(Xs)) ds−
∫ t

0

f ′(Xs) dA
ν
s

for t ∈ [0,+∞[ Px-a.s. for all x ∈ X

and M f(rp)
t is a local additive functional in the strict sense such that, for any relatively

compact open set G,

Ex
[
M

f(rp)
t∧τG

]
= 0 x ∈ G,

Ex
[
(M

f(rp)
t∧τG )2

]
= 2Ex

[∫ t∧τG

0

|f ′(rp(Xs))|2 ds
]

x ∈ G.
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From this, M f(rp)
t is a locally square integrable MAF and its quadratic variational

process ⟨M f(rp)⟩ has the expression

⟨M f(rp)⟩t = 2

∫ t

0

|f ′(rp(Xs))|2 ds.

Next we will observe that we have an alternative expression of M f(rp). By applying
the generalized Itô’s formula proved in [28, Theorem 4.3] to (3.9), we have

f(rp(Xt))− f(rp(X0)) =

∫ t

0

f ′(rp(Xs)) dM
rp
s +

∫ t

0

f ′(rp(Xs)) dN
rp
s

+
1

2

∫ t

0

f ′′(rp(Xs)) d⟨M rp⟩s, t ∈ [0,+∞[ Px-a.s.

for q.e. x ∈ X. Here the second term in the right hand side is the stochastic integral
by CAF locally of zero energy (see [28, Definition 3.1], where the stochastic integral
by Γ(M)t for local MAF M is defined and note Γ(M rp)t = N

rp
t ). By the uniqueness

of the Fukushima decomposition, M f(rp)
t =

∫ t
0
f ′(rp(Xs)) dM

rp
s , t ∈ [0,+∞[ Px-a.s. for

q.e. x ∈ X. Since M rp
t =

√
2Bt, t ∈ [0,+∞[ Px-a.s. for q.e. x ∈ X, we can conclude

M
f(rp)
t =

√
2

∫ t

0

f ′(rp(Xs)) dBs, t ∈ [0,+∞[ (5.2)

Px-a.s. for q.e. ∈ X. The both hands of (5.2) are continuous local additive functionals
in the strict sense. This implies that (5.2) holds under Px for all x ∈ X. Therefore we
have that (3.8) holds for all t ∈ [0,+∞[ Px-a.s. for all x ∈ X.

The final assertion follows from 1Grp| cotκ ◦ rp|m ∈ S00(X) and 1Grp ν ∈ S00(X)
for each relatively compact open set G by Lemma 4.4. □

6 Applications

In this section we will turn to discuss applications of our main theorem. In Subsec-
tion 6.1, we show comparison theorems. Starting from the comparison theorem for the
radial process (Corollary 6.1), we show the heat kernel comparison theorem (Corol-
lary 6.2) under the Bishop inequality and Cheng’s eigenvalue comparison theorem
(Corollary 6.3). In Subsection 6.2, we prove Cheng’s Liouville theorem for harmonic
functions of sublinear growth on non-negatively curved spaces.

6.1 Comparison theorems

Corollary 6.1 (Comparison of radial process) We have the following:

(i) Let f ∈ C2(R) satisfying f ′(t) ≥ 0 for t ≥ 0. Then

f(rp(Xt))− f(rp(X0)) ≤
√
2

∫ t

0

f ′(rp(Xs)) dBs (6.1)

+ (N − 1)

∫ t

0

f ′(rp(Xs)) cotκ(rp(Xs)) ds+

∫ t

0

f ′′(rp(Xs)) ds
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holds for all t ∈ [0, σp[ Px-a.s. for all x ∈ X \ {p}. If p verifies (R1), then (6.1)
holds for all t ∈ [0,+∞[ Px-a.s. for all q.e. x ∈ X \ {p}. If p verifies (R2) or
f verifies (F), then (6.1) holds for all t ∈ [0,+∞[ Px-a.s. for all x ∈ X. In
particular, we always have

r2p(Xt)− r2p(X0) ≤ 2
√
2

∫ t

0

rp(Xs) dBs

+ 2(N − 1)

∫ t

0

rp(Xs) cotκ ◦ rp(Xs) ds+ 2t (6.2)

for t ∈ [0,+∞[ Px-a.s. for x ∈ X.

(ii) Let ρt be the unique non-negative strong solution of the stochastic differential
equation

ρt = rp(x) +
√
2Bt + (N − 1)

∫ t

0

cotκ(ρs) ds (6.3)

under Px. Here Bt is as given in Theorem 3.11 (i). Then we have

rp(Xt) ≤ ρt (6.4)

holds for all t ∈ [0, σp[ Px-a.s. for all x ∈ X \ {p}. If (R2) is verified, then (6.4)
holds for all t ∈ [0,+∞[ Px-a.s. for all x ∈ X.

Note that the corresponding result on the basis of the latter assertion of Theo-
rem 3.11 or Proposition 5.2 also holds. We just preferred to state our result in a
simplified form.

Proof. (i) is an easy consequence of Theorem 5.3.
(ii) We set Rκ by

Rκ :=

{
π/

√
κ if κ > 0,

+∞ if κ ≤ 0.

So rp(x) ≤ Rκ always holds by (2.3). The SDE (6.3) can make sense for N ≥ 2.
Similar to the corresponding property of Bessel processes, ρt does not hit neither 0
or Rκ. The explosion time of ρt is infinite. According to the same way of the proof
of [22, Theorem 3.5.3 (ii)], we can conclude that rp(Xt) ≤ ρt for all t ∈ [0, σp[ Px-a.s. for
all x ∈ X \ {p}. This implies the conclusion. The case under (R2) is similar. □

In the framework of N -dimensional Alexandrov space X with curv(X) ≥ κ, Corol-
lary 6.1 extends [37, Theorem III], which show the corresponding result under some
additional conditions.

Hereafter, we assume N ∈ N until the end of this subsection. Let MN
κ be the

be the simply connected N -dimensional Riemannian manifold of constant sectional
curvature κ. We denote the heat kernel on MN

κ (resp. the Dirichlet heat kernel on
Br(p̄)(⊂ MN

κ ) by pκt (p̄, q̄) (resp. pκ,rt (p̄, q̄)). By symmetry, pκt and pκ,rt are functions of
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t and the distance between p̄ and q̄; hence there exist functions pκ(t, s) and pκ,r(t, s),
t, s ∈ [0,+∞[ such that pκ,r(t, s) = 0 for s > r and

pκt (p̄, q̄) = pκ(t, dMN
κ
(p̄, q̄)) and pκ,rt (p̄, q̄) = pκ,r(t, dMN

κ
(p̄, q̄)).

When κ > 0, MN
κ is a sphere of radius 1/

√
κ, and we adopt the convention that

pκ(t, s) := pκ(t, π/
√
κ) if s ≥ π/

√
κ. Let ϖN V̄r be the volume of r-ball in MN

κ .

Corollary 6.2 (Comparison of heat kernels) Suppose N ∈ N with N ≥ 2 and
the Bishop inequality (3.2) holds. Let pGt be the Dirichlet heat kernel on some domain
G ⊂ X and let q ∈ Br(p) ⊂ G. Then, we have

pGt (p, q) ≥ pκ,r(t, d(p, q)). (6.5)

In particular,

pt(p, q) ≥ pκ(t, d(p, q)). (6.6)

Proof. Since the measure m is (local) doubling and a local weak Poincaré inequality
applies, one can show the local Hölder continuity for the Dirichlet heat kernel pG

by applying [29, Corollary 8.1] and Moser’s iteration method. Here we remark that
[29, Section 8] treats the general framework of strongly local Dirichlet forms and the
intrinsic distance derived from (E ,F) = (2Ch,D(Ch)) on L2(X;m) coincides with the
given distance, which was proved in [6, Theorem 3.9].

Recall that the Bishop inequality implies (R2) by Lemma 4.6. By Corollary 6.1
(ii),

rp(Xt) ≤ ρt for t ∈ [0,+∞[

under Pq-a.s. for all q ∈ X. Note here that ρt under Pq has the same law with the
radial process r̄p̄(X̄t) for the Brownian motion X̄t on MN

κ starting at q̄ satisfying
d(p̄, q̄) = d(p, q). Then∫

Bε(p)

pGt (q, z)m(dz) = Pq(rp(Xt) ≤ ε, t < τG)

≥ Pq(rp(Xt) ≤ ε, t < τBr(p))

≥ Pq(ρt ≤ ε, t < τBr(p))

= P̄q̄(r̄p̄(X̄t) ≤ ε, t < τBr(p̄)) =

∫
Bε(p̄)

p
κ,Br(p̄)
t (q̄, z̄) volMN

κ
(dz̄).

Dividing the both side by ϖN V̄ε with the Bishop inequality, we have

1

m(Bε(p))

∫
Bε(p)

pGt (q, z)m(dz) ≥ 1

ϖN V̄ε

∫
Bε(p̄)

p
κ,Br(p̄)
t (q̄, z̄) volMN

κ
(dz̄).

Letting ε→ 0 with the continuity of the heat kernels, we obtain the conclusion. □
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Corollary 6.3 (Cheng’s eigenvalue comparison) Suppose that N ∈ N and the
Bishop inequality (3.2) holds. Let G0 := Br(p) and let λj(G0) denote the j-th (counted
with multiplicity) Dirichlet eigenvalue of Br(p) with 0 = λ0(G0) < λ1(G0) ≤ λ2(G0) ≤
· · · . Then

λj(G0) ≤ λκ1(diam(G0)/2j).

In particular,
λ1(Br(p)) ≤ λκ1(r),

where λκ1(s) denotes the first Dirichlet eigenvalue for any s-ball in MN
κ .

Proof. The proof of estimate for the first eigenvalue can be done along the standard
argument by using eigenvalue expansion of heat kernels and Corollary 6.2 (see [40,
p. 104]). The proof of estimate for the j-th eigenvalue is based on the estimate for the
first eigenvalue and the min-max-principle for the higher eigenvalues of the Laplace
operator (see [40, p. 105]). □

6.2 Liouville property for sublinear harmonic functions

In this section, we assume that the metric measure space (X, d,m) satisfies RCD∗(0, N)
condition for N ∈ [1,+∞[. As an application of the expression of radial process, we
give a stochastic proof of Cheng’s Liouville property of sublinear E-harmonic functions
(X, d,m). A function f ∈ Floc is said to be E-harmonic if E(f, v) = 0 for any CLip

c (X).
A function f is said to be have sublinear growth if

lim
a→∞

mf (a)/a = 0,

where mf (a) := suprp(x)<a |f(x)|. Our main theorem in this section is the following:

Theorem 6.4 (Cheng’s Liouville theorem) Any continuous E-harmonic function
having sublinear growth is a constant.

Note that an analytic proof of Theorem 6.4 is given in [23]. To prove Theorem 6.4,
we need the following two lemmas.

Lemma 6.5 Let f ∈ Floc be a continuous E-harmonic function having sublinear
growth. Then Ptf(x) = f(x) holds for q.e. x ∈ X.

Proof. First note that rp| cotκ ◦ rp|m ∈ S1(X) by Theorem 5.1. From Corollary 6.1
(i), we have

r2p(Xt)− r2p(X0) ≤ 2
√
2

∫ t

0

rp(Xs) dBs + 2Nt

holds for t ∈ [0,+∞[ Px-a.s. for all x ∈ X. In particular,

Ex[r2p(Xt∧τGn
)] ≤ r2p(x) + 2Nt
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for all x ∈ X. By [17, Corollary 5.5.1] with the E-harmonicity of f , we have the
following Fukushima’s decomposition:

f(Xt)− f(X0) =M f
t t ∈ [0,+∞[ (6.7)

holds Px-a.s. for q.e. x ∈ X. Here M f is a local martingale additive functional locally
of finite energy. Let {Gn} be an increasing sequence of relatively compact open sets
satisfying Gn ⊂ Gn+1 for n ∈ N with X =

∪∞
n=1Gn. Then {M f

t∧τGn
}t∈[0,+∞[ is a

Px-martingale for q.e. x ∈ X. By (6.7),

Ex[f(Xt∧τGn
)] = f(x) for q.e. x ∈ X. (6.8)

Let mf (a) := suprp(x)<a |f(x)|. The sublinear growth of f yields that for any ε > 0
there exists A > 0 such that mf (a) < aε for any a > A. Then

Ex
[
f 2(Xt∧τGn

)
]
= Ex

[
f 2(Xt∧τGn

) : rp(Xt∧τGn
) ≤ A

]
+ Ex

[
f 2(Xt∧τGn

) : rp(Xt∧τGn
) > A

]
(6.9)

≤ mf2(A) + ε2Ex
[
r2p(Xt∧τGn

)
]

≤ mf2(A) + ε2(r2p(x) + 2Nt)

for x ∈ X. From this, {f(Xt∧τGn
)}n∈N is uniformly Px-integrable for all x ∈ X. Since

Px(limn→∞ τGn = ∞) = 1 for all x ∈ X, (6.8) yields Ptf(x) = f(x) for q.e. x ∈ X. □
Lemma 6.6 Let f ∈ Floc be a continuous E-harmonic function having sublinear
growth. Then |Df |2 ≤ Pt|Df |2 m-a.e. In particular, |Df |2 ≤ 1

t

∫ t
0
Ps|Df |2 ds m-a.e.

Proof. If f ∈ F , this is a direct consequence of Ptf = f and Bakry-Émery’s
gradient estimate. Our f may not have this regularity and thus we need an additional
approximation argument.

We first prove the following inequality

|Df |2w ≤ 1

2t
Pt(f

2) (6.10)

for any t > 0, which is a weaker version of the reverse Poincaré inequality [8, (4.7.6)]
for f . We will use this inequality to ensure a required integrability for a candidate
of weak upper gradient. Let x∗ ∈ X be a reference point and φn ∈ CLip

c (X) a cut-off
function satisfying 0 ≤ φn ≤ 1, φn|Bn(x∗) = 1, φn|Bn+1(x∗) = 0 and |Dφn| ≤ 1. Since
fφn ∈ L2(X;m), by [2, Theorem 7.3], we have

|DPt(fφn)|2w ≤ 1

2t
Pt(|fφn|2) m-a.e. (6.11)

Let π ∈ P(C([0, 1] → X)) be a 2-test plan as defined in Section 2.3. Note that
π(e−1

0 (BR(x∗)) ∩ e−1
1 (BR(x∗)))

−1π|e−1
0 (BR(x∗))∩e−1

1 (BR(x∗))
is still a 2-test plan for suffi-

ciently large R > 0. By the definition of (minimal) weak upper gradient, (6.11) yields∫
e−1
0 (BR(x∗))∩e−1

1 (BR(x∗))

|Pt(fφn) ◦ e1 − Pt(fφn) ◦ e0| dπ

≤ 1√
2t

∫
e−1
0 (BR(x∗))∩e−1

1 (BR(x∗))

(∫ 1

0

√
Pt(|fφn|2)(γs)|γ̇s| ds

)
π(dγ)

≤ 1√
2t

∫ (∫ 1

0

√
Pt(f 2)(γs)|γ̇s| ds

)
π(dγ). (6.12)
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Since we have W2(Ptδx, Ptδy) ≤ d(x, y) by (2.10), the sublinear growth condition of f
implies that f ∈ L1(X; pt(x, ·)m) for every x ∈ X and that Ptf is locally bounded.
Thus, by the dominated convergence theorem, letting n → ∞ and R → ∞ in (6.12)
implies ∫

|f ◦ e1 − f ◦ e0| dπ ≤ 1√
2t

∫ (∫ 1

0

√
Pt(f 2)(γs)|γ̇s| ds

)
π(dγ).

Here we used the fact Ptf = f from Lemma 6.5. We can show Pt(f
2) is locally

bounded by a similar argument as above, and hence
√
Pt(f 2) ∈ L2

loc(X;m). Thus, by
the definition of minimal weak upper gradient, we obtain (6.10) from this inequality
since π is arbitrary.

We are now in turn to prove the assertion. Actually the proof is similar to the one
for (6.10). For the same cut-off function φn, we have fφn ∈ F . Thus (2.8) yields

|DPt(fφn)|w ≤ Pt(|D(fφn)|w) m-a.e.

Set ER ⊂ C([0, 1] → X) by

ER :=

{
γ ∈ AC2([0, 1] → X)

∣∣∣∣∣ γ0 ∈ BR(x∗), γ1 ∈ BR(x∗),

∫ 1

0

|γ̇s|2 ds ≤ R

}
.

Then π(ER)
−1π|ER

is 2-test plan. Thus, by the definition of (minimal) weak upper
gradient,∫

ER

|Pt(fφn) ◦ e1 − Pt(fφn) ◦ e0| dπ ≤
∫
ER

(∫ 1

0

Pt(|D(fφn)|)(γs)|γ̇s| ds
)
π(dγ).

(6.13)

Since
|D(fφn)|w ≤ φn|Df |w + f |Dφn| ≤ |Df |w + 1Bn+1(x∗)\Bn(x∗)f,

we have∫
ER

(∫ 1

0

Pt(|D(fφn)|w)(γs)|γ̇s| ds
)
π(dγ) ≤

∫ (∫ 1

0

Pt(|Df |w)(γs)|γ̇s| ds
)
π(dγ)

+

∫
ER

(∫ 1

0

Pt(1Bn+1(x∗)\Bn(x∗)f)(γs)|γ̇s|ds
)
π(dγ). (6.14)

We can easily see that {γs | γ ∈ ER, s ∈ [0, 1]} is bounded. Thus the dominated
convergence theorem implies that, by letting n→ ∞ in (6.14),

lim
n→∞

∫
ER

(∫ 1

0

Pt(|D(fφn)|w)(γs)|γ̇s| ds
)
π(dγ) ≤

∫ (∫ 1

0

Pt(|Df |w)(γs)|γ̇s| ds
)
π(dγ).

Thus, by letting n→ ∞ and R → ∞ in (6.13),∫
|f ◦ e1 − f ◦ e0| dπ ≤

∫ (∫ 1

0

Pt(|Df |w)(γs)|γ̇s| ds
)
π(dγ).
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Here we used Ptf = f . By (6.10), we have

Pt(|Df |w) ≤
1√
2
Pt
√
P1(f 2) ≤ 1√

2

√
Pt+1(f 2).

Since Pt+1(f
2) is locally bounded as we mentioned above, we have Pt(|Df |w) ∈

L2
loc(X;m). Thus the definition of minimal weak upper gradient implies the asser-

tion. □

Proof of Theorem 6.4. Applying Itô’s formula to (6.7), we have

f 2(Xt)− f 2(X0) = 2

∫ t

0

f(Xs) dM
f
s + ⟨M f⟩t

= 2

∫ t

0

f(Xs) dM
f
s + 2

∫ t

0

|Df |2(Xs) ds

holds Px-a.s. for q.e. x ∈ X. Let {Gn} be an increasing sequence of relatively compact
open sets as appeared above. Then

Ex
[
f 2(Xt∧τGn

)
]
= f 2(x) + 2Ex

[∫ t∧τGn

0

|Df |2(Xs) ds

]
.

Combining this with (6.9) and Lemma 6.6, we have that for each t > 0

2t|Df |2(x) ≤ 2
∫ t
0
Ps|Df |2(x) ds = 2 limn→∞ Ex

[∫ t∧τGn

0
|Df |2(Xs) ds

]
≤ mf2(A) + ε2(r2p(x) + 2Nt)− f 2(x)

(6.15)

for x ∈ X \Nt with some m-null set Nt. Set N =
∪
t∈Q+

Nt. Then (6.15) holds for all
t > 0 and x ∈ X \ N . If |Df |2(x) > 0 for some x ∈ X \ N and choose ε > 0 so that
εN < |Df |2(x), then the linear function 2t(|Df |2(x)− εN) is bounded above. This is
a contradiction. Therefore, |Df |2(x) = 0 for all x ∈ X \N , i.e., f is a constant m-a.e.,
consequently f is a constant. □

7 Polarity

In view of Theorem 3.11 or Theorem 5.3, without conditions (R1) or (R2), we have
stochastic expression of rp(Xt) only until σp. Thus it becomes important to know
whether σp = ∞ Px-a.s. or not, when (R2) is not available. In our framework, this
question is equivalent to the polarity of {p}. The goal of this section is to prove the
following two assertions:

Theorem 7.1 Suppose Assumption 1 below. Then {p} is polar for m-a.e. p ∈ X.

Proposition 7.2 Suppose Assumption 1 below. Then m-a.e. p ∈ X verifies (R2).
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In the proof of them below, we will know more information of negligible sets in the
assertions (See Lemmas 7.8, 7.9 and 7.12). For our purpose, Proposition 7.2 would
be sufficient and we may not require Theorem 7.1. Nevertheless, we have decided to
state both of them since there might be of interest for a different purpose. The proof
of Proposition 7.2 is based on a similar idea as we use in the proof of Theorem 7.1. It
requires some known results on local structure of RCD spaces, and we introduce them
before entering the proof.

By [17, Theorems 4.1.2 and 4.2.4], it suffices to show the m-polarity of {p} for m-
a.e. p ∈ X. To achieve this, we review the notion of tangent cone defined through con-
vergence of metric measure spaces in the pointed measured Gromov-Hausdorff sense.

Definition 7.3 Let (Xn, dn,mn, pn) (n ∈ N∪{∞}) be pointed metric measure spaces.
That is, (Xn, dn,mn) is a metric measure space satisfying conditions state in Subsec-
tion 2.1 and pn ∈ Xn is a reference point. We say (Xn, dn,mn, pn) → (X∞, d∞,m∞, p∞)
as n → ∞ in the pointed measured Gromov-Hausdorff sense if for any ε,R > 0 there
exists N ∈ N such that for all n ≥ N there exists a Borel map fn = fR,εn : BR(pn) →
X∞ such that the following holds:

(i) fn(pn) = p∞,

(ii) sup
x,y∈BR(pn)

|dn(x, y)− d∞(fn(x), fn(y))| < ε,

(iii) BR−ε(p∞) ⊂ Bε(fn(BR(pn))),

(iv) (fn)♯mn|BR(pn) weakly converges to m∞|BR(p∞) as n→ ∞.

This is not the same definition as given in [20,33], but it is equivalent (see [33, Propo-
sition 2.3] and references therein). In order to discuss measured tangent cones, we
introduce the following normalization of m: For p ∈ X and R > 0, we define mp

R by

mp
R :=

(∫
BR(p)

(
1− rp

R

)
dm

)−1

dm.

For k ∈ N, we denote the Euclidean distance on Rk and the origin by dE and ok

respectively. Let Lk be a k-dimensional Lebesgue measure on Rk normalized to satisfy∫
B1(ok)

(1 − dE(o
k, x))Lk(dx) = 1, that is, Lk(B1(o

k)) = k + 1. Let us define Ek ⊂ X

for k ∈ N by

Ek :=

p ∈ X

∣∣∣∣∣∣
For any sequence ξn ∈]0,∞[ (n ∈ N) with limn→∞ ξn = 0,
(X, ξ−1

n d,mp
ξn
, p) converges to (Rk, dE,L

k, ok) as n→ ∞
in the pointed measured Gromov-Hausdorff sense.


and set E =

∪
k∈N, k≤N Ek. By definition, p ∈ Ek means that the measured tangent

cone at p is unique and identical to (Rk, dE,L
k, ok). The following is a consequence

of [33, Corollary 1.2 and Proposition 2.2]:

Proposition 7.4 m(Ec) = 0.
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On the basis of this property, we are ready to state the following assumption in The-
orem 7.1.

Assumption 1 E1 = ∅.

Remark 7.5 By [27, Corollary 1.2], the assumption E1 = ∅ excludes the case that
(X, d,m) is a one-dimensional space. Indeed, if Assumption 1 does not hold, (X, d) is
isometric to an interval I ⊂ R or S1 with the canonical distance. We can easily verify
that the conclusion of Theorem 7.1 is no longer true in such a case. Our assumption
is sharp in this sense.

The proof of Theorem 7.1 will be divided into two cases: p ∈ Ek, k ≥ 3 and p ∈
E2. Actually, k = 2 is a boarderline as known in a classical result on the canonical
Euclidean space Rk, and it is indeed subtle in our framework (see Example 7.10 below)
since we have some degree of freedom on the choice of the measure m. To overcome
this difficulty, we will use the rectifiability of RCD∗(K,N) spaces as a metric measure
space ( [21, Theorem 3.5] or [25, Theorem 1.2]).

Proposition 7.6 There exists Rj ⊂ X and kj ∈ N ∩ [1, N ] (j ∈ N) such that the
following property holds:

(i) m
(
X \

∪
j∈NRj

)
= 0.

(ii) Each Rj is bi-Lipschitz to a measurable subset of Rkj .

(iii) m
(
Rj \ Ekj

)
= 0.

(iv) Each m|Rj
is absolutely continuous with respect to the kj-dimensional Hausdorff

measure Hkj .

Usually, (iii) is not included in the definition of rectifiability. We can verify this
property from the proof of [25, Theorem 1.2] (and [33, Theorem 1.1]).

Now let us turn to the proof of Theorem 7.1. The following lemma, which asserts
that the ratio of volumes of metric balls of small radii typically behaves like a Euclidean
one, plays a key role in the sequel.

Lemma 7.7 Let p ∈ Ek. Then, for each α > 0,

lim
ξ↓0

m(Bαξ(p))

m(Bξ(p))
= αk.

Proof. Let ξn ∈ R (n ∈ N) with limn→∞ ξn = 0. It suffices to show

lim
n→∞

mp
ξn
(Bαξn(p)) = (k + 1)αk

for each α > 0. Let ε > 0 and take fn : X → Rk associated with the convergence of
(X, ξ−1

n d,mp
ξn
, p) to (Rk, dE,L

k, ok) in the pointed measured Gromov-Hausdorff sense,
according to Definition 7.3. Then, Definition 7.3 (iv) yields

lim
n→∞

∫
Rk

d(fn)♯(m
p
ξn
|Bαξn (p)

) = lim
n→∞

mp
ξn
(Bαξn(p)) = Lk(Bα(o

k)) = (k + 1)αk.

Hence the conclusion holds. □
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By virtue of Proposition 7.4 and Assumption 1, the proof of Theorem 7.1 is reduced
to the following two lemmas:

Lemma 7.8 For k ≥ 3, every p ∈ Ek is polar.

Lemma 7.9 m-a.e. p ∈ E2 is polar.

Proof of Lemma 7.8. Let α, α1 ∈]0, 1[ with α1 > α and α2 > αk1 by taking α1 to be
sufficiently close to α. By Lemma 7.7, there exists ξ0 > 0 such that, for any ξ ∈]0, ξ0[,
we have

m(Bαξ(p))

m(Bξ(p))
≤ αk1. (7.1)

By [41, Theorem 1], the conclusion follows once we show the following:∫ ξ0

0

u du

m(Bu(p))
= ∞. (7.2)

The change of variable together with an iteration of (7.1) yields∫ αn−1ξ0

αnξ0

u du

m(Bu(p))
= α2n−2

∫ ξ0

αξ0

u′ du′

m(Bαn−1u′(p))
≥ α2n−2

α
k(n−1)
1

∫ ξ0

αξ0

u′ du′

m(Bu′(p))
> 0. (7.3)

Thus, by the choice of α1, (7.2) holds by taking a sum in n ∈ N in (7.3). □
Proof of Lemma 7.9. It suffices to show that m-a.e. p ∈

∪
j∈N,kj=2Rj ∩E2 is polar.

Let j0 ∈ N, kj0 = 2 and set E := Rj0∩E2. Let ψ : E → R2 be a bi-Lipschitz map to its
image ψ(E) and c1 the maximum of Lipschitz constants of ψ and ψ−1. Note that there
exists a universal constant c > 0 such that ψ−1

♯ L2 ≤ cc21H2|E and ψ♯H2|E ≤ cc21L
2.

We denote the density of m|E with respect to H2|E by ρ. By the Bishop-Gromov
inequality (2.4), m is locally doubling and hence the Lebesgue differentiation theorem
is applicable to m. With keeping this fact in mind, we define the subset E ′ of E as
follows:

E ′ :=

{
p ∈ E

∣∣∣∣ ρ(p) <∞, p is an m-Lebesgue point of 1E, and
ψ(p) is a L2-Lebesgue point of ρ ◦ ψ−11ψ(E)

}
.

Apparently, H2(E \E ′) = m(E \E ′) = 0. Thus the proof is reduced to show that each
p ∈ E ′ is polar. Let B∗

r (q) ⊂ R2, q ∈ R2 and r > 0 be a Euclidean ball of radius r
centered at q. Then, for p ∈ E and r > 0,

m(Br(p) ∩ E) =
∫
Br(p)∩E

ρ dH2 ≤ cc21

∫
ψ(Br(p)∩E)

ρ ◦ ψ−1 dL2

≤ cc21

∫
B∗

c1r
(ψ(p))

ρ ◦ ψ−11ψ(E) dL
2.

Therefore, for p ∈ E ′, we have

lim
r↓0

m(Br(p))

L2(B∗
c1r

(ψ(p)))
= lim

r↓0

m(Br(p) ∩ E)
L2(B∗

c1r
(ψ(p)))

≤ cc21ρ(p) <∞.

This means that there exists c2 > 0 such that m(Br(p)) ≤ c2r
2 holds for sufficiently

small r > 0. Thus (7.2) holds and hence the proof is completed. □
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The next example is not strictly in our framework, but it suggests the possibility
that “m-a.e.” in Theorem 7.1 is not able to be omitted in general.

Example 7.10 Let (X, d,m) = (R2, dE, e
−VL2), where

V = − log((log |x|)2 − log |x|) · 1{|x|≤e−1/2} − 2 log 2 · 1{|x|>e−1/2}.

In this case, we can easily see

m(Bξ(o
2)) = πξ2

(
log

1

ξ

)2

for ξ ≤ e−1/2. This implies

lim
ξ↓0

m(BRξ(o
2))

m(Bξ(o2))
= R2 for all R > 0,

∫ e−1/2

0

u du

m(Bu(o2))
<∞.

Thus the same argument as in the proof of Theorem 7.1 does not work in the case
k = 2. Actually, we can show that {o2} is not polar. By considering the radial
process dE(Xt, o

2), we can reduce the problem into the one for a one-dimensional dif-
fusion processes. Then, by using a famous integral test, we can see that dE(Xt, o

2) hits
0.Moreover, since u 7→ u log u is positive and increasing on [e, 1], we have

m(BR(o
2))

m(Br(o2))
≤ R2

r2

for 0 < r < R < e−1/2. That is, the Bishop-Gromov inequality with K = 0 and N = 2
holds locally at o2.

Remark 7.11 It seems possible to show that (X, d,m) enjoys CD(0,∞) condition,
while this space does not satisfy CD(0, N) for any finite N . It also seems possible to
show that the tangent cone at o2 is unique and identical to (R2, dE,L

2, o2). We leave
them as future problems.

Finally we prove Proposition 7.2. It is reduced to the next lemma, which refines
the statement by using (Ek)k.

Lemma 7.12 Suppose p ∈ Ek with k ≥ 2. Then p ∈ X verifies the condition (R2).

Proof of Lemma 7.12. Take α, α1 ∈]0, 1[ satisfying α1 > α > αk1. As in the proof
of Theorem 7.1 (or Lemma 7.8), we take ξ0 > 0 so that (7.1) holds for any ξ ∈]0, ξ0[.
Then, by combining (4.14) with the same decomposition we have used in the proof of
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Theorem 7.1, ∫ ξ

0

Vu(p)

u2
du =

∑
n∈N

∫ αn−1ξ0

αnξ0

Vu(p)

u2
du

=
∑
n∈N

1

α(n−1)

∫ ξ

αξ

Vαn−1v(p)

v2
dv

≤
∑
n∈N

(
αk1
α

)n−1 ∫ ξ

αξ

Vv(p)

v2
dv

≤ 1

ξ

(
1

α
− 1

)
Vξ(p)

∑
n∈N

(
αk1
α

)n−1

.

Hence the conclusion follows from these estimates. □

A Appendix: RCD∗(K, 1) spaces

We have tried to include the case N = 1 in our results for completeness, while the
statement of usual Laplacian comparison theorem on weighted Riemannian manifolds
looks problematic. Such a problem can be avoided since the case N = 1 heavily restrict
the space (X, d,m) as follows:

Proposition A.1 Suppose that (X, d,m) is an RCD∗(K, 1) space. Then (X, d,m) is
isomorphic as a metric measure space to either R, [0,+∞[, S1(r) = {(x, y) ∈ R2 |
x2+y2 = r2} for some r > 0, or [0, ℓ] for some ℓ > 0, where we consider the canonical
metric and measure (up to multiplicative constants) on these spaces. In particular,
K ≤ 0.

Proof. By virtue of [27, Corollary 1.2], we already know (X, d,m) is isomorphic
to either one of the candidates with the canonical metric and the measure is of the
form e−fH1, where H1 is the 1-dimensional Hausdorff measure and f is (K, 1)-convex.
Thus it suffices to show that f is a constant function. We will show it in the case
X = R. All other cases can be discussed similarly. Let x ∈ X be a point where f is
differentiable and g, h ∈ C∞

c (X) supported on a neighbourhood of x and g ≥ 0. Note
that ∆u = u′′−u′f ′ for any smooth functions u. By the (K, 1)-Bochner inequality, we
have

1

2

∫
X

|Dh|2∆ge−f dH1 −
∫
X

⟨Dh,D∆h⟩ge−f dH1

≥ K

∫
X

|Dh|2ge−f dH1 +

∫
X

|∆h|2ge−f dH1. (A.1)
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Here we have

−
∫
X

⟨Dh,D∆h⟩ge−f dH1 =

∫
X

|∆h|2ge−f dH1 +

∫
X

⟨Dh,Dg⟩∆he−f dH1

=

∫
X

|∆h|2ge−f dH1 −
∫
X

h′h′′g′e−f dH1 −
∫
X

|h′|2g′′e−f dH1

=

∫
X

|∆h|2ge−f dH1 +
1

2

∫
X

|h′|2∆ge−f dH1 −
∫
X

|h′|2g′′e−f dH1

Since ∆g = g′′ − g′f ′, (A.1) implies

−
∫
X

|h′|2g′f ′e−f dH1 ≥ K

∫
X

|h′|2ge−f dH1.

First, by choosing g, h so that supph ⊂ supp g and g is constant on supph, we can
easily deduce K ≤ 0. Next, by considering a sequence hn so that |h′n|2 → δx in an
appropriate sense, we obtain

g′(x)f ′(x) ≥ Kg(x).

Since g ≥ 0 can be arbitrary, f ′(x) = 0 must hold. Hence the conclusion follows. □
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