
Equivalen
e between dimensional 
ontra
tions in Wassersteindistan
e and the 
urvature-dimension 
onditionFrançois Bolley∗, Ivan Gentil†‡, Arnaud Guillin§, Kazumasa Kuwada¶February 15, 2017Abstra
tThe 
urvature-dimension 
ondition is a generalization of the Bo
hner inequality to weightedRiemannian manifolds and general metri
 measure spa
es. It is now known to be equivalentto evolution variational inequalities for the heat semigroup, and quadrati
 Wasserstein distan
e
ontra
tion properties at di�erent times. On the other hand, in a 
ompa
t Riemannian manifold,it implies a same-time Wasserstein 
ontra
tion property for this semigroup. In this work wegeneralize the latter result to metri
 measure spa
es and more importantly prove the 
onverse:
ontra
tion inequalities are equivalent to 
urvature-dimension 
onditions. Links with fun
tionalinequalities are also investigated.Key words: Optimal transport, Markov di�usion semigroup, Curvature-dimension 
ondition,Metri
 measure spa
e.Mathemati
s Subje
t Classi�
ation (2010): 58J65, 58J35, 53B21Introdu
tionThe von Renesse-Sturm theorem (see [27℄) ensures that a Wasserstein distan
e 
ontra
tion prop-erty between solutions to the heat equation on a Riemannian manifold is equivalent to a lower
urvature 
ondition. This result is one of the �rst equivalen
e results relating the Wassersteindistan
e and a 
urvature 
ondition. Re
ent works have been devoted to a more pre
ise 
urvature-dimension 
ondition instead of a sole 
urvature 
ondition. In this work, and in a fairly generalframework, we derive new dimensional 
ontra
tion properties under a 
urvature-dimension 
on-dition and we show that they are all equivalent to it.Let ∆ be the Lapla
e-Beltrami operator on a smooth Riemannian manifold (M,G) and let
(Pth)t>0 be the solution to the heat equation ∂tu = ∆u with h as the initial 
ondition. Many of
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the 
oming notions and results have been 
onsidered in a more general setting, but for simpli
ityin the introdu
tion we fo
us on this 
ase. The Bo
hner identity states that
1

2
∆|∇f |2 −∇f · ∇∆f = |∇∇f |2 + Ric(∇f,∇f)where Ric is the Ri

i 
urvature of (M,G). The manifold asso
iated with its Lapla
ian is said tosatisfy the CD(R,m) 
urvature-dimension 
ondition if its Ri

i 
urvature is uniformly boundedfrom below by R ∈ R and its dimension is smaller than m ∈ (0,+∞]. In this 
ase
1

2
∆|∇f |2 −∇f · ∇∆f >

1

m
(∆f)2 +R|∇f |2 (1)by the Cau
hy-S
hwarz inequality. The CD(R,m) 
ondition and (1) are the starting point ofmany 
omparison theorems, fun
tional and geometri
al inequalities, bounds on the heat kernel,et
. (see e.g. [8, 13, 26, 28℄).In this work we fo
us on the link between the 
urvature-dimension 
ondition and Wassersteindistan
e 
ontra
tion properties of the heat semigroup. The von Renesse-Sturm theorem [27℄states that: the CD(R,∞) 
ondition holds if and only if

W 2
2 (Ptgdx, Pthdx) ≤ e−2RtW 2

2 (gdx, hdx) (2)for all t > 0 and probability densities g, h with respe
t to the Riemannian measure dx. Here W2is the Wasserstein distan
e with quadrati
 
ost.There are many proofs of this result as well as extensions to more general evolutions andspa
es, see for instan
e [2, 8, 9, 15, 17, 23, 28, 29℄. Following the seminal papers [21, 25℄, attentionhas been drawn to taking the dimension of the manifold into a

ount.A �rst way of in
luding the dimension is to use two di�erent times s and t in the inequality (2).It is proved in [9, 18℄ that the CD(0,m) 
ondition implies
W 2

2 (Psgdx, Pthdx) ≤W 2
2 (gdx, hdx) + 2m(

√
t−√

s)2 (3)for all s, t > 0 and all probability densities g, h. A non zero lower bound on the 
urvature andthe equivalen
e have been further 
onsidered in [13, 18℄:
• In [18℄, the fourth author proved that the CD(R,m) 
ondition holds if and only if

W 2
2 (Ptgdx, Pshdx) ≤ A(s, t,R,m)W 2

2 (gdx, hdx) +B(s, t,m,R) (4)for all s, t > 0 and all probability densities g, h, and for appropriate positive fun
tions A,B.
• In [13℄, the authors proved that the CD(R,m) 
ondition holds if and only if

s R
m

(

1

2
W2(Ptgdx, Pshdx)

)2

≤ e−R(t+s) s R
m

(

1

2
W2(gdx, hdx)

)2

+
m

R
(1 − e−R(s+t))

(
√
t−√

s)2

2(t+ s)
(5)for all s, t > 0 and all probability densities g, h. Here sr(x) = sin(

√
rx)/

√
r if r > 0,

sr(x) = sinh(
√

|r|x)/
√

|r| if r < 0 and s0(x) = x, hen
e re
overing (3) when R = 0. Bothinequalities (4) and (5) are extensions of (2) and (3), taking the dimension into a

ount.2



Contra
tion properties with the same time have been derived in [11℄ for the Eu
lidean heatequation in R
m, and then extended by the third author in [14℄ to a 
ompa
t Riemannian manifold.Let Entdx(h) =

∫

h log hdx be the entropy of a probability density h. Then the CD(R,m)
ondition implies
W 2

2 (Ptgdx, Pthdx) ≤ e−2RtW 2
2 (gdx, hdx) − 2

m

∫ t

0
e−2R(t−u)(Entdx(Pug) − Entdx(Puh))2dufor all t > 0 and all probability densities g, h. This bound has also been proved in [11℄ for theMarkov transportation distan
e instead of the W2 distan
e. This distan
e di�ers from W2 andhas a
tually been tailored to Markov semigroups and the Bakry-Émery Γ2 
al
ulus. Dimensional
ontra
tion properties for a Wasserstein distan
e de�ned with an adapted 
ost have also beenderived in [29℄.In this paper we derive diverse same time 
ontra
tion inequalities under a general CD(R,m)
urvature-dimension 
ondition, and in fa
t prove that they are all equivalent to this 
ondition.The results and the proofs will be given in the two settings of a smooth Riemannian manifoldand of a more general Riemannian energy measure spa
e, whi
h is introdu
ed in [6℄ and 
loselyrelated to the so-
alled RCD metri
 measure spa
es (see [5℄ and also [1, 13℄).The paper is organized as follows. In Se
tion 1, we state and explain the 
ontext of our mainresult, Theorem 1. In Se
tion 2, we present the strategy of our proof, motivated by the elementarygradient �ow approa
h in Eu
lidean spa
e. The main issue, from the weakest 
ontra
tion tothe 
urvature-dimension 
ondition, is proved on a Riemannian manifold in Se
tion 3, and ona Riemannian energy measure spa
e in Se
tion 4. The general strategy is the same in bothsettings, and it 
ould seem redundant to give both proofs. However the proof in the Riemanniansetting is rather simpler, presents the most important steps of the argument and thus gives away to get it in a more general spa
e. We believe that it is an opportunity to emphasize, inour example, the main issues arising in transferring a proof in the Riemannian setting to theabstra
t measure spa
e setting. Indeed, there, regularity is no more available �for free�, andour proof will 
ru
ially use a whole panel of powerful tools developed by L. Ambrosio, N. Gigli,G. Savaré, K.-T. Sturm and 
oauthors to over
ome this di�
ulty, in parti
ular lo
alization andmolli�
ation by semigroup.The easier impli
ations in Theorem 1 are dire
tly proved on a Riemannian energy measurespa
e in Se
tion 4. The last se
tion gives a new and simple derivation of a 
lassi
al entropy-energy inequality, as well as dimensional HWI inequalities: for this we start from our 
ontra
tioninequalities instead of the 
urvature-dimension 
ondition, as in earlier works.1 Main resultOur main theorem states that, in a quite general framework, a 
urvature-dimension 
ondition isequivalent to same time Wasserstein distan
e 
ontra
tion inequalities.Let (X, d) be a Polish metri
 spa
e, P(X) be the set of Borel probability measures on Xand P2(X) be the set of all µ ∈ P(X) su
h that ∫ d(x0, x)

2 dµ(x) < ∞ for some x0 ∈ X. The(quadrati
) Wasserstein distan
e between ν1 and ν2 in P2(X) is de�ned by
W2(ν1, ν2) = inf

π

√

∫∫

d(x, y)2 dπ(x, y)

3



where the in�mum runs over all probability measures π on X× X with marginals ν1 and ν2.A fundamental tool is the Kantorovi
h dual representation : for ν1, ν2 ∈ P2(X),
W 2

2 (ν1, ν2)

2
= sup

ψ

{

∫

Qψ dν1 −
∫

ψ dν2

}

. (6)Here the supremum runs over all bounded Lips
hitz fun
tions ψ (in this 
ase Theorem 5.10in [26℄ 
an be extended to Lips
hitz instead of 
ontinuous fun
tions, see [17, Rmk. 3.6℄) and Qψis the inf-
onvolution of ψ, de�ned on X by
Qψ(x) = inf

y∈X

{

ψ(y) +
d(x, y)2

2

}

.The Wasserstein spa
e (P2(X),W2) is des
ribed in the referen
e books [2℄ and [26℄. We shallde�ne the entropy Entµ(f) of a probability density f with respe
t to a (�nite or not) measure µby Entµ(f) =
∫

f log f dµ if f(log f)+ ∈ L
1(µ) and ∞ otherwise.Our result will be stated in the two settings of a Riemannian Markov triple (M, µ,Γ) (RMTin short), and a Riemannian energy measure spa
e (X, τ, µ, E) (REM in short). These settingswill be des
ribed in detail in Se
tions 3 and 4 respe
tively. A REM spa
e is a parti
ular metri
measure spa
e, developed in [6℄. A RMT is a smooth Riemannian manifold equipped with aweighted Lapla
ian (see [8℄) and is a parti
ular example of REM spa
e.Even if a RMT is a REM spa
e we prefer to state and prove our result in both settings sin
ethe argument is a little simpler in the Riemannian 
ase. We also believe that it emphasizes themain di�
ulties when generalizing a result from a smooth setting to an abstra
t metri
 measurespa
e. In both spa
es, (Pt)t>0 denotes the asso
iated Markov semigroup. It is de�ned throughthe weighted Lapla
ian in the RMT 
ase, and through the Diri
hlet form in the REM 
ase.The CD(R,m) 
urvature-dimension 
ondition is de�ned using the Bo
hner inequality (1) ina Riemannian manifold and in a weak form in a metri
 measure spa
e (see De�nitions 3 and 6).Re
all �nally that for r ∈ R the map sr is de�ned on R by

sr(x) =







sin(
√
r x)/

√
r if r > 0

sinh(
√

|r|x)/
√

|r| if r < 0
x if r = 0.Theorem 1 (Equivalen
e between 
ontra
tions and CD(R,m) 
ondition)Consider a RMT or REM spa
e as in Se
tions 3 and 4, with (�nite or not) referen
emeasure µ and asso
iated semigroup (Pt)t>0. Let R ∈ R and m > 0. Then the followingproperties are equivalent:(i) the CD(R,m) (or weak CD(R,m) in a REM spa
e) 
urvature-dimension 
ondition holds;(ii) for any t > 0 and any probability densities g, h with respe
t to µ,

s R
m

(

1

2
W2(Ptgµ, Pthµ)

)2

≤ e−2Rt s R
m

(

1

2
W2(gµ, hµ)

)2

− 2m

∫ t

0
e−2R(t−u) sinh2

(Entµ(Pug) − Entµ(Puh)

2m

)

du; (7)(iii) for any t > 0 and any probability densities g, h with respe
t to µ,
W 2

2 (Ptgµ, Pthµ)≤e−2RtW 2
2 (gµ, hµ)− 2

m

∫ t

0
e−2R(t−u) (Entµ(Pug) − Entµ(Puh))

2 du. (8)
4



See Theorems 5 and 8 for a more pre
ise framework of Theorem 1.A bound with the same additional term as in (ii) has also been derived in [10℄ for somespe
i�
 instan
es of symmetri
 Fokker-Plan
k equations in R
m, for whi
h the generator onlysatis�es a CD(R,∞) 
ondition. Combined with a de�
it in the Talagrand inequality, it has ledto re�ned 
onvergen
e estimates on the solutions.The more di�
ult (iii) ⇒ (i) is proved in both RMT and REM spa
es, in Se
tions 3 and 4respe
tively. The easier (i) ⇒ (ii) ⇒ (iii) are dire
tly proved on a REM spa
e in Se
tion 4.2 Strategy of the proofs2.1 Example of a gradient �ow in R

dLet us �rst present the easiest 
ase of a smooth gradient �ow in R
d. There we shall see thatthe equivalen
e between the 
ontra
tion inequality (8) and the CD(R,m) 
urvature-dimension
ondition is natural. It gives a way to understand the general 
ase.Let F : R

d → R be a C2 smooth fun
tion, and let (Xt)t>0 be a gradient �ow for the fun
tion
F , that is, a solution to the di�erential equation

dXt

dt
= −∇F (Xt). (9)Following [13℄, the fun
tion F satis�es a CD(R,m) 
urvature-dimension 
ondition for R ∈ Rand m > 0 if for any x, h ∈ R

d, the map [0, 1] ∋ s 7→ ϕ(s) = F (x + sh) satis�es the 
onvexityinequality
ϕ′′(s) > R||h||2 +

1

m
(ϕ′(s))2. (10)Here || · || is the Eu
lidean norm in R

d. Sin
e the path (x + sh)s∈[0,1] is a geodesi
 between xand x+ h, this means that F satis�es a (R,m)-
onvexity 
ondition along geodesi
s.Let now (Xt)t>0 and (Yt)t>0 be two solutions to (9) with initial 
onditions X0 and Y0 respe
-tively. Let also ϕt(s) = F (Xt + s(Yt −Xt)), so that ϕ′
t(s) = ∇F (Xt + s(Yt −Xt)) · (Yt −Xt).Then the fun
tion Λ(t) = ||Xt − Yt||2 satis�es

Λ′(u) = −2(Xu − Yu) · (∇F (Xu) −∇F (Yu)) = −2

∫ 1

0
ϕ′′
u(s)ds.If now the fun
tion F satis�es the above CD(R,m) 
ondition (10), then

Λ′(u) ≤ −2R||Xu − Yu||2 −
2

m

∫ 1

0
(ϕ′

u(s))
2du ≤ −2RΛ(u) − 2

m
(ϕu(1) − ϕu(0))

2by the Cau
hy-S
hwarz inequality. Integrating over the interval [0, t], we get
||Xt − Yt||2 ≤ e−2Rt||X0 − Y0||2 −

2

m

∫ t

0
e−2R(t−u)(F (Xu) − F (Yu))

2du. (11)Conversely, let us assume that the gradient �ow driven by F satis�es the property (11) forany t > 0 and any initial 
onditions X0 and Y0. Then F satis�es the CD(R,m) 
ondition (10).For, taking the time derivative of (11) at t = 0 implies
−(X0 − Y0) · (∇F (X0) −∇F (Y0)) ≤ −R||X0 − Y0||2 −

1

m
(F (X0) − F (Y0))

2.5



Let then x, h in R
d and s ∈ [0, 1] be �xed. A Taylor expansion for Y0 = x+ (s+ ε)h tending to

X0 = x+ sh (along a geodesi
), so for ε→ 0, gives
−h · ∇2F (x+ sh)h ≤ −R||h||2 − 1

m
(∇F (x+ sh) · h)2.This is exa
tly the CD(R,m) 
ondition (10).Let us observe that inequality (11) is exa
tly (8) when repla
ing R

d with the spa
e of probabil-ity densities, the Eu
lidean norm with the Wasserstein distan
e, F with the entropy, (Xt)t>0 withthe semigroup (Pt)t>0 and the CD(R,m) 
ondition (10) with the 
orresponding Bakry-Émery
ondition, whi
h is equivalent to the (R,m)-
onvexity of the entropy (see [13℄). Of 
ourse, this
omputation is natural sin
e the 
onsidered evolution is the gradient �ow of the entropy withrespe
t to the Wasserstein distan
e, see [2, 16℄.We now want to mimi
 the above proof for a smooth gradient �ow on R
d to the setting ofa general semigroup on (P2(X),W2). As here in the smooth 
ase, we shall see in the 
omingse
tion that geodesi
s play a fundamental role.2.2 How to adapt the gradient �ow proof to the general 
ase?The most natural method to prove that a 
ontra
tion inequality in Wasserstein distan
e, asin (2), implies a 
urvature 
ondition is to use 
lose Dira
 measures as initial data (see e.g. [9℄).In our 
ase, this 
an not be performed sin
e the entropy of a Dira
 measure is in�nite. Thereseems to be hope sin
e we 
onsider the entropy of the heat kernel in positive time, when itbe
omes �nite. However, it does not work again if we are on a homogeneous spa
e. For instan
e,on R

d, the entropy of the heat kernel pt(x, ·) does not depend on x and the dimensional 
orre
tiveterms in Theorem 1 vanish if we 
onsider two Dira
 measures as initial data.To solve this issue we shall 
onsider as initial data a probability density g (with respe
t to
µ) and a perturbation of it, both in su�
iently wide 
lasses of fun
tions. The perturbation willbe built by means of a geodesi
 in the Wasserstein spa
e (P2(X),W2). Of 
ourse the best waywould be to 
onsider dire
tly a geodesi
 in the Wasserstein spa
e as it was �rst used in [16℄. Inour general setting of a RMT or a REM spa
e, it is di�
ult to deal with su
h a geodesi
 dueto the la
k of regularity. That is why we use a �smooth� modi�
ation of a geodesi
 path. Morepre
isely, given su
h a g, we are looking for a path (gs)s>0 of probability densities whose Taylorexpansion for small s is a geodesi
 in P2(X) with a dire
tion given by a fun
tion f . We explainthe idea on a RMT .For that, 
onsider the generator Lg = L + Γ(log g, ·) (see (12) for the de�nition of Γ) withasso
iated semigroup (P gt )t>0. Given a dire
tion fun
tion f , there are two ways of de�ning thepath (gs)s>0, both admitting the same Taylor expansion for small s:

• One 
an �rst 
onsider the path gs = g(1 − sLgf) for small s and a smooth and 
ompa
tlysupported fun
tion f . The fun
tion gs is a smooth, bounded and 
ompa
tly supportedperturbation of g. This path will be used on a RMT sin
e su
h fun
tions are adapted tothe Riemannian setting.
• One 
an also 
onsider the path g̃s = g(1+f−P gs f), again for s small and �ni
e� f ∈ L

∞(µ).The path (g̃s) has the same Taylor expansion as (gs) sin
e f − P gs f = −sLgf + o(s). Thispath will be used on REM spa
es. Indeed, regularity of fun
tions (su
h as gs above) is
learly a di�
ult issue in the setting of metri
 measure spa
es, and L
∞(µ) fun
tions aremu
h more adapted to them. By using the semigroup (P gs )s≥0 instead of the generator Lg,we 
an apply the maximum prin
iple whi
h preserves (essential) boundedness of fun
tions.6



Remark 2 Let us see, formally and in the Eu
lidean spa
e R
d, why the probability measure gsdxhas the same �rst-order Taylor expansion as the geodesi
 in the Wasserstein spa
e. Let ν0 bea probability measure in R

d being absolutely 
ontinuous with respe
t to the Lebesgue measure,
ψ : R

d → R be a 
onvex map, and
νs = ((1 − s)Id + s∇ψ)#ν0for s ∈ [0, 1]. The path (νs)s∈[0,1] is a geodesi
 path between ν0 and ν1 in the Wasserstein spa
e,that is for any s, t ∈ [0, 1],

W2(νs, νt) = |t− s|W2(ν0, ν1).Moreover, for any test fun
tion H : R
d → R, and by a formal Taylor expansion when s goes to 0,

∫

Hdνs =

∫

H((1 − s)x+ s∇ψ(x))dν0(x) =

∫

[H(x) + s∇H(x) · (∇ψ(x) − x) + o(s)]dν0(x).Assume now that dν0 = gdx for a fun
tion g. Then, by integration by parts as in (15) below,
∫

Hdνs =

∫

Hdν0 − s

∫

H Lg(f) dν0 + o(s) =

∫

H gsdx+ o(s)where f(x) = ψ(x) − |x|2/2.In 
on
lusion, the path (gs)s>0 appears as a (smooth) �rst-order Taylor expansion of the
W2-geodesi
 path (νs)s>0.Observe that in a general setting we 
annot expe
t a su�
ient level of smoothness of theKantorovi
h potential ψ, even on a Riemannian manifold.3 The Riemannian Markov triple 
ontextIn this se
tion we prove the impli
ation (iii) ⇒ (i) of Theorem 1 in the 
ontext of a Riemannianmanifold, in the form of Theorem 5 below.3.1 Framework and resultsLet (M,G) be a 
onne
ted 
omplete C∞-Riemannian manifold. Let V be a C∞ fun
tion on Mand 
onsider the Markov semigroup (Pt)t>0 with generator L = ∆ − ∇V · ∇, where ∆ is theLapla
e-Beltrami operator. Let also dµ = e−V dx where dx is the Riemannian measure and Γ bethe 
arré du 
hamp operator, de�ned by

Γ(f, g) =
1

2
(L(fg) − fLg − gLf) (12)for any smooth f, g. We let Γ(f) = Γ(f, f) = |∇f |2 where |∇f | stands for the length of ∇f withrespe
t to the Riemannian metri
 G.We assume that (M, µ,Γ) is a full Markov triple in a Riemannian manifold, as in [8, Chap. 3℄,and in this work we 
all it a Riemannian Markov triple (RMT ). It has to be mentioned thatwe need an additional hypothesis to obtain a full Markov triple : the hypothesis proposed in [8,Chap. 3℄ is a uniform lower bound on the Ri

i 
urvature ofM plus the Hessian of the fun
tion V :there exists a 
onstant ρ ∈ R su
h that RicG + ∇2V > ρId. A more general statement will begiven in Se
tion 4. 7



The measure µ is reversible with respe
t to the semigroup, that is, for any t > 0, Pt is aself-adjoint operator in L
2(µ). Moreover the integration by parts formula

∫

fLg dµ = −
∫

Γ(f, g)dµholds for all f, g in the set C∞
c (M) of in�nitely di�erentiable and 
ompa
tly supported fun
tionson M. The generator L satis�es the di�usion property, that is, for any smooth fun
tions ϕ, f, g,

L(ϕ(f)) = ϕ′(f)Lf + ϕ′′(f)Γ(f),or equivalently
Γ(ϕ(f), g) = ϕ′(f)Γ(f, g). (13)In other words, the 
arré du 
hamp operator is a derivation operator for ea
h 
omponent.The map (x, t) 7→ Pth(x) is simply the solution to the paraboli
 equation ∂tu = Lu with has the initial 
ondition.De�nition 3 (CD(R,m) 
ondition) Let R ∈ R and m ∈ (0,∞]. We say that the RMT

(M, µ,Γ) satis�es a CD(R,m) 
urvature-dimension 
ondition if
Γ2(f) > RΓ(f) +

1

m
(Lf)2for any smooth fun
tion f, say in C∞

c (M), where
Γ2(f) =

1

2
(LΓ(f) − 2Γ(f, Lf)). (14)Let us noti
e that m 
an be di�erent from the dimension of the manifold M. The CD(R,m)
urvature-dimension 
ondition is 
alled the Bakry-Émery or Γ2 
ondition and has been intro-du
ed in [7℄ (see also the re
ent [8℄).Example 4 On a d-dimensional Riemannian manifold (M,G)

• the operator L = ∆ satis�es a CD(R,m) 
ondition if m > d and the Ri

i 
urvature of themanifold is bounded from below by R;
• more generally, the operator L = ∆−∇V ·∇ satis�es a CD(R,m) 
ondition if m > d and

Ric + Hess(V ) > RG +
1

m− d
∇V ⊗∇V,where Ric is the Ri

i tensor of (M,G), see for instan
e [8, Se
. C6℄ (when m = d then weneed V = 0).In a RMT , the following result gives the impli
ation (iii) ⇒ (i) in Theorem 1 :Theorem 5 Let (M, µ,Γ) be a Riemannian Markov triple and (Pt)t>0 its asso
iated Markovsemigroup. Let R ∈ R and m > 0. If the inequality (8) holds for any t > 0 and any smoothfun
tions g, h on M with gµ, hµ in P2(M), then the CD(R,m) 
ondition of De�nition 3 holds.8



3.2 Proof of Theorem 5It is based on the approximation of geodesi
s introdu
ed in Se
tion 2.2 (see Remark 2), propertiesof the Hopf-Lax solution of the Hamilton-Ja
obi equation, and an adapted 
lass of test fun
tions.Let f be in C∞
c (M). Let also g be a smooth and positive fun
tion on M su
h that gµ ∈ P2(M),

∫

g | log g| dµ <∞ and

∫

Γ(g)

g
dµ <∞.Let us de�ne the generator Lg by

Lgh = Lh+ Γ(log g, h)on smooth fun
tions h. Sin
e g > 0, then Lg is well de�ned on the set C∞
c (M) and Lgh ∈ C∞

c (M)for any h ∈ C∞
c (M). Moreover, the generator Lg satis�es an integration by parts formula withrespe
t to the probability measure gµ : for h, k ∈ C∞

c (M) (one of them 
an be with non 
ompa
tsupport)
∫

hLgk gdµ = −
∫

Γ(h, k) gdµ. (15)For any s > 0, let us de�ne gs = g(1 − sLgf). The fun
tion Lgf is in C∞
c (M), so bounded,and we 
an let N = ||Lgf ||∞. We shall frequently use the bounds (1 − sN)g ≤ gs ≤ (1 + sN)g.In parti
ular gs > 0 for s < 1/N.Moreover ∫ gsdµ = 1. Hen
e, for s small enough, whi
h we nowassume, gsµ is in P2(M) with a smooth and positive density. The proof of Theorem 5 
onsistsin applying (8) with gs instead of f, dividing by 2s2 and letting s go to 0. For this we shallestimate the three terms in the inequality.A key tool is the Hopf-Lax semigroup de�ned on bounded Lips
hitz fun
tions ψ by

Qsψ(x) := inf
y∈M

{

ψ(y) +
d(x, y)2

2s

}

, s > 0, x ∈ M. (16)The map x 7→ Qsψ(x) is Lips
hitz for every s > 0, and the map (s, x) 7→ Qsψ(x) satis�es theHamilton-Ja
obi equation
∂sQsψ +

1

2
|∇Qsψ|2 = 0, lim

s→0
Qsψ = ψin a sense given in [26, Thms. 22.46 and 30.30℄ for instan
e. We observe that sQs(ψ) = Q1(sψ) =

Q(sψ), so for s > 0 the Kantorovi
h duality (6) 
an be written as
W 2

2 (ν1, ν2)

2s2
=

1

s
sup
ψ

[
∫

Qsψ dν1 −
∫

ψ dν2

]

. (17)Estimate on the term on the left-hand side of (8). Letting ψ = f in (17), we obtain
W 2

2 (Ptgsµ,Ptgµ)

2s2
>

∫

QsfPtgs − fPtg

s
dµ. (18)Sin
e f is Lips
hitz, almost everywhere in M we have

lim
s→0

QsfPtgs − fPtg

s
= −1

2
Γ(f)Ptg − fPt(gL

gf)9



by (vii') in [26, Thm. 30.30℄. But, by the de�nition of Qsf and sin
e f is bounded,
Qsf(x) = inf

y∈B(x,
√

4s‖f‖∞)

{

f(y) +
d(x, y)2

2s

}

.Thus, for the Lips
hitz seminorm ‖ · ‖Lip,
0 >

Qsf(x) − f(x)

s
> inf

y∈B(x,
√

4s‖f‖∞)\{x}

{

f(y) − f(x)

d(x, y)

d(x, y)

s
+
d(x, y)2

2s2

}

> −1

2
sup

y∈B(x,
√

4s‖f‖∞)\{x}

(

f(y) − f(x)

d(x, y)

)2

> −1

2
‖f‖2

Lip (19)(see also [26, page 585℄). Moreover ||Qsf ||∞ ≤ ||f ||∞, so, adding and subtra
ting QsfPtg,
∣

∣

∣

QsfPtgs − fPtg

s

∣

∣

∣
≤ ||Qsf ||∞ |Pt(gLgf)| + Ptg

f −Qsf

s
≤
(

||f ||∞ ||Lgf ||∞ +
||f ||2Lip

2

)

Ptg.The right-hand side is in L
1(µ), so by the Lebesgue dominated 
onvergen
e theorem

lim inf
s→0

W 2
2 (Ptgsµ,Ptgµ)

2s2
>

∫
(

−1

2
Γ(f)Ptg − fPt(gL

gf)

)

dµ.Now, by reversibility of the measure µ and the integration by parts formula (15),
∫

fPt(gL
gf)dµ =

∫

PtfL
g(f) gdµ = −

∫

Γ(f, Ptf) gdµ.Thus we obtain our �rst estimate:
lim inf
s→0

W 2
2 (Ptgsµ,Ptgµ)

2s2
> −1

2

∫

Pt(Γ(f))gdµ +

∫

Γ(f, Ptf)gdµ. (20)Estimate on the �rst term on the right-hand side. A

ording to (17) we need an upperbound on the quantities ∫ Qs(ψ)gsdµ−
∫

ψgdµ, independent of the bounded Lips
hitz fun
tion ψ.First of all, for 0 < t < s,
d

dt

∫

Qtψ gt dµ =

∫
[

−1

2
Γ(Qtψ)(1 − tLgf)−QtψL

gf

]

gdµ. (21)This is justi�ed by item (vii) in [26, Thms. 22.46 and 30.30℄ and the properties that gµ ∈ P(M),
Lgf is bounded, ||Qtψ||∞ ≤ ||ψ||∞ and ||Qtψ||Lip ≤ ||ψ||Lip for any t.Now the integration by parts formula (15) gives − ∫ Qtψ Lgf gdµ =

∫

Γ(Qtψ, f)gdµ. Re
allthat Lgf is bounded and that we have let N = ||Lgf ||∞. For t < s < 1/N we obtain
d

dt

∫

Qtψ gt dµ ≤
∫
[

−1

2
Γ(Qtψ)(1 − sN) + Γ(Qtψ, f)

]

gdµ

=

∫
[

−1 − sN

2
Γ

(

Qtψ − 1

1 − sN
f

)

+
1

2(1 − sN)
Γ(f)

]

gdµ ≤ 1

2(1 − sN)

∫

Γ(f)gdµ.

10



Integrating over the set t ∈ [0, s] :
∫

Qsψ gsdµ−
∫

ψgdµ ≤ s

2(1 − sN)

∫

Γ(f)gdµ.Finally the Kantorovi
h duality (17) gives our se
ond estimate:
lim sup
s→0

W 2
2 (gsµ, gµ)

2s2
≤ 1

2

∫

Γ(f)gdµ. (22)Estimate on the se
ond term on the right-hand side. Let u > 0 and let us 
ompute thelimit of 1
s (Entµ(Pugs) − Entµ(Pug)) when s goes to 0. First, for any s > 0,

d

ds
Pu(gs) log Pu(gs) = −(1 + logPugs) Pu

(

gLgf
)

.Then, for 0 < s < 1/N ,
|(1 + logPugs)Pu(gL

gf)| ≤ NPug (1 + log(1 +N) + | log Pu(g)|).Forgetting the dimensional 
orre
tive term in (8), by the von Renesse-Sturm theorem [27℄ the
RMT satis�es a CD(R,∞) 
ondition. In parti
ular, and sin
e ∫ Γ(g)/g dµ < ∞, one 
anuse a lo
al logarithmi
 Sobolev inequality [8, Thm. 5.5.2℄ to dedu
e ∫ Pug | log Pug| dµ < ∞.In parti
ular the right-hand side in the last inequality is in L1(µ). Then, by the Lebesgue
onvergen
e theorem and (15),

lim
s→0

Entµ(Pugs) − Entµ(Pug)

s
= −

∫

(1 + logPug)Pu
(

gLgf
)

dµ

= −
∫

Pu(log Pug)L
gf gdµ =

∫

Γ(Pu(log Pug), f)gdµ.By the Fatou lemma we obtain the third estimate :
lim sup
s→0

− 1

m

∫ t

0
e−2R(t−u)

[

Entµ(Pugs) − Entµ(Pug)

s

]2

du

≤ − 1

m

∫ t

0
e−2R(t−u)

(
∫

Γ(Pu(log Pug), f)gdµ

)2

du. (23)Con
lusion. Dividing the inequality (8) by 2s2, letting s go to 0 and using the three esti-mates (20), (22) and (23) we get
− 1

2

∫

PtΓ(f) gdµ +

∫

Γ(f, Ptf)gdµ

≤ e−2Rt

2

∫

Γ(f)gdµ− 1

m

∫ t

0
e−2R(t−u)

(
∫

Γ(Pu(log Pug), f)gdµ

)2

du.This inequality is an equality when t = 0, and sin
e f ∈ C∞
c (M), its derivative at t = 0 implies

−1

2

∫

LΓ(f) gdµ +

∫

Γ(f, Lf)gdµ ≤ −R
∫

Γ(f)gdµ − 1

m

(
∫

Γ(log g, f)gdµ

)2

.

11



Sin
e ∫ Γ(log g, f)gdµ =
∫

Γ(g, f)dµ = −
∫

gLfdµ and by de�nition of the Γ2 operator we get
∫

Γ2(f)gdµ > R

∫

Γ(f) gdµ +
1

m

(
∫

Lf gdµ

)2 (24)for any f ∈ C∞
c (M) and any positive smooth probability density g with �nite ∫ g| log g|dµ and

∫ Γ(g)
g dµ.Inequality (24) appears as a weak form of the CD(R,m) 
ondition. Again from the CD(R,∞)
ondition, it is a 
onsequen
e of Wang's Harna
k inequality (see [8, Thm. 5.6.1℄ and [28℄) thatthere exist α0 > 0 and o ∈ M su
h that

∫

exp(−α0d(o, x)
2) dµ(x) <∞. (25)Then, for given x ∈ M, for any p > α0 the fun
tion gp de�ned by gp(y) = Zpe

−pd(x,y)2 fora normalisation 
onstant Zp is su
h that gpµ ∈ P2(X) and ∫ gp| log gp|dµ, ∫ Γ(gp)/gpdµ < ∞.Moreover (gp)p 
onverges to the Dira
 measure δx at x, so repla
ing g by gp in (24) and letting
p→ +∞ we get

Γ2(f) > RΓ(f) +
1

m
(Lf)2at any x ∈ M and for any fun
tion f ∈ C∞

c (M). This is the CD(R,m) 
ondition as in De�ni-tion 3, and this �nishes the proof of Theorem 5.4 The Riemannian energy measure spa
e 
ontextIn this se
tion we prove Theorem 1 in the 
ontext of a Riemannian energy measure (REM)spa
e. The proof goes along the same overall strategy as in the manifold 
ase of Se
tion 3.2.However, to over
ome the la
k of di�erentiability, it will require several tools and results fromoptimal transport and heat distributions on metri
 measure spa
es.The framework is stated in Se
tion 4.1. As an intermezzo, in Se
tions 4.2 and 4.3 we give theproofs of (i) ⇒ (ii) ⇒ (iii) in Theorem 1. The main impli
ation (iii) ⇒ (i) is stated and provedin Se
tion 4.4, in the form of Theorem 8. The path (g̃s)s>0 is 
onstru
ted in Se
tion 4.4.1, thethree key estimates are given in Se
tion 4.4.2, �nally the main proof is given in Se
tion 4.4.3.4.1 FrameworkAs a natural framework, we state our result on a Riemannian energy measure spa
e, as introdu
edin [6℄. Let (X, τ) be a Polish topologi
al spa
e and µ a lo
ally �nite Borel measure on X witha full support. Let (E ,D(E)) be a strongly lo
al symmetri
 Diri
hlet form on L
2(µ). Let �nally

(Pt)t>0 be its asso
iated semigroup and L its generator, with domain D(L) ⊂ L
2(µ). As fora Markov triple, see [8℄, and sin
e Pt is symmetri
 and sub-Markovian, we 
an extend Pt to asemigroup of 
ontra
tions on L

p(µ) for p ∈ [1,∞]. We also let E(f) := E(f, f) and
‖f‖2

E := ‖f‖2
L2(µ) + E(f)for f ∈ D(E). In this work we assume that (X, τ, µ, E) is a Riemannian energy measure spa
e inthe sense of [6, Def. 3.16℄. A basi
 example of a REM spa
e is a Riemannian Markov triple asin Se
tion 3. In this 
ase, (E ,D(E)) is 
anoni
ally de�ned by 
ompletion of (f, f) 7→

∫

|∇f |2 dµ.12



RCD spa
es introdu
ed in [1, 5℄ are another important 
lass of REM spa
es. In this 
ase, E/2is given by the L
2-Cheeger energy fun
tional. As we will see below, our REM spa
e be
omesan RCD(R,∞) spa
e in an appropriate sense under one of the 
onditions in Theorem 1 (see theargument in se
tion 4.1 below): hen
e our argument falls into the framework of a RCD spa
eand it would make no di�eren
e to state or to prove our result in the framework of a RCD spa
einstead of a REM spa
e. However our 
onditions in Theorem 1 are des
ribed in terms of theMarkov semigroup (Pt)t>0 and its in�nitesimal generator L, so we thought that the framework ofa REM spa
e was natural and adapted, and preferred it rather than a RCD spa
e as a startingpoint.To make this presentation 
on
ise, we prefer to state the 
ru
ial properties of a REM spa
einstead of its pre
ise de�nition. Indeed the de�nition 
onsists in several notions, whi
h will beused only indire
tly through these properties:

• The intrinsi
 distan
e dE asso
iated with (E ,D(E)), in the sense of [6, Se
. 3.3℄, be
omes adistan
e fun
tion, further denoted d. It is 
ompatible with the topology τ and the spa
e
(X, d) is 
omplete [6, Def. 3.6℄ and length metri
 [6, Thm. 3.10℄.We let Lipb(X) denote the set of bounded Lips
hitz fun
tions on X (with respe
t to d). Let

|∇f | : X → R be the lo
al Lips
hitz 
onstant of a Lips
hitz fun
tion f on X:
|∇f |(x) := lim sup

y→x

|f(y) − f(x)|
d(x, y)

·

• E/2 
oin
ides with the L
2-Cheeger energy asso
iated with d, de�ned for f ∈ L

2(µ) by
Ch(f) := inf

{

lim inf
n→∞

1

2

∫

|∇fn|2dµ ; fn ∈ Lipb(X), fn → f in L
2(µ)

}

.As a result, (E ,D(E)) admits a 
arré du 
hamp, i.e. there is a symmetri
 bilinear map
Γ : D(E) ×D(E) → L

1(µ) su
h that
E(f, g) =

∫

Γ(f, g) dµ.As on smooth spa
es, L and Γ satisfy the di�usion property (13). The 
oin
iden
e of
E/2 and the Cheeger energy makes many 
onne
tions between d and Γ. For instan
e,
D(E) ∩ Lipb(X) is dense in D(E) with respe
t to ‖ · ‖E . In addition,

Γ(f) ≤ |∇f |2 µ-a.e. (26)for any Lips
hitz f ∈ D(E). See [6, Thm. 3.12℄ and [6, Thm. 3.14℄ for all these fa
ts.Note that D(E) ∩ L
∞(µ) is an algebra and Γ satis�es the Leibniz rule:

Γ(fg, h) = fΓ(g, h) + gΓ(f, h) for f, g ∈ D(E) ∩ L
∞(µ) and h ∈ D(E).We state further assumptions for our main theorem. Fix a referen
e point o ∈ X.Regularity assumption(Reg1) There is α0 > 0 su
h that (25) holds.(Reg2) (X, τ) is lo
ally 
ompa
t. 13



Assumption (Reg1) is equivalent to the 
ondition (MD.exp) in [6℄ (see e.g. the 
ommentsafter Equation (3.13) in [6℄). This integrability 
ondition yields the 
onservativity of Pt, i.e.
∫

Ptf dµ =

∫

f dµfor f ∈ L
1(µ) (see [6, Thm. 3.14℄). This is equivalent to Pt1 = 1 µ-a.e, that is, the semigroup isMarkovian (instead of sub-Markovian). In fa
t (25) is a nearly optimal 
ondition to ensure thatthe semigroup is 
onservative (see [3, Rmk. 4.21℄). Thus it is not restri
tive.Assumption (Reg2) implies that any 
losed bounded set in X is 
ompa
t (see e.g. [12,Prop. 2.5.22℄). Moreover, (X, d) is a geodesi
 spa
e (see e.g. [12, Thm. 2.5.23℄). As a result,

(P2(X),W2) is also a geodesi
 spa
e (see e.g. [20, Cor. 1 and Prop. 1℄).In this framework, we should be 
areful when de�ning the operator Γ2 in (14) sin
e Γ(f)may not belong to D(L) even for a su�
iently ni
e f . To avoid su
h a te
hni
al di�
ulty, andfollowing [6, Def. 2.4℄, we employ a weak form of the CD(R,m) 
ondition :De�nition 6 (Weak CD(R,m) 
ondition) Let R ∈ R and m > 0. We say that the REMspa
e (X, τ, µ, E) satis�es a weak CD(R,m) 
ondition if, for all f ∈ D(L) with Lf ∈ D(E) andall g ∈ D(L) ∩ L
∞(µ) with g > 0 and Lg ∈ L

∞(µ),
1

2

∫

Γ(f)Lg dµ−
∫

Γ(f, Lf)g dµ > R

∫

Γ(f)g dµ+
1

m

∫

(Lf)2g dµ. (27)The proof of (iii) ⇒ (i) (and also of (ii) ⇒ (iii)) of Theorem 1 will need further regularityproperties on the spa
e and semigroup, whi
h will in fa
t be 
onsequen
es of (iii) (or (ii)).Note indeed that (8) in (iii) yields a W2-
ontra
tion
W 2

2 (Ptgdµ, Pthdµ) ≤ e−2RtW 2
2 (gdµ, hdµ) (28)by negle
ting the term involving m. Then, by [6, Cor. 3.18℄, (28) implies a CD(R,∞) 
onditionin the sense of (27). This fa
t is very helpful for further dis
ussion in the sequel sin
e it ensuresregularity of the spa
e in many respe
ts. As a regularization property of Pt, we have

Pth ∈ Lipb(X) for h ∈ L
2(µ) ∩ L

∞(µ), t > 0 (29)(see [6, Thm. 3.17℄; More pre
isely, Pth has a version whi
h belongs to Lipb(X)). In addition,
(X, d, µ) be
omes an RCD(R,∞) spa
e (see [6, Thm. 4.17℄). Then, for a probability density
h with respe
t to µ, ((Pth)µ)t>0 is a gradient �ow of Entµ in the sense of the R-evolutionvariational inequality [1, Thm. 6.1℄. As a 
onsequen
e, we obtain the following properties:

• We 
an extend the a
tion of Pt to ν ∈ P2(X) in the sense that Ptν is a solution to the
R-evolution variational inequality and that Ptν = (Pth)µ if ν = hµ. In parti
ular, (Ptν)t>0be
omes a 
ontinuous 
urve in (P2(X),W2), see [1, Thm. 6.1℄. In addition, ν 7→ Ptν is a
ontinuous map from (P2(X),W2) to itself, see [1, Eq. (7.2)℄.

• Ptν ≪ µ for ν ∈ P2(X) and t > 0, and its density ρt satis�es Entµ(ρt) ∈ R. This propertyis in
luded in the de�nition of the R-evolution variational inequality, see e.g. [1, Def. 2.5℄.Re
all that, under (25), Entµ(ρ) is well-de�ned and Entµ(ρ) ∈ (−∞,∞] for ρ : X → [0,∞]with ρµ ∈ P2(X), see e.g. [3, Se
. 7℄.
• There is a positive symmetri
 measurable fun
tion pt(x, y) su
h that Pt 
oin
ides with theintegral operator asso
iated with pt, see [1, Thm. 7.1℄.14



• For any bounded measurable h and ν ∈ P2(X), we have
∫

hdPtν =

∫

Pthdν, (30)see [6, Prop. 3.2℄. By the monotone 
onvergen
e theorem, we 
an extend this identity tothose h whi
h are bounded only from below (or above).
• For any f ∈ D(L) and h ∈ D(E) we have the integration by parts formula

∫

Γ(h, f) dµ = −
∫

hLf dµ. (31)4.2 Proof of (i) ⇒ (ii) in Theorem 1In [13℄ M. Erbar, K.-T. Sturm and the fourth author of this paper have proved an Evolutionalvariational inequality (EVI in short) in the REM spa
es. Let g, h be probability densities withrespe
t to µ and let Um = exp(−Entµ(·) /m). Then, under the weak CD(R,m) 
onditionas in (i),
d

dt
s R

m

(

1

2
W2(Pthµ, gµ)

)2

+Rs R
m

(

1

2
W2(Pthµ, gµ)

)2

≤ m

2

(

1 − Um(g)

Um(Pth)

)

. (32)But it is 
lassi
al, see e.g. [2℄, how to dedu
e a 
ontra
tion property in W2 distan
e betweensolutions (Pth)t>0 and (Ptg)t>0 from an EVI: one applies the EVI to the 
urve (Pth)t>0 and Psgfor a given s, and then (with the time variable s) to the 
urve (Psg)s>0 and Pth for a given t;then one adds both inequalities, takes t = s and integrate in time. Then one obtains (ii).To sum up, it turns out that the EVI (32) not only leads to the property (5), as observedin [13℄, but also to the same-time 
ontra
tion property (ii).4.3 Proof of (ii) ⇒ (iii) in Theorem 1We �rst observe that sinh2(x) > x2 for any x, so ii) in Theorem 1 implies the same bound with
sinh2(x) repla
ed by x2 in the integral. Then the impli
ation (ii) ⇒ (iii) is a 
onsequen
e of thefollowing result, whi
h we prove in the general 
ontext of a geodesi
 spa
e.Proposition 7 Let (Y, dY ) be a geodesi
 metri
 spa
e, U : Y → (−∞,∞] and ϕt : Y → Y
(t ≥ 0) a one-parameter family of maps. Suppose that t 7→ ϕt(y) is 
ontinuous for all y ∈ Y and
U(ϕt(y)) ∈ R for all t > 0 and y ∈ Y. Suppose also that for y0, y1 ∈ Y and t > 0,
s R

m

(

1

2
dY (ϕt(y0), ϕt(y1))

)2

≤ e−2Rt s R
m

(

1

2
dY (y0, y1)

)2

− 1

2m

∫ t

0
e−2R(t−u)(U(ϕu(y0)) − U(ϕu(y1)))

2du. (33)Then
dY (ϕt(y0), ϕt(y1))

2 ≤ e−2Rt dY (y0, y1)
2 − 2

m

∫ t

0
e−2R(t−u)(U(ϕu(y0)) − U(ϕu(y1)))

2du.

15



Proof. We adapt the argument of [13, Prop. 2.22℄. Let (ys)s∈[0,1] be a geodesi
 from y0 to y1in Y , and let t > 0 be �xed. For any n and 1 ≤ i ≤ n, let xni = dY (ϕt(y(i−1)/n), ϕt(yi/n)). Then
dY (ϕt(y0), ϕt(y1))

2 ≤
(

n
∑

i=1

xni

)2
≤ n

n
∑

i=1

(xni )
2for any n. In parti
ular

dY (ϕt(y0), ϕt(y1))
2 ≤ lim sup

n→∞
n

n
∑

i=1

(xni )
2.Now, by negle
ting the se
ond term in the right-hand side of (33) and by geodesi
 property,

s R
m

(xni
2

)

≤ e−Rt s R
m

(1

2
dY (y(i−1)/n, yi/n)

)

= e−Rt s R
m

( 1

2n
dY (y0, y1)

)

.It follows, as in [13, (2.32)℄, that there exists a 
onstant c su
h that xni ≤ c/n for large n andany 1 ≤ i ≤ n. Moreover s R
m

(x)2 = x2 −Rx4/(3m) +O(x6) as x tends to 0, so that
lim sup
n→∞

n

n
∑

i=1

(xni )
2 = 4 lim sup

n→∞
n

n
∑

i=1

s R
m

(xni /2)
2. (34)As a 
onsequen
e

dY (ϕt(y0), ϕt(y1))
2 ≤ 4 lim sup

n→∞
n

n
∑

i=1

s R
m

(

1

2
dY (ϕt(y(i−1)/n), ϕt(yi/n))

)2

≤ 4 lim sup
n→∞

(

n
n
∑

i=1

e−2Rt s R
m

(

1

2
dY (y(i−1)/n, yi/n)

)2

− 1

2m

∫ t

0
e−2R(t−u)n

n
∑

i=1

(

U(ϕu(y(i−1)/n)) − U(ϕu(yi/n))
)2
du

)by assumption (33).Then the 
on
lusion follows from this estimate by using (34) with dY (y(i−1)/n, yi/n) in pla
eof xni in the �rst term, and the Cau
hy-S
hwarz inequality in the se
ond term. �Let us return to the proof of (ii) ⇒ (iii) in Theorem 1. We �rst 
he
k that (7) yields (28).As we derived (28) from (8), the estimate (7) yields
s R

m

(

1

2
W2(Pthµ, Ptgµ)

)2

≤ e−2Rt s R
m

(

1

2
W2(hµ, gµ)

)2 (35)by negle
ting the term involving m. From this inequality, we 
an extend Pt to a map from P2(X)to itself, in a 
anoni
al way. Moreover, in (35) we 
an repla
e hµ and gµ with any ν0, ν1 ∈ P2(X)respe
tively. Then we obtain (28) by a similar argument as in Proposition 7. Thus, as dis
ussedin Se
tion 4.1, (X, d, µ) is an RCD(R,∞) spa
e and all properties at the end of Se
tion 4.1be
ome available. We remark that the extension of Pt given on the basis of (35) 
oin
ides withthe one given by the RCD(R,∞) property. 16



Now we only need to show that Pt ful�lls all the assumptions for ϕt in Proposition 7 with
(Y, dY ) = (P2(X),W2) and U = Entµ. Here we are extending the de�nition of Entµ so that,for ν ∈ P2(X), Entµ(ν) = Entµ(dν/dµ) if ν ≪ µ and Entµ(ν) = ∞ otherwise. By takingobservations at the beginning of this se
tion into a

ount, it su�
es to prove that (7) implies
s R

m

(

1

2
W2(Ptν0, Ptν1)

)2

≤ e−2Rt s R
m

(

1

2
W2(ν0, ν1)

)2

− 1

2m

∫ t

0
e−2R(t−u)(Entµ(Puν0) − Entµ(Puν1))

2dufor ν0, ν1 ∈ P2(X) and t > 0. But this is true sin
e Pδν0, Pδν1 ≪ µ for any δ ∈ (0, t), so that
s R

m

(

1

2
W2(Ptν0, Ptν1)

)2

≤ e−2R(t−δ) s R
m

(

1

2
W2(Pδν0, Pδν1)

)2

− 1

2m

∫ t

δ
e−2R(t−u)(Entµ(Puν0) − Entµ(Puν1))

2duby (7) and the bound sinh2(x) > x2; moreover Pδνi → νi in W2 as δ ↓ 0 for i = 0, 1: this givesthe assertion. Hen
e the proof of (ii) ⇒ (iii) in Theorem 1 is 
ompleted. �4.4 Proof of (iii) ⇒ (i) in Theorem 1In this se
tion we prove the main impli
ation (iii) ⇒ (i) in Theorem 1, in the following form :Theorem 8 Let (X, τ, µ, E) be a Riemannian energy measure spa
e satisfying the above regu-larity assumptions (Reg1) and (Reg2). Let R ∈ R and m > 0.If inequality (8) holds for any t > 0 and probability densities g, h ∈ L
1(µ) with gµ, hµ ∈

P2(X), then the weak CD(R,m) 
ondition of De�nition 6 holds.In parti
ular, the 
onditions (ii) and (iii) in Theorem 1 are equivalent to the weak CD(R,m)
ondition.4.4.1 Constru
tion of the path (g̃s)s>0In this se
tion, we build the path g̃s mentioned in Se
tion 2.2, under (8). Re
all that (X, d, µ)is now an RCD(R,∞) spa
e as remarked at the end of Se
tion 4.1. For x ∈ X and r > 0, wedenote the open ball of radius r 
entered at x by Br(x).For this we �rst de�ne g(= g̃0). We take g in a more tra
table (but large enough) 
lass thanthe full 
lass of De�nition 6. Fix α > α0 with α0 as in (25), λ ∈ (0, 1) and g0 : X → R Lips
hitzwith 
ompa
t support. Let us de�ne g as follows:
g :=

1

Z

(

(1 − λ)g0 + λ exp(−αd(x, o)2)
) (36)where Z > 0 is a normalizing 
onstant su
h that gµ ∈ P(X). Note that (25) yields gµ ∈ P2(X).We �x g until the end of the proof of Proposition 15 below. We 
an de�ne the L

2-Cheegerenergy fun
tional Eg/2 asso
iated with d and the probability measure gµ. Let D(Eg) be the setof f ∈ L
2(gµ) with Eg(f) <∞. Re
all that D(Eg) is 
omplete with respe
t to ‖ · ‖Eg .To de�ne the path (g̃s)s>0 we need the 
orresponding generator Lg, and for this we show thefollowing auxiliary lemma. 17



Lemma 9 In the above notation, D(E) ⊂ D(Eg) and
Eg(f) =

∫

Γ(f)g dµ (37)for f ∈ D(E). In addition, (Eg,D(Eg)) is bilinear.We do not know whether (37) is valid for any f ∈ D(Eg). Thus we have to be 
areful whenwe apply the integration by parts formula (15) for Lg.Proof. The former assertion follows from [3, Lem. 4.11℄. For the latter assertion, take f, f̃ ∈
D(Eg). For ea
h n ∈ N, take also χn ∈ Lipb(X) with 0 ≤ χn ≤ 1, χ|Bn(o) ≡ 1 and χ|Bn+1(o)c ≡ 0.Sin
e, for ea
h n ∈ N, g is bounded away from 0 on Bn(o), we have fn := fχn ∈ D(E) by thelo
ality of the Cheeger energy, see [3, Prop. 4.8 (b)℄ and [3, Lem. 4.11℄. Moreover, (fn)n∈N formsa Cau
hy sequen
e with respe
t to ‖ · ‖Eg and hen
e ‖fn− f‖Eg → 0. By the same argument, wehave ‖f̃n− f̃‖Eg → 0 for f̃n := f̃χn. By (37), and re
alling that Γ is symmetri
 bilinear, we have

Eg(fn + f̃n) + Eg(fn − f̃n) = 2
(

Eg(fn) + Eg(f̃n)
)

.Therefore the 
on
lusion holds by letting n→ ∞. �By Lemma 9, (Eg,D(Eg)) is a 
losed bilinear form on L
2(gµ). Hen
e there are an asso
iated

L
2-semigroup P gt of symmetri
 linear 
ontra
tion and its generator Lg. By [3, Prop. 4.8 (b)℄, Egis sub-Markovian. Thus P gt satis�es the maximum prin
iple, i.e. P gt f ≤ c if f ≤ c for f ∈ L

2(gµ)and c ∈ R. In addition, Lipb(X) ∩D(Eg) is dense in D(Eg) with respe
t to ‖ · ‖Eg . Note that we
an de�ne P gt and Lg without bilinearity of Eg (see [3, Se
. 4℄ and referen
es therein). However,then they 
an be nonlinear and the integration by parts formula (15) may not hold.Lemma 10 In the above notation,(i) g ∈ D(E) ∩ L
∞(µ) and log g ∈ D(Eg).(ii) D(L) ⊂ D(Lg).Proof. (i) The �rst 
laim follows from (26) and (25). For the se
ond one, note that

Eg(log g) ≤
∫

|∇ log g|2g dµ.It is the integrated form of (26) for Eg instead of E . Then the 
laim follows from (25).(ii) Let f ∈ D(L) and h ∈ D(Eg). Take hn ∈ Lipb(X)∩D(Eg) for n ∈ N su
h that ‖hn−h‖Eg →
0. By a trun
ation argument used in the proof of Lemma 9, we may assume that ea
h hn issupported on a bounded set, without loss of generality. Then hn ∈ D(E) ∩ L

∞(µ) and hen
e
hng ∈ D(E). Thus the Leibniz rule, the assertion (i), (31) and (26) imply

∣

∣

∣

∣

∫

Γ(hn, f)g dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Γ(hng, f) dµ −
∫

hnΓ(g, f) dµ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

hn(Lf)g dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

hnΓ(log g, f)g dµ

∣

∣

∣

∣

≤ ‖hn‖L2(gµ)

(

‖g‖∞‖Lf‖L2(µ) +

∥

∥

∥

∥

|∇g|2
g

∥

∥

∥

∥

∞

E(f)1/2
)

.
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The de�nition of g yields ‖|∇g|2/g‖∞<∞. Thus there is C > 0 independent of h and n su
h that
|Eg(hn, f)| ≤ C‖hn‖L2(gµ).Here we used Lemma 9. By letting n→∞, we 
an repla
e hn with h in this inequality. Hen
e

f ∈ D(Lg) sin
e h is arbitrary in D(Eg). �We 
an now de�ne the path (g̃s)s>0. Let f ∈ D(L) ∩ Lipb(X) with ‖f‖∞ ≤ 1/4. We �x funtil the end of the following se
tion, and observe that f ∈ L
2(gµ). Then we let

g̃s := g(1 + f − P gs f). (38)By the L
∞-bound on f and the maximum prin
iple for P gs , we have

1

2
g ≤ g̃s ≤ 2g. (39)In what follows, we may assume without loss of generality that Lgf is not identi
ally 0. For,by (31) and Lemma 10,

∫

Lf g dµ = −
∫

Γ(f, g) dµ = −
∫

Γ(f, log g)g dµ =

∫

Lgf log g g dµ. (40)Thus, if Lgf is identi
ally 0, then ∫ Lf g dµ = 0; hen
e (44) below holds in this spe
i�
 
ase(without the next se
tion) sin
e the CD(R,∞) 
ondition holds on our RCD(R,∞) spa
e.4.4.2 Three key estimatesThe proof of Theorem 8 is based on (44) in Proposition 15 below. In turn, this bound is basedon the three key estimates in Lemmas 11, 12 and 14, whi
h in the manifold 
ase of Se
tion 3.2
orrespond to (20), (22) and (23). The proofs are a bit di�erent sin
e we use g̃s instead of gs.The Hopf-Lax semigroup (Qs)s>0 given by (16) will again play a 
ru
ial role. Requiredproperties for Qs in this framework are given in [3, Se
. 3℄ or [4, Se
. 3℄ for instan
e.We begin with the �rst estimate, 
orresponding to (20):Lemma 11 (First estimate)
lim inf
s→0

W 2
2 (Ptg̃sµ,Ptgµ)

2s2
> −1

2

∫

Pt(|∇f |2)g dµ+

∫

Γ(f, Ptf)g dµ.Proof. It su�
es to prove an lower bound on the right-hand side of (18). By a rearrangement,
∫

QsfPtg̃s − fPtg

s
dµ =

∫

Qsf − f

s
Pt(g̃s−g) dµ+

∫

Qsf − f

s
Ptg dµ+

∫

f
Pt(g̃s − g)

s
dµ. (41)Sin
e gµ ∈ P(X), the Cau
hy-S
hwarz inequality yields s−1(g̃s − g) → −g Lgf in L

1(µ). Thusthe last term in (41) 
onverges to −
∫

fPt(gL
gf) dµ. By Lemma 9, and as in Se
tion 3.2, thisquantity is equal to the se
ond term on the right-hand side of the assertion. Moreover, by thegeneral bound (19), the �rst term on the right-hand side of (41) goes to 0. Finally, by (19)19



and the Lebesgue dominated 
onvergen
e theorem we 
on
lude on the se
ond term as in theRiemannian 
ase of Se
tion 3.2. More pre
isely, we have
lim inf
s→0

∫

Qsf(x) − f(x)

s
Ptg(x)µ(dx)

> −1

2
lim sup
s→0

∫

sup
y∈B(x,

√
4s‖f‖∞)\{x}

(

f(y) − f(x)

d(x, y)

)2

Ptg(x)µ(dx) = −1

2

∫

|∇f |2Ptg dµ.Thus the assertion holds. �Next lemma deals with the se
ond estimate and 
orresponds to (22).Lemma 12 (Se
ond estimate)
lim sup
s→0

W 2
2 (g̃sµ, gµ)

2s2
≤ 1

2(1 − 2‖f‖∞)

∫

Γ(f)g dµ.Proof. Again, by the dual form (17), we need to bound ∫ Qsψ g̃sdµ −
∫

ψgdµ uniformly fromabove on the bounded Lips
hitz fun
tions ψ. We 
an assume that ψ is moreover supportedon a bounded set. Then the fun
tion (s1, s2) 7→
∫

Qs1(ψ)g̃s2 dµ satis�es the assumption of [2,Lem. 4.3.4℄ sin
e we have (39) and ‖Qs1ψ‖∞ ≤ ‖ψ‖∞. Thus, instead of (21), we obtain
d

ds

∫

Qs(ψ)g̃s dµ ≤ d

ds

∫

Qs(ψ)g̃s0 dµ

∣

∣

∣

∣

s0=s

+
d

ds

∫

Qs0(ψ)g̃s dµ

∣

∣

∣

∣

s0=s

=

∫
[

−1

2
|∇Qsψ|2(1 + f − P gs f) −Qsψ L

gP gs f

]

g dµfor a.e. s > 0. Here the equality follows from [4, Thm. 3.6℄, the properties ‖Qsψ‖Lip < ∞,
‖Qsψ‖∞ <∞ and the Lebesgue dominated 
onvergen
e theorem. Note that Qsψ ∈ D(Eg) sin
e
Qsψ is Lips
hitz with a bounded support. Thus, by virtue of Lemma 9 and (26),
−
∫

Qsψ (LgP gs f)g dµ = Eg(Qsψ,P gs f) ≤
√

Eg(Qsψ)Eg(P gs f) ≤
√

∫

|∇Qsψ|2g dµ Eg(P gs f).By 
ombining this estimate with the last one, we obtain
d

ds

∫

Qs(ψ)g̃s dµ ≤ 1

2(1 − 2‖f‖∞)
Eg(P gs f) ≤ 1

2(1 − 2‖f‖∞)
Eg(f) =

1

2(1 − 2‖f‖∞)

∫

Γ(f)g dµ.Here the se
ond inequality follows from the spe
tral de
omposition for quadrati
 forms and theequality follows from Lemma 9 again sin
e f ∈ D(L) ⊂ D(E). Thus the 
on
lusion follows byintegrating this estimate, as in the proof of (22). �For the third estimate, we still require some preparation. We 
all C2(X) the set of 
ontinuousfun
tions ψ on X for whi
h there exists C > 0 su
h that |ψ(x)| ≤ C(1+d(o, x)2). For ψ ∈ C2(X)and ν ∈ P2(X), we have ψ ∈ L
1(ν). By assumption on g, ψ ∈ L

p(gµ) for any ψ ∈ C2(X)and p ∈ [1,∞). The following lemma ensures integrability properties required in the proof ofLemma 14 below.Lemma 13 In the above notation 20



(i) ψgµ ∈ P2(X) for any ψ ∈ L
2(gµ) with ψgµ ∈ P(X).(ii) logPug ∈ C2(X) for u > 0.Proof. (i) Using Assumption (Reg1) and (36), this follows from

∫

d(o, x)2ψ(x)g(x)µ(dx) ≤
(
∫

d(o, x)4g(x)µ(dx)

)1/2(∫

ψ2g dµ

)1/2

<∞.(ii) By (36) this is obvious for u = 0 and hen
e we 
onsider the 
ase u > 0. First of all,
log Pug is 
ontinuous on X sin
e Pug > 0. Moreover, sin
e (X, d, µ) is an RCD(R,∞) spa
e, wehave the log-Harna
k inequality

Pu(log g)(o) −
Rd(x, o)2

2(e2Ru − 1)
≤ log Pug(x) ≤ log ‖g‖∞(see [6, Lem. 4.6℄ or [19, Prop. 4.1℄). Moreover log g ∈ C2(X) and Puδo ∈ P2(X) by the propertiesafter (29), so we have ∫ log g dPuδo = Pu(log g)(o) ∈ R. Thus log Pug ∈ C2(X). �We re
all 
hara
terizations of 
onvergen
e in W2 for later use. Let νn ∈ P2(X), n ∈ N and

ν ∈ P2(X). Then W2(νn, ν) → 0 is equivalent to either of the following (see e.g. [26, Thm. 6.9℄):
• νn → ν weakly and ∫ d(o, x)2νn(dx) →

∫

d(o, x)2ν(dx),
•
∫

ψ dνn →
∫

ψ dν for any ψ ∈ C2(X).We now turn to the third estimate.Lemma 14 (Third estimate)
lim inf
s→0

1

s2

∫ t

0
e−2R(t−u)[Entµ(Pug̃s) − Entµ(Pug)]

2du >

∫ t

0
e−2R(t−u)

[
∫

Pu
(

gLgf
)

log Pug dµ

]2

du.Proof. By the Fatou lemma, it su�
es to show
lim inf
s→0

[

Entµ(Pug̃s) − Entµ(Pug)

s

]2

>

[
∫

Pu
(

gLgf
)

log Pug dµ

]2for ea
h u > 0. By (39) and sin
e Entµ(Pug) ∈ R, we have Pug̃s logPug, Pug log Pug ∈ L
1(µ).Moreover a2 > (a+ b)2/(1 + δ) − b2/δ for δ > 0 and

0 ≤ x log x− x+ 1 ≤ (x− 1)2for x > 0, so
(Entµ(Pug̃s) − Entµ(Pug))

2
>

1

1 + δ

(
∫

(Pug̃s − Pug) log Pug dµ

)2

−1

δ

(
∫

(Pug̃s − Pug)
2

Pug
dµ

)2

.By the Cau
hy-S
hwarz inequality for Pu,
lim sup
s→0

1

s

∫

(Pug̃s − Pug)
2

Pug
dµ ≤ lim sup

s→0

1

s

∫

Pu

(

(g̃s − g)2

g

)

dµ = lim sup
s→0

s

∫
∣

∣

∣

∣

P gs f − f

s

∣

∣

∣

∣

2

g dµ = 0.
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Sin
e δ > 0 is arbitrary, it su�
es to show
lim
s→0

1

s

∫

Pu
(

g(P gs f − f)
)

logPug dµ =

∫

Pu
(

gLgf
)

logPug dµ (42)in order to 
omplete the proof. Here the well-de�nedness of the right-hand side is in
ludedin the assertion. Sin
e r 7→ r+ is 1-Lips
hitz, s−1(P gs f − f)+ = (s−1(P gs f − f))+ 
onvergesto (Lgf)+ in L
2(gµ) and hen
e in L

1(gµ). By [3, Thm. 4.16 (d)℄, ∫ Lgf g dµ = 0. Hen
e
‖(Lgf)+‖L1(gµ) > 0 sin
e Lgf is not identi
ally 0 (as assumed at the end of Se
tion 4.4.1). Thus
‖(P gs f − f)+‖L1(gµ) > 0 for su�
iently small s > 0. Let us now de�ne νfs , νf0 ∈ P(X) as follows:

νfs :=
(P gs f − f)+

‖(P gs f − f)+‖L1(gµ)
gµ, νf0 :=

(Lgf)+
‖(Lgf)+‖L1(gµ)

gµ.Then νfs → νf0 weakly in P(X) as s → 0. Moreover, by (i) in Lemma 13, νfs ∈ P2(X) for
s > 0 sin
e f, P gs f, Lgf ∈ L

2(gµ). Furthermore W2(ν
f
s , ν

f
0 ) → 0 as s → 0 by the remark afterLemma 13 : for

∣

∣

∣

∫

d(o, ·)2dνfs −
∫

d(o, ·)2dνf0
∣

∣

∣

≤
(

∫

d(o, ·)4g dµ
)1/2∥

∥

∥

s

‖(P gs f − f)+‖L1(gµ)

(P gs f − f)+
s

− 1

‖(Lgf)+‖L1(gµ)
(Lgf)+

∥

∥

∥

L2(gµ)
→ 0as again s−1(P gs f − f)+ → (Lgf)+ in L

2(gµ) (and hen
e in L
1(gµ)).Then, likewise, Puνfs ∈ P2(X) for u, s > 0 and

lim
s→0

W2(Puν
f
s , Puν

f
0 ) = 0 (43)by (28). By Lemma 13 again, log Pug ∈ C2(X) and in parti
ular log Pug ∈ L

1(Puν
f
0 ). Hen
e,by (43) and the remark after Lemma 13, we obtain

lim
s→0

1

s

∫

Pu(g(P
g
s f − f)+) log Pug dµ = lim

s→0

‖(P gs f − f)+‖L1(gµ)

s

∫

logPug dPuν
f
s

= ‖(Lgf)+‖L1(gµ)

∫

log Pug dPuν
f
0 =

∫

Pu(g(L
gf)+) log Pug dµ ∈ R.We 
an apply the same argument to (P gs f−f)− instead of (P gs f−f)+ to show the 
orrespondingassertion. In parti
ular, the integral in the right-hand side of (42) is well-de�ned and these two
laims yield (42). �4.4.3 Con
lusion of the proof of Theorem 8Let g be as in the last se
tion, that is, given by (36). To pro
eed, we re
all the notion of semigroupmolli�
ation introdu
ed in [6, Se
. 2.1℄. Let κ ∈ C∞

c ((0,∞)) with κ > 0 and ∫∞
0 κ(r) dr = 1.For ε > 0 and f ∈ L

p(µ) with p ∈ [1,∞], we de�ne hεf by
hεf :=

1

ε

∫ ∞

0
Prf κ

(r

ε

)

dr.
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It is immediate that ‖hεf − f‖E → 0 as ε → 0 for f ∈ D(E). Moreover, for f ∈ L
2(µ) ∩ L

∞(µ),
hεf, L(hεf) ∈ D(L) ∩ Lipb(X). Here the latter one 
omes from the following representation:

Lhεf = − 1

ε2

∫ ∞

0
Prf κ

′
(r

ε

)

dr.Proposition 15 Following the same assumptions as in Theorem 8, let f = hεf0 for some ε > 0and f0 ∈ L
2(µ) ∩ L

∞(µ). Then Γ(f) ∈ D(E), and for g as above
1

2

∫

Γ(Γ(f), g) dµ +

∫

Γ(f, Lf)g dµ ≤ −R
∫

Γ(f)g dµ− 1

m

(
∫

Lf g dµ

)2

. (44)Proof. By assumption, f ∈ D(L)∩ Lipb(X). Moreover, Γ(f) = |∇f |2 µ-a.e. by [6, Thm. 3.17℄.Let η > 0 be so small that η‖f‖∞ ≤ 1/4. By applying Lemma 11, Lemma 12 and Lemma 14 to
ηf instead of f in (8),

− η2

2

∫

PtΓ(f) g dµ+ η2

∫

Γ(f, Ptf)g dµ

≤ e−2Rtη2

2(1 − 2η‖f‖∞)

∫

Γ(f)g dµ− η2

m

∫ t

0
e−2R(t−u)

(
∫

Pu((L
gf)g) log Pug dµ

)2

du.By dividing this inequality by η2 and letting η → 0,
− 1

2

∫

PtΓ(f) g dµ+

∫

Γ(f, Ptf)g dµ

≤ e−2Rt

2

∫

Γ(f)g dµ − 1

m

∫ t

0
e−2R(t−u)

(
∫

Pu((L
gf)g) log Pug dµ

)2

du. (45)By virtue of molli�
ation by hε, we have Lf ∈ D(E) and
d

dt

∣

∣

∣

∣

t=0

∫

Γ(f, Ptf)g dµ = − 1

ε2

∫ ∞

0
κ′
(r

ε

)

∫

Γ(f, Prf0)g dµdr =

∫

Γ(f, Lf)g dµ.Note that Γ(f) ∈ D(E) (hen
e the left-hand side of (44) is well-de�ned). This fa
t followsfrom [24, Lem. 3.2℄ with the aid of molli�
ation by hε. Then, by Lemma 16 below, we 
andi�erentiate (45) at t = 0 to obtain
1

2

∫

Γ(Γ(f), g) dµ +

∫

Γ(f, Lf)g dµ ≤ −R
∫

Γ(f)g dµ − 1

m

(
∫

(Lgf)g log g dµ

)2

= −R
∫

Γ(f)g dµ − 1

m

(
∫

(Lf)g dµ

)2

.Here we have used (40) also in the last equality. This is nothing but the desired inequality. �Lemma 16 For ψ ∈ L2(gµ),
lim
u→0

∫

Pu(ψg) log Pug dµ =

∫

ψg log g dµ.
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Proof. We may assume ψ ≥ 0 and ψgµ ∈ P(X) without loss of generality. Then in parti
ular
ψgµ ∈ P2(X) by Lemma 13 (i). First of all,

∫

Pu(ψg)| log Pug| dµ <∞by a similar argument as in Lemma 13. Thus
∫

Pu(ψg) log Pug dµ =

∫

ψgPu(log Pug) dµ ≤
∫

ψg log P2ug dµby the Fubini theorem and the Jensen inequality for Pu as integral operator. Now, for ea
h x,
limu→0W2(Puδx, δx) = 0 by the remarks in the end of Se
tion 4.1, and g is bounded and 
on-tinuous, so Pug(x) =

∫

gdPuδx → g(x). Moreover log P2ug ≤ log ||g||∞ and ψgµ is a probabilitymeasure, so by the Fatou lemma
lim sup
u→0

∫

Pu(ψg) log Pug dµ ≤
∫

ψg log g dµ. (46)For the opposite bound, again by the Jensen inequality for Pu,
∫

Pu(ψg) log Pug dµ >

∫

Pu(ψg)Pu(log g) dµ =

∫

log gP2u(ψg) dµ.Moreover log g is in C2(X) and W2(P2u(ψg)µ,ψgµ) → 0 as u → 0, again by the remarks in theend of Se
tion 4.1. Hen
e, by the remark after Lemma 13, we obtain
lim inf
u→0

∫

Pu(ψg) log Pug dµ > lim
u→0

∫

P2u(ψg) log g dµ =

∫

ψg log g dµ. (47)Hen
e the 
on
lusion follows from the 
ombination of (46) and (47). �Now we are in turn to 
omplete the proof of Theorem 8.Proof of Theorem 8. The last 
ru
ial step 
onsists in transforming (
∫

(Lf)g dµ)2 into
∫

(Lf)2g dµ whi
h will be done by a lo
alization pro
edure. Let f be as in Proposition 15.Remark �rst that, by letting λ → 0 in the de�nition (36), we obtain (44) for g0 instead ofthe fun
tion g of (36). To put the square inside the integral in (44), we need to lo
alize thisinequality, and thus we employ a partition of unity. Let η > 0. Sin
e Lf ∈ Lipb(X), we 
antake δ > 0 su�
iently small so that |Lf(x) − Lf(y)| < η for any x, y ∈ X with d(x, y) < 4δ.Sin
e supp g0 is 
ompa
t, there is {xi}ni=1 ⊂ X su
h that supp g0 ⊂ ⋃n
i=1Bδ(xi) (note that werequire the regularity assumption (Reg2) only at this point). Let us de�ne ψ̃i (i = 1, . . . , n) by

ψ̃i(x) := 0 ∨ (2δ − d(xi, x)) and
ψi(x) :=











ψ̃i(x)
∑n

j=1 ψ̃j(x)
if ψ̃i(x) 6= 0,

0 if ψ̃i(x) = 0.Then ψi ∈ Lip(supp g0), 0 ≤ ψi ≤ 1, suppψi ⊂ B2δ(xi) and ∑n
i=1 ψi(x) = 1 for x ∈ supp g0. Byapplying (44) for ψig0/‖ψig0‖L1(µ) instead of g0, we have

1

2

∫

Γ(Γ(f), g0) dµ+

∫

Γ(f, Lf)g0 dµ =

n
∑

i=1

(

1

2

∫

Γ(Γ(f), ψig0) dµ+

∫

Γ(f, Lf)ψig0 dµ

)

≤ −R
∫

Γ(f)g0 dµ− 1

m

n
∑

i=1

1

‖ψig0‖L1(µ)

(
∫

(Lf)ψig0 dµ

)2

.
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By the 
hoi
e of δ and {ψi}ni=1, with η < 1,
n
∑

i=1

1

‖ψig0‖L1(µ)

(
∫

(Lf)ψig0 dµ

)2

> (1 − η)

n
∑

i=1

‖ψig0‖L1(µ)Lf(xi)
2 − η

> (1 − η)

∫

(Lf)2g0 dµ − η − 2η(1 − η)‖Lf‖∞By letting η → 0,
−1

2

∫

Γ(Γ(f), g0) dµ −
∫

Γ(f, Lf)g0 dµ > R

∫

Γ(f)g0 dµ +
1

m

∫

(Lf)2g0 dµ.Let now g ∈ D(L) ∩ L
∞(µ) with g > 0 and Lg ∈ L

∞(µ), as in Theorem 8. By virtue ofmolli�
ation by hε, (26) and (29), we have Γ(f),Γ(f, Lf), (Lf)2 ∈ L
1(µ)∩L

∞(µ). Thus we 
anrepla
e g0 in the last inequality with g1 ∈ Lipb(X) ∩ D(E), by a standard trun
ation argument.Then we 
an repla
e g1 with g sin
e D(E) ∩ Lipb(X) is dense in D(E) with respe
t to ‖ · ‖E .Finally, we remove the molli�
ation hε. Let f ∈ D(L) with Lf ∈ D(E) and fn := (−n)∨f∧n.Then we have, from the integration by parts formula (31),
1

2

∫

Γ(hεfn)Lg dµ−
∫

Γ(hεfn, Lhεfn)g dµ > R

∫

Γ(hεfn)g dµ +
1

m

∫

(Lhεfn)
2g dµ.By virtue of molli�
ation by hε, ‖hεfn− hεf‖E → 0 and ‖Lhεfn−Lhεf‖E → 0 as n→ ∞. Thuswe obtain (27) by letting n→ ∞ and ε→ 0 after it, with taking Lhεf = hεLf into a

ount. �5 Links with fun
tional inequalitiesA new proof of the entropy-energy inequalityWe now 
onsider the 
ase where R > 0 and µ is a probability measure. It is 
lassi
al thatthe CD(R,m) 
ondition implies the entropy-energy inequality

Entµ(h) ≤
m

2
log

(

1 +
1

mR
I(h)

) (48)for any fun
tion h su
h that ∫ hdµ = 1. Here I(h) =
∫

Γ(h)/h dµ is the Fisher informationof h. This inequality is given in [8, Thm. 6.8.1℄ for instan
e, and also in [13, Cor. 3.28℄ via the
(R,m)-
onvexity of Entµ.Inequality (48) improves upon the standard non dimensional logarithmi
 Sobolev inequality
Entµ(h) ≤ I(h)/2R, a 
onsequen
e of the CD(R,∞) 
ondition. It leads for example to a sharpbound on the instantaneous 
reation of the entropy of the heat semigroup in P2(X), namely

Entµ(Pth) ≤ m

2
log

1

1 − e−2Rtfor all h and t > 0. For similar bounds, see also [13, Prop. 2.17℄ for a gradient �ow argumentstarting from the (R,m)-
onvexity of Entµ, and [10, Prop. 3.1℄ for Fokker-Plan
k equations on
R
m with R-
onvex potentials. 25



The two approa
hes of [8℄ and [13℄ are rather involved, and we now give a formal (and belowrigorous) and dire
t way of re
overing (48) from the 
ontra
tion inequality (8) in Theorem 1(whi
h is equivalent to the CD(R,m) 
ondition). The key point is the (formal) identity
lim sup
δ↓0

W 2
2 (Pδ+thµ, Pthµ)

δ2
= I(Pth) (49)(see e.g. [22, Equation (26)℄) and the 
lassi
al identity d
duEntµ(Puh) = −I(Puh). Indeed, frominequality (8) and the Fatou Lemma, for any 0 ≤ s < t,

I(Pth) = lim sup
δ↓0

W 2
2 (Pt+δhµ, Pthµ)

δ2
≤ e−2R(t−s) lim sup

δ↓0

W 2
2 (Ps+δhµ, Pshµ)

δ2

− 2

m

∫ t

s
e−2R(t−u) lim inf

δ↓0

(

Entµ(Pu+δh) − Entµ(Puh)

δ

)2

du

= e−2R(t−s)I(Psh) −
2

m

∫ t

s
e−2R(t−u)I(Puh)

2du.This yields the di�erential inequality
d

dt
I(Pth) ≤ −2RI(Pth) −

2

m
I(Pth)

2and then
I(Pth) ≤

mRI(h)

e2Rt(I(h) +mR) − I(h)
(50)by integration on [0, t]. The entropy-energy inequality (48) follows by further integrating (50)on [0,+∞) and using lim

t→∞
Entµ(Pth) = 0.Before making this argument rigorous we give a formal argument to (49) at t = 0, alternativeto [22℄. For simpli
ity, assume that µ = dx is the Riemannian measure and (Pt)t>0 is the heatsemigroup asso
iated with the Lapla
e-Beltrami operator L = ∆. Let h be a probability densitywith respe
t to dx. First

∂sPsδh+ ∇ · (wsPsδh) = 0,where ws = −δ∇ log Psδh. Then one 
an 
he
k that at the �rst order in δ, the 
ouple (Psδh,ws)s∈[0,1]is optimal between Pδhµ and hµ in the Benamou-Brenier formulation (see [26, Chap. 7℄). Hen
e
W 2

2 (Pδhµ, hµ)

δ2
=

∫ 1

0

∫

|∇ logPsδh|2Psδhdµds + o(1) → I(h), δ → 0.Theorem 17 In a REM spa
e as in Se
tion 4, the 
ontra
tion inequality (8) implies the entropy-energy inequality (48).Proof. Let h be a probability density with hµ ∈ P2(X) and I(h) < ∞, as we 
an assume.Re
all that (X, d, µ) is a RCD(R,∞) spa
e under our assumption (8). Thus, by [3, Thm. 9.3 (i)and Thm. 8.5 (i)℄,
− d

du
Entµ(Puh) = I(Puh) = lim sup

δ↓0

W 2
2 (Pu+δhµ, Puhµ)

δ2
(51)
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for a.e. u ∈ (0,+∞). In parti
ular, (49) holds almost everywhere and, pro
eeding as above,
I(Pth) ≤ e−2R(t−s)I(Psh) −

2

m

∫ t

s
e−2R(t−u)I(Puh)

2du (52)for any t > s > 0 where (51) is valid.We now prove that (52) holds for all t > s > 0. For this, set ψ(t) := e2RtI(Pth). Then
ψ is non-in
reasing on [0,∞) by a standard argument: Indeed, by CD(R,∞) with the self-improvement argument in [24℄, we have √Γ(Pth) ≤ e−RtPt(

√

Γ(h)) for all t > 0. It yields
Γ(Pth)

Pth
≤ e−2R(t−s)

(

Pt−s(
√

Γ(Psh))
)2

Pt−s(Psh)
≤ e−2R(t−s)Pt−s

(

Γ(Psh)

Psh

)

.Thus the 
laim follows by integrating this inequality by µ. Moreover t 7→ I(Pth) is lower semi-
ontinuous (see e.g. [3, Lem. 4.10℄). Thus ψ is lower semi-
ontinuous and non-in
reasing on
[0,∞), so also right-
ontinuous. This implies that (52) holds for t > s > 0.Let now δ > 0. By dividing (52) by e−2Rt(ψ(t) + δ)(ψ(s) + δ), for t > s > 0,

2

m(ψ(s) + δ)(ψ(t) + δ)

∫ t

s
e−2Ruψ(u)2 du ≤ 1

ψ(t) + δ
− 1

ψ(s) + δ
· (53)We 
laim

2(1 − δ)

m

∫ t

0
e−2Ru

(

ψ(u)

ψ(u) + δ

)2

du ≤ 1

ψ(t) + δ
− 1

ψ(0) + δ
(54)for any t ∈ [0,∞). For the proof of the 
laim, we let J be the subset of t ∈ [0,∞) satisfying (54)and prove J = [0,∞). First, 0 ∈ J obviously holds and hen
e J 6= ∅. Se
ond, if t ∈ J and

t′ ∈ (t,∞) with t′ − t su�
iently small, then t′ ∈ J . Indeed, by the right 
ontinuity of ψ, wehave ψ(u) + δ > (1 − δ)(ψ(t) + δ) for any u > t being su�
iently 
lose to t. We take t′ > t sothat this holds for all u ∈ (t, t′). Thus (54) for this t, (53) and ψ being non-in
reasing yield
2(1 − δ)

m

∫ t′

0
e−2Ru

(

ψ(u)

ψ(u) + δ

)2

du

≤ 1

ψ(t) + δ
− 1

ψ(0) + δ
+

2

m(ψ(t) + δ)(ψ(t′) + δ)

∫ t′

t
e−2Ruψ(u)2 du

≤ 1

ψ(t′) + δ
− 1

ψ(0) + δand hen
e t′ ∈ J . Third, J is 
losed under in
reasing sequen
es. That is, for any boundedin
reasing sequen
e (tn)n∈N in J , then lim
n→∞

tn ∈ J . This property follows from the fa
t that ψ islower semi-
ontinuous. Now these three properties imply J = [0,∞) and hen
e the 
laim holds.Finally we obtain (50) for all t > 0 by taking δ ↓ 0 and rearranging terms in (54). But
Entµ(h) − Entµ(Pth) =

∫ t

0
I(Psh)ds (55)for all t by [3, Thms. 9.3 (i) and 8.5 (i)℄ again. Hen
e integrating (50) in t 
on
ludes the proof. �27



A dimensional HWI type inequalityFor R being 0 or negative, no logarithmi
 Sobolev inequality for µ holds in general, andfollowing [22℄ it 
an be repla
ed by a HWI interpolation inequality with an additional W2 term :this is inequality giving an upper bound on the entropy H in terms of the distan
e W2 and theFisher information I. As above, let us see how to derive a dimensional form of this inequalityfrom the 
ontra
tion property (7) in Theorem 1.In a REM spa
e as in Se
tion 4, with a referen
e measure µ in P2(X), assume the 
ontra
tionproperty (7) with R = 0. Let g, h su
h that gµ, hµ ∈ P2(X), I(h) < ∞ and gµ has boundedsupport. Re
all �rst that (X, d, µ) is a RCD(0,∞) spa
e under our assumption (7). In parti
ular
I(Pth) ≤ I(h) for all t > 0. Then [1, Thm. 6.3℄ and the Cau
hy-S
hwarz inequality yield

1

2

d

dt
W 2

2 (Pthµ, gµ) > −W2(Pthµ, gµ)
√

I(Pth)for almost every t > 0. In parti
ular
1

2
W 2

2 (Pthµ, gµ)−1

2
W 2

2 (hµ, gµ) > −
∫ t

0
W2(Pshµ, gµ)

√

I(Psh) ds > −
∫ t

0
W2(Pshµ, gµ)

√

I(h) dsfor all t > 0.If now g 
onverges to 1 in su
h a way that gµ 
onverges to µ in the W2 distan
e, then usingthe triangular inequality
∣

∣W2(Pshµ, gµ) −W2(Pshµ, µ)
∣

∣ ≤W2(gµ, µ)for any 0 ≤ s ≤ t one 
an pass to the limit above, leading to
1

2
W 2

2 (Pthµ, µ) − 1

2
W 2

2 (hµ, µ) > −
∫ t

0
W2(Pshµ, µ)

√

I(h) ds.Now by (7) the left-hand side is bounded from above by
−4m

∫ t

0
sinh2

(

Entµ(Psh)

2m

)

ds.Finally s 7→ W2(Pshµ, µ) and s 7→ Entµ(Psh) are 
ontinuous on [0, t], so one 
an let t go to 0and obtain
sinh2

(

Entµ(h)

2m

)

≤ 1

4m
W2(hµ, µ)

√

I(h). (56)In [13℄, they proved the HWI inequality
exp

(

Entµ(g1) − Entµ(g0)

m

)

≤ 1 +
1

m
W2(g1µ, g0µ)

√

I(g1),and we 
an obtain (56) also from this inequality by 
onsidering the 
ases (g0, g1) = (h, 1) and
(g0, g1) = (1, h) in this inequality and summing them up. The inequality obtained in the 
ase
(g0, g1) = (1, h) is in fa
t better than (56) (and has the same behaviour for large Entµ(h)).Here is a possible appli
ation of (56): in the above notation and assumptions (with R = 0),there exists a positive numeri
al 
onstant C su
h that

Entµ(Pth) ≤
m

2
max

{

C, log
W 2

2 (hµ, µ)

mt

}

, t > 028



for all h with hµ ∈ P2. This bound is a 
onsequen
e of (55), (56) with Pth instead of h, thebounds W2(Pthµ, µ) ≤W2(hµ, µ) and sinh4(x) > e4x/32 for x large enough.For short time, this gives a regularization bound of the entropy as m/2 log(1/t), whi
h isexa
tly the behaviour observed above for R > 0, and also for the heat kernel on R
m; it alsoimproves on the 
orresponding bound m log(1/t) in [13, Prop. 2.17, (ii)℄.A
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