
Equivalene between dimensional ontrations in Wassersteindistane and the urvature-dimension onditionFrançois Bolley∗, Ivan Gentil†‡, Arnaud Guillin§, Kazumasa Kuwada¶February 15, 2017AbstratThe urvature-dimension ondition is a generalization of the Bohner inequality to weightedRiemannian manifolds and general metri measure spaes. It is now known to be equivalentto evolution variational inequalities for the heat semigroup, and quadrati Wasserstein distaneontration properties at di�erent times. On the other hand, in a ompat Riemannian manifold,it implies a same-time Wasserstein ontration property for this semigroup. In this work wegeneralize the latter result to metri measure spaes and more importantly prove the onverse:ontration inequalities are equivalent to urvature-dimension onditions. Links with funtionalinequalities are also investigated.Key words: Optimal transport, Markov di�usion semigroup, Curvature-dimension ondition,Metri measure spae.Mathematis Subjet Classi�ation (2010): 58J65, 58J35, 53B21IntrodutionThe von Renesse-Sturm theorem (see [27℄) ensures that a Wasserstein distane ontration prop-erty between solutions to the heat equation on a Riemannian manifold is equivalent to a lowerurvature ondition. This result is one of the �rst equivalene results relating the Wassersteindistane and a urvature ondition. Reent works have been devoted to a more preise urvature-dimension ondition instead of a sole urvature ondition. In this work, and in a fairly generalframework, we derive new dimensional ontration properties under a urvature-dimension on-dition and we show that they are all equivalent to it.Let ∆ be the Laplae-Beltrami operator on a smooth Riemannian manifold (M,G) and let
(Pth)t>0 be the solution to the heat equation ∂tu = ∆u with h as the initial ondition. Many of
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the oming notions and results have been onsidered in a more general setting, but for simpliityin the introdution we fous on this ase. The Bohner identity states that
1

2
∆|∇f |2 −∇f · ∇∆f = |∇∇f |2 + Ric(∇f,∇f)where Ric is the Rii urvature of (M,G). The manifold assoiated with its Laplaian is said tosatisfy the CD(R,m) urvature-dimension ondition if its Rii urvature is uniformly boundedfrom below by R ∈ R and its dimension is smaller than m ∈ (0,+∞]. In this ase
1

2
∆|∇f |2 −∇f · ∇∆f >

1

m
(∆f)2 +R|∇f |2 (1)by the Cauhy-Shwarz inequality. The CD(R,m) ondition and (1) are the starting point ofmany omparison theorems, funtional and geometrial inequalities, bounds on the heat kernel,et. (see e.g. [8, 13, 26, 28℄).In this work we fous on the link between the urvature-dimension ondition and Wassersteindistane ontration properties of the heat semigroup. The von Renesse-Sturm theorem [27℄states that: the CD(R,∞) ondition holds if and only if

W 2
2 (Ptgdx, Pthdx) ≤ e−2RtW 2

2 (gdx, hdx) (2)for all t > 0 and probability densities g, h with respet to the Riemannian measure dx. Here W2is the Wasserstein distane with quadrati ost.There are many proofs of this result as well as extensions to more general evolutions andspaes, see for instane [2, 8, 9, 15, 17, 23, 28, 29℄. Following the seminal papers [21, 25℄, attentionhas been drawn to taking the dimension of the manifold into aount.A �rst way of inluding the dimension is to use two di�erent times s and t in the inequality (2).It is proved in [9, 18℄ that the CD(0,m) ondition implies
W 2

2 (Psgdx, Pthdx) ≤W 2
2 (gdx, hdx) + 2m(

√
t−√

s)2 (3)for all s, t > 0 and all probability densities g, h. A non zero lower bound on the urvature andthe equivalene have been further onsidered in [13, 18℄:
• In [18℄, the fourth author proved that the CD(R,m) ondition holds if and only if

W 2
2 (Ptgdx, Pshdx) ≤ A(s, t,R,m)W 2

2 (gdx, hdx) +B(s, t,m,R) (4)for all s, t > 0 and all probability densities g, h, and for appropriate positive funtions A,B.
• In [13℄, the authors proved that the CD(R,m) ondition holds if and only if

s R
m

(

1

2
W2(Ptgdx, Pshdx)

)2

≤ e−R(t+s) s R
m

(

1

2
W2(gdx, hdx)

)2

+
m

R
(1 − e−R(s+t))

(
√
t−√

s)2

2(t+ s)
(5)for all s, t > 0 and all probability densities g, h. Here sr(x) = sin(

√
rx)/

√
r if r > 0,

sr(x) = sinh(
√

|r|x)/
√

|r| if r < 0 and s0(x) = x, hene reovering (3) when R = 0. Bothinequalities (4) and (5) are extensions of (2) and (3), taking the dimension into aount.2



Contration properties with the same time have been derived in [11℄ for the Eulidean heatequation in R
m, and then extended by the third author in [14℄ to a ompat Riemannian manifold.Let Entdx(h) =

∫

h log hdx be the entropy of a probability density h. Then the CD(R,m)ondition implies
W 2

2 (Ptgdx, Pthdx) ≤ e−2RtW 2
2 (gdx, hdx) − 2

m

∫ t

0
e−2R(t−u)(Entdx(Pug) − Entdx(Puh))2dufor all t > 0 and all probability densities g, h. This bound has also been proved in [11℄ for theMarkov transportation distane instead of the W2 distane. This distane di�ers from W2 andhas atually been tailored to Markov semigroups and the Bakry-Émery Γ2 alulus. Dimensionalontration properties for a Wasserstein distane de�ned with an adapted ost have also beenderived in [29℄.In this paper we derive diverse same time ontration inequalities under a general CD(R,m)urvature-dimension ondition, and in fat prove that they are all equivalent to this ondition.The results and the proofs will be given in the two settings of a smooth Riemannian manifoldand of a more general Riemannian energy measure spae, whih is introdued in [6℄ and loselyrelated to the so-alled RCD metri measure spaes (see [5℄ and also [1, 13℄).The paper is organized as follows. In Setion 1, we state and explain the ontext of our mainresult, Theorem 1. In Setion 2, we present the strategy of our proof, motivated by the elementarygradient �ow approah in Eulidean spae. The main issue, from the weakest ontration tothe urvature-dimension ondition, is proved on a Riemannian manifold in Setion 3, and ona Riemannian energy measure spae in Setion 4. The general strategy is the same in bothsettings, and it ould seem redundant to give both proofs. However the proof in the Riemanniansetting is rather simpler, presents the most important steps of the argument and thus gives away to get it in a more general spae. We believe that it is an opportunity to emphasize, inour example, the main issues arising in transferring a proof in the Riemannian setting to theabstrat measure spae setting. Indeed, there, regularity is no more available �for free�, andour proof will ruially use a whole panel of powerful tools developed by L. Ambrosio, N. Gigli,G. Savaré, K.-T. Sturm and oauthors to overome this di�ulty, in partiular loalization andmolli�ation by semigroup.The easier impliations in Theorem 1 are diretly proved on a Riemannian energy measurespae in Setion 4. The last setion gives a new and simple derivation of a lassial entropy-energy inequality, as well as dimensional HWI inequalities: for this we start from our ontrationinequalities instead of the urvature-dimension ondition, as in earlier works.1 Main resultOur main theorem states that, in a quite general framework, a urvature-dimension ondition isequivalent to same time Wasserstein distane ontration inequalities.Let (X, d) be a Polish metri spae, P(X) be the set of Borel probability measures on Xand P2(X) be the set of all µ ∈ P(X) suh that ∫ d(x0, x)

2 dµ(x) < ∞ for some x0 ∈ X. The(quadrati) Wasserstein distane between ν1 and ν2 in P2(X) is de�ned by
W2(ν1, ν2) = inf

π

√

∫∫

d(x, y)2 dπ(x, y)
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where the in�mum runs over all probability measures π on X× X with marginals ν1 and ν2.A fundamental tool is the Kantorovih dual representation : for ν1, ν2 ∈ P2(X),
W 2

2 (ν1, ν2)

2
= sup

ψ

{

∫

Qψ dν1 −
∫

ψ dν2

}

. (6)Here the supremum runs over all bounded Lipshitz funtions ψ (in this ase Theorem 5.10in [26℄ an be extended to Lipshitz instead of ontinuous funtions, see [17, Rmk. 3.6℄) and Qψis the inf-onvolution of ψ, de�ned on X by
Qψ(x) = inf

y∈X

{

ψ(y) +
d(x, y)2

2

}

.The Wasserstein spae (P2(X),W2) is desribed in the referene books [2℄ and [26℄. We shallde�ne the entropy Entµ(f) of a probability density f with respet to a (�nite or not) measure µby Entµ(f) =
∫

f log f dµ if f(log f)+ ∈ L
1(µ) and ∞ otherwise.Our result will be stated in the two settings of a Riemannian Markov triple (M, µ,Γ) (RMTin short), and a Riemannian energy measure spae (X, τ, µ, E) (REM in short). These settingswill be desribed in detail in Setions 3 and 4 respetively. A REM spae is a partiular metrimeasure spae, developed in [6℄. A RMT is a smooth Riemannian manifold equipped with aweighted Laplaian (see [8℄) and is a partiular example of REM spae.Even if a RMT is a REM spae we prefer to state and prove our result in both settings sinethe argument is a little simpler in the Riemannian ase. We also believe that it emphasizes themain di�ulties when generalizing a result from a smooth setting to an abstrat metri measurespae. In both spaes, (Pt)t>0 denotes the assoiated Markov semigroup. It is de�ned throughthe weighted Laplaian in the RMT ase, and through the Dirihlet form in the REM ase.The CD(R,m) urvature-dimension ondition is de�ned using the Bohner inequality (1) ina Riemannian manifold and in a weak form in a metri measure spae (see De�nitions 3 and 6).Reall �nally that for r ∈ R the map sr is de�ned on R by

sr(x) =







sin(
√
r x)/

√
r if r > 0

sinh(
√

|r|x)/
√

|r| if r < 0
x if r = 0.Theorem 1 (Equivalene between ontrations and CD(R,m) ondition)Consider a RMT or REM spae as in Setions 3 and 4, with (�nite or not) referenemeasure µ and assoiated semigroup (Pt)t>0. Let R ∈ R and m > 0. Then the followingproperties are equivalent:(i) the CD(R,m) (or weak CD(R,m) in a REM spae) urvature-dimension ondition holds;(ii) for any t > 0 and any probability densities g, h with respet to µ,

s R
m

(

1

2
W2(Ptgµ, Pthµ)

)2

≤ e−2Rt s R
m

(

1

2
W2(gµ, hµ)

)2

− 2m

∫ t

0
e−2R(t−u) sinh2

(Entµ(Pug) − Entµ(Puh)

2m

)

du; (7)(iii) for any t > 0 and any probability densities g, h with respet to µ,
W 2

2 (Ptgµ, Pthµ)≤e−2RtW 2
2 (gµ, hµ)− 2

m

∫ t

0
e−2R(t−u) (Entµ(Pug) − Entµ(Puh))

2 du. (8)
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See Theorems 5 and 8 for a more preise framework of Theorem 1.A bound with the same additional term as in (ii) has also been derived in [10℄ for somespei� instanes of symmetri Fokker-Plank equations in R
m, for whih the generator onlysatis�es a CD(R,∞) ondition. Combined with a de�it in the Talagrand inequality, it has ledto re�ned onvergene estimates on the solutions.The more di�ult (iii) ⇒ (i) is proved in both RMT and REM spaes, in Setions 3 and 4respetively. The easier (i) ⇒ (ii) ⇒ (iii) are diretly proved on a REM spae in Setion 4.2 Strategy of the proofs2.1 Example of a gradient �ow in R

dLet us �rst present the easiest ase of a smooth gradient �ow in R
d. There we shall see thatthe equivalene between the ontration inequality (8) and the CD(R,m) urvature-dimensionondition is natural. It gives a way to understand the general ase.Let F : R

d → R be a C2 smooth funtion, and let (Xt)t>0 be a gradient �ow for the funtion
F , that is, a solution to the di�erential equation

dXt

dt
= −∇F (Xt). (9)Following [13℄, the funtion F satis�es a CD(R,m) urvature-dimension ondition for R ∈ Rand m > 0 if for any x, h ∈ R

d, the map [0, 1] ∋ s 7→ ϕ(s) = F (x + sh) satis�es the onvexityinequality
ϕ′′(s) > R||h||2 +

1

m
(ϕ′(s))2. (10)Here || · || is the Eulidean norm in R

d. Sine the path (x + sh)s∈[0,1] is a geodesi between xand x+ h, this means that F satis�es a (R,m)-onvexity ondition along geodesis.Let now (Xt)t>0 and (Yt)t>0 be two solutions to (9) with initial onditions X0 and Y0 respe-tively. Let also ϕt(s) = F (Xt + s(Yt −Xt)), so that ϕ′
t(s) = ∇F (Xt + s(Yt −Xt)) · (Yt −Xt).Then the funtion Λ(t) = ||Xt − Yt||2 satis�es

Λ′(u) = −2(Xu − Yu) · (∇F (Xu) −∇F (Yu)) = −2

∫ 1

0
ϕ′′
u(s)ds.If now the funtion F satis�es the above CD(R,m) ondition (10), then

Λ′(u) ≤ −2R||Xu − Yu||2 −
2

m

∫ 1

0
(ϕ′

u(s))
2du ≤ −2RΛ(u) − 2

m
(ϕu(1) − ϕu(0))

2by the Cauhy-Shwarz inequality. Integrating over the interval [0, t], we get
||Xt − Yt||2 ≤ e−2Rt||X0 − Y0||2 −

2

m

∫ t

0
e−2R(t−u)(F (Xu) − F (Yu))

2du. (11)Conversely, let us assume that the gradient �ow driven by F satis�es the property (11) forany t > 0 and any initial onditions X0 and Y0. Then F satis�es the CD(R,m) ondition (10).For, taking the time derivative of (11) at t = 0 implies
−(X0 − Y0) · (∇F (X0) −∇F (Y0)) ≤ −R||X0 − Y0||2 −

1

m
(F (X0) − F (Y0))

2.5



Let then x, h in R
d and s ∈ [0, 1] be �xed. A Taylor expansion for Y0 = x+ (s+ ε)h tending to

X0 = x+ sh (along a geodesi), so for ε→ 0, gives
−h · ∇2F (x+ sh)h ≤ −R||h||2 − 1

m
(∇F (x+ sh) · h)2.This is exatly the CD(R,m) ondition (10).Let us observe that inequality (11) is exatly (8) when replaing R

d with the spae of probabil-ity densities, the Eulidean norm with the Wasserstein distane, F with the entropy, (Xt)t>0 withthe semigroup (Pt)t>0 and the CD(R,m) ondition (10) with the orresponding Bakry-Émeryondition, whih is equivalent to the (R,m)-onvexity of the entropy (see [13℄). Of ourse, thisomputation is natural sine the onsidered evolution is the gradient �ow of the entropy withrespet to the Wasserstein distane, see [2, 16℄.We now want to mimi the above proof for a smooth gradient �ow on R
d to the setting ofa general semigroup on (P2(X),W2). As here in the smooth ase, we shall see in the omingsetion that geodesis play a fundamental role.2.2 How to adapt the gradient �ow proof to the general ase?The most natural method to prove that a ontration inequality in Wasserstein distane, asin (2), implies a urvature ondition is to use lose Dira measures as initial data (see e.g. [9℄).In our ase, this an not be performed sine the entropy of a Dira measure is in�nite. Thereseems to be hope sine we onsider the entropy of the heat kernel in positive time, when itbeomes �nite. However, it does not work again if we are on a homogeneous spae. For instane,on R

d, the entropy of the heat kernel pt(x, ·) does not depend on x and the dimensional orretiveterms in Theorem 1 vanish if we onsider two Dira measures as initial data.To solve this issue we shall onsider as initial data a probability density g (with respet to
µ) and a perturbation of it, both in su�iently wide lasses of funtions. The perturbation willbe built by means of a geodesi in the Wasserstein spae (P2(X),W2). Of ourse the best waywould be to onsider diretly a geodesi in the Wasserstein spae as it was �rst used in [16℄. Inour general setting of a RMT or a REM spae, it is di�ult to deal with suh a geodesi dueto the lak of regularity. That is why we use a �smooth� modi�ation of a geodesi path. Morepreisely, given suh a g, we are looking for a path (gs)s>0 of probability densities whose Taylorexpansion for small s is a geodesi in P2(X) with a diretion given by a funtion f . We explainthe idea on a RMT .For that, onsider the generator Lg = L + Γ(log g, ·) (see (12) for the de�nition of Γ) withassoiated semigroup (P gt )t>0. Given a diretion funtion f , there are two ways of de�ning thepath (gs)s>0, both admitting the same Taylor expansion for small s:

• One an �rst onsider the path gs = g(1 − sLgf) for small s and a smooth and ompatlysupported funtion f . The funtion gs is a smooth, bounded and ompatly supportedperturbation of g. This path will be used on a RMT sine suh funtions are adapted tothe Riemannian setting.
• One an also onsider the path g̃s = g(1+f−P gs f), again for s small and �nie� f ∈ L

∞(µ).The path (g̃s) has the same Taylor expansion as (gs) sine f − P gs f = −sLgf + o(s). Thispath will be used on REM spaes. Indeed, regularity of funtions (suh as gs above) islearly a di�ult issue in the setting of metri measure spaes, and L
∞(µ) funtions aremuh more adapted to them. By using the semigroup (P gs )s≥0 instead of the generator Lg,we an apply the maximum priniple whih preserves (essential) boundedness of funtions.6



Remark 2 Let us see, formally and in the Eulidean spae R
d, why the probability measure gsdxhas the same �rst-order Taylor expansion as the geodesi in the Wasserstein spae. Let ν0 bea probability measure in R

d being absolutely ontinuous with respet to the Lebesgue measure,
ψ : R

d → R be a onvex map, and
νs = ((1 − s)Id + s∇ψ)#ν0for s ∈ [0, 1]. The path (νs)s∈[0,1] is a geodesi path between ν0 and ν1 in the Wasserstein spae,that is for any s, t ∈ [0, 1],

W2(νs, νt) = |t− s|W2(ν0, ν1).Moreover, for any test funtion H : R
d → R, and by a formal Taylor expansion when s goes to 0,

∫

Hdνs =

∫

H((1 − s)x+ s∇ψ(x))dν0(x) =

∫

[H(x) + s∇H(x) · (∇ψ(x) − x) + o(s)]dν0(x).Assume now that dν0 = gdx for a funtion g. Then, by integration by parts as in (15) below,
∫

Hdνs =

∫

Hdν0 − s

∫

H Lg(f) dν0 + o(s) =

∫

H gsdx+ o(s)where f(x) = ψ(x) − |x|2/2.In onlusion, the path (gs)s>0 appears as a (smooth) �rst-order Taylor expansion of the
W2-geodesi path (νs)s>0.Observe that in a general setting we annot expet a su�ient level of smoothness of theKantorovih potential ψ, even on a Riemannian manifold.3 The Riemannian Markov triple ontextIn this setion we prove the impliation (iii) ⇒ (i) of Theorem 1 in the ontext of a Riemannianmanifold, in the form of Theorem 5 below.3.1 Framework and resultsLet (M,G) be a onneted omplete C∞-Riemannian manifold. Let V be a C∞ funtion on Mand onsider the Markov semigroup (Pt)t>0 with generator L = ∆ − ∇V · ∇, where ∆ is theLaplae-Beltrami operator. Let also dµ = e−V dx where dx is the Riemannian measure and Γ bethe arré du hamp operator, de�ned by

Γ(f, g) =
1

2
(L(fg) − fLg − gLf) (12)for any smooth f, g. We let Γ(f) = Γ(f, f) = |∇f |2 where |∇f | stands for the length of ∇f withrespet to the Riemannian metri G.We assume that (M, µ,Γ) is a full Markov triple in a Riemannian manifold, as in [8, Chap. 3℄,and in this work we all it a Riemannian Markov triple (RMT ). It has to be mentioned thatwe need an additional hypothesis to obtain a full Markov triple : the hypothesis proposed in [8,Chap. 3℄ is a uniform lower bound on the Rii urvature ofM plus the Hessian of the funtion V :there exists a onstant ρ ∈ R suh that RicG + ∇2V > ρId. A more general statement will begiven in Setion 4. 7



The measure µ is reversible with respet to the semigroup, that is, for any t > 0, Pt is aself-adjoint operator in L
2(µ). Moreover the integration by parts formula

∫

fLg dµ = −
∫

Γ(f, g)dµholds for all f, g in the set C∞
c (M) of in�nitely di�erentiable and ompatly supported funtionson M. The generator L satis�es the di�usion property, that is, for any smooth funtions ϕ, f, g,

L(ϕ(f)) = ϕ′(f)Lf + ϕ′′(f)Γ(f),or equivalently
Γ(ϕ(f), g) = ϕ′(f)Γ(f, g). (13)In other words, the arré du hamp operator is a derivation operator for eah omponent.The map (x, t) 7→ Pth(x) is simply the solution to the paraboli equation ∂tu = Lu with has the initial ondition.De�nition 3 (CD(R,m) ondition) Let R ∈ R and m ∈ (0,∞]. We say that the RMT

(M, µ,Γ) satis�es a CD(R,m) urvature-dimension ondition if
Γ2(f) > RΓ(f) +

1

m
(Lf)2for any smooth funtion f, say in C∞

c (M), where
Γ2(f) =

1

2
(LΓ(f) − 2Γ(f, Lf)). (14)Let us notie that m an be di�erent from the dimension of the manifold M. The CD(R,m)urvature-dimension ondition is alled the Bakry-Émery or Γ2 ondition and has been intro-dued in [7℄ (see also the reent [8℄).Example 4 On a d-dimensional Riemannian manifold (M,G)

• the operator L = ∆ satis�es a CD(R,m) ondition if m > d and the Rii urvature of themanifold is bounded from below by R;
• more generally, the operator L = ∆−∇V ·∇ satis�es a CD(R,m) ondition if m > d and

Ric + Hess(V ) > RG +
1

m− d
∇V ⊗∇V,where Ric is the Rii tensor of (M,G), see for instane [8, Se. C6℄ (when m = d then weneed V = 0).In a RMT , the following result gives the impliation (iii) ⇒ (i) in Theorem 1 :Theorem 5 Let (M, µ,Γ) be a Riemannian Markov triple and (Pt)t>0 its assoiated Markovsemigroup. Let R ∈ R and m > 0. If the inequality (8) holds for any t > 0 and any smoothfuntions g, h on M with gµ, hµ in P2(M), then the CD(R,m) ondition of De�nition 3 holds.8



3.2 Proof of Theorem 5It is based on the approximation of geodesis introdued in Setion 2.2 (see Remark 2), propertiesof the Hopf-Lax solution of the Hamilton-Jaobi equation, and an adapted lass of test funtions.Let f be in C∞
c (M). Let also g be a smooth and positive funtion on M suh that gµ ∈ P2(M),

∫

g | log g| dµ <∞ and

∫

Γ(g)

g
dµ <∞.Let us de�ne the generator Lg by

Lgh = Lh+ Γ(log g, h)on smooth funtions h. Sine g > 0, then Lg is well de�ned on the set C∞
c (M) and Lgh ∈ C∞

c (M)for any h ∈ C∞
c (M). Moreover, the generator Lg satis�es an integration by parts formula withrespet to the probability measure gµ : for h, k ∈ C∞

c (M) (one of them an be with non ompatsupport)
∫

hLgk gdµ = −
∫

Γ(h, k) gdµ. (15)For any s > 0, let us de�ne gs = g(1 − sLgf). The funtion Lgf is in C∞
c (M), so bounded,and we an let N = ||Lgf ||∞. We shall frequently use the bounds (1 − sN)g ≤ gs ≤ (1 + sN)g.In partiular gs > 0 for s < 1/N.Moreover ∫ gsdµ = 1. Hene, for s small enough, whih we nowassume, gsµ is in P2(M) with a smooth and positive density. The proof of Theorem 5 onsistsin applying (8) with gs instead of f, dividing by 2s2 and letting s go to 0. For this we shallestimate the three terms in the inequality.A key tool is the Hopf-Lax semigroup de�ned on bounded Lipshitz funtions ψ by

Qsψ(x) := inf
y∈M

{

ψ(y) +
d(x, y)2

2s

}

, s > 0, x ∈ M. (16)The map x 7→ Qsψ(x) is Lipshitz for every s > 0, and the map (s, x) 7→ Qsψ(x) satis�es theHamilton-Jaobi equation
∂sQsψ +

1

2
|∇Qsψ|2 = 0, lim

s→0
Qsψ = ψin a sense given in [26, Thms. 22.46 and 30.30℄ for instane. We observe that sQs(ψ) = Q1(sψ) =

Q(sψ), so for s > 0 the Kantorovih duality (6) an be written as
W 2

2 (ν1, ν2)

2s2
=

1

s
sup
ψ

[
∫

Qsψ dν1 −
∫

ψ dν2

]

. (17)Estimate on the term on the left-hand side of (8). Letting ψ = f in (17), we obtain
W 2

2 (Ptgsµ,Ptgµ)

2s2
>

∫

QsfPtgs − fPtg

s
dµ. (18)Sine f is Lipshitz, almost everywhere in M we have

lim
s→0

QsfPtgs − fPtg

s
= −1

2
Γ(f)Ptg − fPt(gL

gf)9



by (vii') in [26, Thm. 30.30℄. But, by the de�nition of Qsf and sine f is bounded,
Qsf(x) = inf

y∈B(x,
√

4s‖f‖∞)

{

f(y) +
d(x, y)2

2s

}

.Thus, for the Lipshitz seminorm ‖ · ‖Lip,
0 >

Qsf(x) − f(x)

s
> inf

y∈B(x,
√

4s‖f‖∞)\{x}

{

f(y) − f(x)

d(x, y)

d(x, y)

s
+
d(x, y)2

2s2

}

> −1

2
sup

y∈B(x,
√

4s‖f‖∞)\{x}

(

f(y) − f(x)

d(x, y)

)2

> −1

2
‖f‖2

Lip (19)(see also [26, page 585℄). Moreover ||Qsf ||∞ ≤ ||f ||∞, so, adding and subtrating QsfPtg,
∣

∣

∣

QsfPtgs − fPtg

s

∣

∣

∣
≤ ||Qsf ||∞ |Pt(gLgf)| + Ptg

f −Qsf

s
≤
(

||f ||∞ ||Lgf ||∞ +
||f ||2Lip

2

)

Ptg.The right-hand side is in L
1(µ), so by the Lebesgue dominated onvergene theorem

lim inf
s→0

W 2
2 (Ptgsµ,Ptgµ)

2s2
>

∫
(

−1

2
Γ(f)Ptg − fPt(gL

gf)

)

dµ.Now, by reversibility of the measure µ and the integration by parts formula (15),
∫

fPt(gL
gf)dµ =

∫

PtfL
g(f) gdµ = −

∫

Γ(f, Ptf) gdµ.Thus we obtain our �rst estimate:
lim inf
s→0

W 2
2 (Ptgsµ,Ptgµ)

2s2
> −1

2

∫

Pt(Γ(f))gdµ +

∫

Γ(f, Ptf)gdµ. (20)Estimate on the �rst term on the right-hand side. Aording to (17) we need an upperbound on the quantities ∫ Qs(ψ)gsdµ−
∫

ψgdµ, independent of the bounded Lipshitz funtion ψ.First of all, for 0 < t < s,
d

dt

∫

Qtψ gt dµ =

∫
[

−1

2
Γ(Qtψ)(1 − tLgf)−QtψL

gf

]

gdµ. (21)This is justi�ed by item (vii) in [26, Thms. 22.46 and 30.30℄ and the properties that gµ ∈ P(M),
Lgf is bounded, ||Qtψ||∞ ≤ ||ψ||∞ and ||Qtψ||Lip ≤ ||ψ||Lip for any t.Now the integration by parts formula (15) gives − ∫ Qtψ Lgf gdµ =

∫

Γ(Qtψ, f)gdµ. Reallthat Lgf is bounded and that we have let N = ||Lgf ||∞. For t < s < 1/N we obtain
d

dt

∫

Qtψ gt dµ ≤
∫
[

−1

2
Γ(Qtψ)(1 − sN) + Γ(Qtψ, f)

]

gdµ

=

∫
[

−1 − sN

2
Γ

(

Qtψ − 1

1 − sN
f

)

+
1

2(1 − sN)
Γ(f)

]

gdµ ≤ 1

2(1 − sN)

∫

Γ(f)gdµ.

10



Integrating over the set t ∈ [0, s] :
∫

Qsψ gsdµ−
∫

ψgdµ ≤ s

2(1 − sN)

∫

Γ(f)gdµ.Finally the Kantorovih duality (17) gives our seond estimate:
lim sup
s→0

W 2
2 (gsµ, gµ)

2s2
≤ 1

2

∫

Γ(f)gdµ. (22)Estimate on the seond term on the right-hand side. Let u > 0 and let us ompute thelimit of 1
s (Entµ(Pugs) − Entµ(Pug)) when s goes to 0. First, for any s > 0,

d

ds
Pu(gs) log Pu(gs) = −(1 + logPugs) Pu

(

gLgf
)

.Then, for 0 < s < 1/N ,
|(1 + logPugs)Pu(gL

gf)| ≤ NPug (1 + log(1 +N) + | log Pu(g)|).Forgetting the dimensional orretive term in (8), by the von Renesse-Sturm theorem [27℄ the
RMT satis�es a CD(R,∞) ondition. In partiular, and sine ∫ Γ(g)/g dµ < ∞, one anuse a loal logarithmi Sobolev inequality [8, Thm. 5.5.2℄ to dedue ∫ Pug | log Pug| dµ < ∞.In partiular the right-hand side in the last inequality is in L1(µ). Then, by the Lebesgueonvergene theorem and (15),

lim
s→0

Entµ(Pugs) − Entµ(Pug)

s
= −

∫

(1 + logPug)Pu
(

gLgf
)

dµ

= −
∫

Pu(log Pug)L
gf gdµ =

∫

Γ(Pu(log Pug), f)gdµ.By the Fatou lemma we obtain the third estimate :
lim sup
s→0

− 1

m

∫ t

0
e−2R(t−u)

[

Entµ(Pugs) − Entµ(Pug)

s

]2

du

≤ − 1

m

∫ t

0
e−2R(t−u)

(
∫

Γ(Pu(log Pug), f)gdµ

)2

du. (23)Conlusion. Dividing the inequality (8) by 2s2, letting s go to 0 and using the three esti-mates (20), (22) and (23) we get
− 1

2

∫

PtΓ(f) gdµ +

∫

Γ(f, Ptf)gdµ

≤ e−2Rt

2

∫

Γ(f)gdµ− 1

m

∫ t

0
e−2R(t−u)

(
∫

Γ(Pu(log Pug), f)gdµ

)2

du.This inequality is an equality when t = 0, and sine f ∈ C∞
c (M), its derivative at t = 0 implies

−1

2

∫

LΓ(f) gdµ +

∫

Γ(f, Lf)gdµ ≤ −R
∫

Γ(f)gdµ − 1

m

(
∫

Γ(log g, f)gdµ

)2

.

11



Sine ∫ Γ(log g, f)gdµ =
∫

Γ(g, f)dµ = −
∫

gLfdµ and by de�nition of the Γ2 operator we get
∫

Γ2(f)gdµ > R

∫

Γ(f) gdµ +
1

m

(
∫

Lf gdµ

)2 (24)for any f ∈ C∞
c (M) and any positive smooth probability density g with �nite ∫ g| log g|dµ and

∫ Γ(g)
g dµ.Inequality (24) appears as a weak form of the CD(R,m) ondition. Again from the CD(R,∞)ondition, it is a onsequene of Wang's Harnak inequality (see [8, Thm. 5.6.1℄ and [28℄) thatthere exist α0 > 0 and o ∈ M suh that

∫

exp(−α0d(o, x)
2) dµ(x) <∞. (25)Then, for given x ∈ M, for any p > α0 the funtion gp de�ned by gp(y) = Zpe

−pd(x,y)2 fora normalisation onstant Zp is suh that gpµ ∈ P2(X) and ∫ gp| log gp|dµ, ∫ Γ(gp)/gpdµ < ∞.Moreover (gp)p onverges to the Dira measure δx at x, so replaing g by gp in (24) and letting
p→ +∞ we get

Γ2(f) > RΓ(f) +
1

m
(Lf)2at any x ∈ M and for any funtion f ∈ C∞

c (M). This is the CD(R,m) ondition as in De�ni-tion 3, and this �nishes the proof of Theorem 5.4 The Riemannian energy measure spae ontextIn this setion we prove Theorem 1 in the ontext of a Riemannian energy measure (REM)spae. The proof goes along the same overall strategy as in the manifold ase of Setion 3.2.However, to overome the lak of di�erentiability, it will require several tools and results fromoptimal transport and heat distributions on metri measure spaes.The framework is stated in Setion 4.1. As an intermezzo, in Setions 4.2 and 4.3 we give theproofs of (i) ⇒ (ii) ⇒ (iii) in Theorem 1. The main impliation (iii) ⇒ (i) is stated and provedin Setion 4.4, in the form of Theorem 8. The path (g̃s)s>0 is onstruted in Setion 4.4.1, thethree key estimates are given in Setion 4.4.2, �nally the main proof is given in Setion 4.4.3.4.1 FrameworkAs a natural framework, we state our result on a Riemannian energy measure spae, as introduedin [6℄. Let (X, τ) be a Polish topologial spae and µ a loally �nite Borel measure on X witha full support. Let (E ,D(E)) be a strongly loal symmetri Dirihlet form on L
2(µ). Let �nally

(Pt)t>0 be its assoiated semigroup and L its generator, with domain D(L) ⊂ L
2(µ). As fora Markov triple, see [8℄, and sine Pt is symmetri and sub-Markovian, we an extend Pt to asemigroup of ontrations on L

p(µ) for p ∈ [1,∞]. We also let E(f) := E(f, f) and
‖f‖2

E := ‖f‖2
L2(µ) + E(f)for f ∈ D(E). In this work we assume that (X, τ, µ, E) is a Riemannian energy measure spae inthe sense of [6, Def. 3.16℄. A basi example of a REM spae is a Riemannian Markov triple asin Setion 3. In this ase, (E ,D(E)) is anonially de�ned by ompletion of (f, f) 7→

∫

|∇f |2 dµ.12



RCD spaes introdued in [1, 5℄ are another important lass of REM spaes. In this ase, E/2is given by the L
2-Cheeger energy funtional. As we will see below, our REM spae beomesan RCD(R,∞) spae in an appropriate sense under one of the onditions in Theorem 1 (see theargument in setion 4.1 below): hene our argument falls into the framework of a RCD spaeand it would make no di�erene to state or to prove our result in the framework of a RCD spaeinstead of a REM spae. However our onditions in Theorem 1 are desribed in terms of theMarkov semigroup (Pt)t>0 and its in�nitesimal generator L, so we thought that the framework ofa REM spae was natural and adapted, and preferred it rather than a RCD spae as a startingpoint.To make this presentation onise, we prefer to state the ruial properties of a REM spaeinstead of its preise de�nition. Indeed the de�nition onsists in several notions, whih will beused only indiretly through these properties:

• The intrinsi distane dE assoiated with (E ,D(E)), in the sense of [6, Se. 3.3℄, beomes adistane funtion, further denoted d. It is ompatible with the topology τ and the spae
(X, d) is omplete [6, Def. 3.6℄ and length metri [6, Thm. 3.10℄.We let Lipb(X) denote the set of bounded Lipshitz funtions on X (with respet to d). Let

|∇f | : X → R be the loal Lipshitz onstant of a Lipshitz funtion f on X:
|∇f |(x) := lim sup

y→x

|f(y) − f(x)|
d(x, y)

·

• E/2 oinides with the L
2-Cheeger energy assoiated with d, de�ned for f ∈ L

2(µ) by
Ch(f) := inf

{

lim inf
n→∞

1

2

∫

|∇fn|2dµ ; fn ∈ Lipb(X), fn → f in L
2(µ)

}

.As a result, (E ,D(E)) admits a arré du hamp, i.e. there is a symmetri bilinear map
Γ : D(E) ×D(E) → L

1(µ) suh that
E(f, g) =

∫

Γ(f, g) dµ.As on smooth spaes, L and Γ satisfy the di�usion property (13). The oinidene of
E/2 and the Cheeger energy makes many onnetions between d and Γ. For instane,
D(E) ∩ Lipb(X) is dense in D(E) with respet to ‖ · ‖E . In addition,

Γ(f) ≤ |∇f |2 µ-a.e. (26)for any Lipshitz f ∈ D(E). See [6, Thm. 3.12℄ and [6, Thm. 3.14℄ for all these fats.Note that D(E) ∩ L
∞(µ) is an algebra and Γ satis�es the Leibniz rule:

Γ(fg, h) = fΓ(g, h) + gΓ(f, h) for f, g ∈ D(E) ∩ L
∞(µ) and h ∈ D(E).We state further assumptions for our main theorem. Fix a referene point o ∈ X.Regularity assumption(Reg1) There is α0 > 0 suh that (25) holds.(Reg2) (X, τ) is loally ompat. 13



Assumption (Reg1) is equivalent to the ondition (MD.exp) in [6℄ (see e.g. the ommentsafter Equation (3.13) in [6℄). This integrability ondition yields the onservativity of Pt, i.e.
∫

Ptf dµ =

∫

f dµfor f ∈ L
1(µ) (see [6, Thm. 3.14℄). This is equivalent to Pt1 = 1 µ-a.e, that is, the semigroup isMarkovian (instead of sub-Markovian). In fat (25) is a nearly optimal ondition to ensure thatthe semigroup is onservative (see [3, Rmk. 4.21℄). Thus it is not restritive.Assumption (Reg2) implies that any losed bounded set in X is ompat (see e.g. [12,Prop. 2.5.22℄). Moreover, (X, d) is a geodesi spae (see e.g. [12, Thm. 2.5.23℄). As a result,

(P2(X),W2) is also a geodesi spae (see e.g. [20, Cor. 1 and Prop. 1℄).In this framework, we should be areful when de�ning the operator Γ2 in (14) sine Γ(f)may not belong to D(L) even for a su�iently nie f . To avoid suh a tehnial di�ulty, andfollowing [6, Def. 2.4℄, we employ a weak form of the CD(R,m) ondition :De�nition 6 (Weak CD(R,m) ondition) Let R ∈ R and m > 0. We say that the REMspae (X, τ, µ, E) satis�es a weak CD(R,m) ondition if, for all f ∈ D(L) with Lf ∈ D(E) andall g ∈ D(L) ∩ L
∞(µ) with g > 0 and Lg ∈ L

∞(µ),
1

2

∫

Γ(f)Lg dµ−
∫

Γ(f, Lf)g dµ > R

∫

Γ(f)g dµ+
1

m

∫

(Lf)2g dµ. (27)The proof of (iii) ⇒ (i) (and also of (ii) ⇒ (iii)) of Theorem 1 will need further regularityproperties on the spae and semigroup, whih will in fat be onsequenes of (iii) (or (ii)).Note indeed that (8) in (iii) yields a W2-ontration
W 2

2 (Ptgdµ, Pthdµ) ≤ e−2RtW 2
2 (gdµ, hdµ) (28)by negleting the term involving m. Then, by [6, Cor. 3.18℄, (28) implies a CD(R,∞) onditionin the sense of (27). This fat is very helpful for further disussion in the sequel sine it ensuresregularity of the spae in many respets. As a regularization property of Pt, we have

Pth ∈ Lipb(X) for h ∈ L
2(µ) ∩ L

∞(µ), t > 0 (29)(see [6, Thm. 3.17℄; More preisely, Pth has a version whih belongs to Lipb(X)). In addition,
(X, d, µ) beomes an RCD(R,∞) spae (see [6, Thm. 4.17℄). Then, for a probability density
h with respet to µ, ((Pth)µ)t>0 is a gradient �ow of Entµ in the sense of the R-evolutionvariational inequality [1, Thm. 6.1℄. As a onsequene, we obtain the following properties:

• We an extend the ation of Pt to ν ∈ P2(X) in the sense that Ptν is a solution to the
R-evolution variational inequality and that Ptν = (Pth)µ if ν = hµ. In partiular, (Ptν)t>0beomes a ontinuous urve in (P2(X),W2), see [1, Thm. 6.1℄. In addition, ν 7→ Ptν is aontinuous map from (P2(X),W2) to itself, see [1, Eq. (7.2)℄.

• Ptν ≪ µ for ν ∈ P2(X) and t > 0, and its density ρt satis�es Entµ(ρt) ∈ R. This propertyis inluded in the de�nition of the R-evolution variational inequality, see e.g. [1, Def. 2.5℄.Reall that, under (25), Entµ(ρ) is well-de�ned and Entµ(ρ) ∈ (−∞,∞] for ρ : X → [0,∞]with ρµ ∈ P2(X), see e.g. [3, Se. 7℄.
• There is a positive symmetri measurable funtion pt(x, y) suh that Pt oinides with theintegral operator assoiated with pt, see [1, Thm. 7.1℄.14



• For any bounded measurable h and ν ∈ P2(X), we have
∫

hdPtν =

∫

Pthdν, (30)see [6, Prop. 3.2℄. By the monotone onvergene theorem, we an extend this identity tothose h whih are bounded only from below (or above).
• For any f ∈ D(L) and h ∈ D(E) we have the integration by parts formula

∫

Γ(h, f) dµ = −
∫

hLf dµ. (31)4.2 Proof of (i) ⇒ (ii) in Theorem 1In [13℄ M. Erbar, K.-T. Sturm and the fourth author of this paper have proved an Evolutionalvariational inequality (EVI in short) in the REM spaes. Let g, h be probability densities withrespet to µ and let Um = exp(−Entµ(·) /m). Then, under the weak CD(R,m) onditionas in (i),
d

dt
s R

m

(

1

2
W2(Pthµ, gµ)

)2

+Rs R
m

(

1

2
W2(Pthµ, gµ)

)2

≤ m

2

(

1 − Um(g)

Um(Pth)

)

. (32)But it is lassial, see e.g. [2℄, how to dedue a ontration property in W2 distane betweensolutions (Pth)t>0 and (Ptg)t>0 from an EVI: one applies the EVI to the urve (Pth)t>0 and Psgfor a given s, and then (with the time variable s) to the urve (Psg)s>0 and Pth for a given t;then one adds both inequalities, takes t = s and integrate in time. Then one obtains (ii).To sum up, it turns out that the EVI (32) not only leads to the property (5), as observedin [13℄, but also to the same-time ontration property (ii).4.3 Proof of (ii) ⇒ (iii) in Theorem 1We �rst observe that sinh2(x) > x2 for any x, so ii) in Theorem 1 implies the same bound with
sinh2(x) replaed by x2 in the integral. Then the impliation (ii) ⇒ (iii) is a onsequene of thefollowing result, whih we prove in the general ontext of a geodesi spae.Proposition 7 Let (Y, dY ) be a geodesi metri spae, U : Y → (−∞,∞] and ϕt : Y → Y
(t ≥ 0) a one-parameter family of maps. Suppose that t 7→ ϕt(y) is ontinuous for all y ∈ Y and
U(ϕt(y)) ∈ R for all t > 0 and y ∈ Y. Suppose also that for y0, y1 ∈ Y and t > 0,
s R

m

(

1

2
dY (ϕt(y0), ϕt(y1))

)2

≤ e−2Rt s R
m

(

1

2
dY (y0, y1)

)2

− 1

2m

∫ t

0
e−2R(t−u)(U(ϕu(y0)) − U(ϕu(y1)))

2du. (33)Then
dY (ϕt(y0), ϕt(y1))

2 ≤ e−2Rt dY (y0, y1)
2 − 2

m

∫ t

0
e−2R(t−u)(U(ϕu(y0)) − U(ϕu(y1)))

2du.

15



Proof. We adapt the argument of [13, Prop. 2.22℄. Let (ys)s∈[0,1] be a geodesi from y0 to y1in Y , and let t > 0 be �xed. For any n and 1 ≤ i ≤ n, let xni = dY (ϕt(y(i−1)/n), ϕt(yi/n)). Then
dY (ϕt(y0), ϕt(y1))

2 ≤
(

n
∑

i=1

xni

)2
≤ n

n
∑

i=1

(xni )
2for any n. In partiular

dY (ϕt(y0), ϕt(y1))
2 ≤ lim sup

n→∞
n

n
∑

i=1

(xni )
2.Now, by negleting the seond term in the right-hand side of (33) and by geodesi property,

s R
m

(xni
2

)

≤ e−Rt s R
m

(1

2
dY (y(i−1)/n, yi/n)

)

= e−Rt s R
m

( 1

2n
dY (y0, y1)

)

.It follows, as in [13, (2.32)℄, that there exists a onstant c suh that xni ≤ c/n for large n andany 1 ≤ i ≤ n. Moreover s R
m

(x)2 = x2 −Rx4/(3m) +O(x6) as x tends to 0, so that
lim sup
n→∞

n

n
∑

i=1

(xni )
2 = 4 lim sup

n→∞
n

n
∑

i=1

s R
m

(xni /2)
2. (34)As a onsequene

dY (ϕt(y0), ϕt(y1))
2 ≤ 4 lim sup

n→∞
n

n
∑

i=1

s R
m

(

1

2
dY (ϕt(y(i−1)/n), ϕt(yi/n))

)2

≤ 4 lim sup
n→∞

(

n
n
∑

i=1

e−2Rt s R
m

(

1

2
dY (y(i−1)/n, yi/n)

)2

− 1

2m

∫ t

0
e−2R(t−u)n

n
∑

i=1

(

U(ϕu(y(i−1)/n)) − U(ϕu(yi/n))
)2
du

)by assumption (33).Then the onlusion follows from this estimate by using (34) with dY (y(i−1)/n, yi/n) in plaeof xni in the �rst term, and the Cauhy-Shwarz inequality in the seond term. �Let us return to the proof of (ii) ⇒ (iii) in Theorem 1. We �rst hek that (7) yields (28).As we derived (28) from (8), the estimate (7) yields
s R

m

(

1

2
W2(Pthµ, Ptgµ)

)2

≤ e−2Rt s R
m

(

1

2
W2(hµ, gµ)

)2 (35)by negleting the term involving m. From this inequality, we an extend Pt to a map from P2(X)to itself, in a anonial way. Moreover, in (35) we an replae hµ and gµ with any ν0, ν1 ∈ P2(X)respetively. Then we obtain (28) by a similar argument as in Proposition 7. Thus, as disussedin Setion 4.1, (X, d, µ) is an RCD(R,∞) spae and all properties at the end of Setion 4.1beome available. We remark that the extension of Pt given on the basis of (35) oinides withthe one given by the RCD(R,∞) property. 16



Now we only need to show that Pt ful�lls all the assumptions for ϕt in Proposition 7 with
(Y, dY ) = (P2(X),W2) and U = Entµ. Here we are extending the de�nition of Entµ so that,for ν ∈ P2(X), Entµ(ν) = Entµ(dν/dµ) if ν ≪ µ and Entµ(ν) = ∞ otherwise. By takingobservations at the beginning of this setion into aount, it su�es to prove that (7) implies
s R

m

(

1

2
W2(Ptν0, Ptν1)

)2

≤ e−2Rt s R
m

(

1

2
W2(ν0, ν1)

)2

− 1

2m

∫ t

0
e−2R(t−u)(Entµ(Puν0) − Entµ(Puν1))

2dufor ν0, ν1 ∈ P2(X) and t > 0. But this is true sine Pδν0, Pδν1 ≪ µ for any δ ∈ (0, t), so that
s R

m

(

1

2
W2(Ptν0, Ptν1)

)2

≤ e−2R(t−δ) s R
m

(

1

2
W2(Pδν0, Pδν1)

)2

− 1

2m

∫ t

δ
e−2R(t−u)(Entµ(Puν0) − Entµ(Puν1))

2duby (7) and the bound sinh2(x) > x2; moreover Pδνi → νi in W2 as δ ↓ 0 for i = 0, 1: this givesthe assertion. Hene the proof of (ii) ⇒ (iii) in Theorem 1 is ompleted. �4.4 Proof of (iii) ⇒ (i) in Theorem 1In this setion we prove the main impliation (iii) ⇒ (i) in Theorem 1, in the following form :Theorem 8 Let (X, τ, µ, E) be a Riemannian energy measure spae satisfying the above regu-larity assumptions (Reg1) and (Reg2). Let R ∈ R and m > 0.If inequality (8) holds for any t > 0 and probability densities g, h ∈ L
1(µ) with gµ, hµ ∈

P2(X), then the weak CD(R,m) ondition of De�nition 6 holds.In partiular, the onditions (ii) and (iii) in Theorem 1 are equivalent to the weak CD(R,m)ondition.4.4.1 Constrution of the path (g̃s)s>0In this setion, we build the path g̃s mentioned in Setion 2.2, under (8). Reall that (X, d, µ)is now an RCD(R,∞) spae as remarked at the end of Setion 4.1. For x ∈ X and r > 0, wedenote the open ball of radius r entered at x by Br(x).For this we �rst de�ne g(= g̃0). We take g in a more tratable (but large enough) lass thanthe full lass of De�nition 6. Fix α > α0 with α0 as in (25), λ ∈ (0, 1) and g0 : X → R Lipshitzwith ompat support. Let us de�ne g as follows:
g :=

1

Z

(

(1 − λ)g0 + λ exp(−αd(x, o)2)
) (36)where Z > 0 is a normalizing onstant suh that gµ ∈ P(X). Note that (25) yields gµ ∈ P2(X).We �x g until the end of the proof of Proposition 15 below. We an de�ne the L

2-Cheegerenergy funtional Eg/2 assoiated with d and the probability measure gµ. Let D(Eg) be the setof f ∈ L
2(gµ) with Eg(f) <∞. Reall that D(Eg) is omplete with respet to ‖ · ‖Eg .To de�ne the path (g̃s)s>0 we need the orresponding generator Lg, and for this we show thefollowing auxiliary lemma. 17



Lemma 9 In the above notation, D(E) ⊂ D(Eg) and
Eg(f) =

∫

Γ(f)g dµ (37)for f ∈ D(E). In addition, (Eg,D(Eg)) is bilinear.We do not know whether (37) is valid for any f ∈ D(Eg). Thus we have to be areful whenwe apply the integration by parts formula (15) for Lg.Proof. The former assertion follows from [3, Lem. 4.11℄. For the latter assertion, take f, f̃ ∈
D(Eg). For eah n ∈ N, take also χn ∈ Lipb(X) with 0 ≤ χn ≤ 1, χ|Bn(o) ≡ 1 and χ|Bn+1(o)c ≡ 0.Sine, for eah n ∈ N, g is bounded away from 0 on Bn(o), we have fn := fχn ∈ D(E) by theloality of the Cheeger energy, see [3, Prop. 4.8 (b)℄ and [3, Lem. 4.11℄. Moreover, (fn)n∈N formsa Cauhy sequene with respet to ‖ · ‖Eg and hene ‖fn− f‖Eg → 0. By the same argument, wehave ‖f̃n− f̃‖Eg → 0 for f̃n := f̃χn. By (37), and realling that Γ is symmetri bilinear, we have

Eg(fn + f̃n) + Eg(fn − f̃n) = 2
(

Eg(fn) + Eg(f̃n)
)

.Therefore the onlusion holds by letting n→ ∞. �By Lemma 9, (Eg,D(Eg)) is a losed bilinear form on L
2(gµ). Hene there are an assoiated

L
2-semigroup P gt of symmetri linear ontration and its generator Lg. By [3, Prop. 4.8 (b)℄, Egis sub-Markovian. Thus P gt satis�es the maximum priniple, i.e. P gt f ≤ c if f ≤ c for f ∈ L

2(gµ)and c ∈ R. In addition, Lipb(X) ∩D(Eg) is dense in D(Eg) with respet to ‖ · ‖Eg . Note that wean de�ne P gt and Lg without bilinearity of Eg (see [3, Se. 4℄ and referenes therein). However,then they an be nonlinear and the integration by parts formula (15) may not hold.Lemma 10 In the above notation,(i) g ∈ D(E) ∩ L
∞(µ) and log g ∈ D(Eg).(ii) D(L) ⊂ D(Lg).Proof. (i) The �rst laim follows from (26) and (25). For the seond one, note that

Eg(log g) ≤
∫

|∇ log g|2g dµ.It is the integrated form of (26) for Eg instead of E . Then the laim follows from (25).(ii) Let f ∈ D(L) and h ∈ D(Eg). Take hn ∈ Lipb(X)∩D(Eg) for n ∈ N suh that ‖hn−h‖Eg →
0. By a trunation argument used in the proof of Lemma 9, we may assume that eah hn issupported on a bounded set, without loss of generality. Then hn ∈ D(E) ∩ L

∞(µ) and hene
hng ∈ D(E). Thus the Leibniz rule, the assertion (i), (31) and (26) imply

∣

∣

∣

∣

∫

Γ(hn, f)g dµ

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

Γ(hng, f) dµ −
∫

hnΓ(g, f) dµ

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

hn(Lf)g dµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

hnΓ(log g, f)g dµ

∣

∣

∣

∣

≤ ‖hn‖L2(gµ)

(

‖g‖∞‖Lf‖L2(µ) +

∥

∥

∥

∥

|∇g|2
g

∥

∥

∥

∥

∞

E(f)1/2
)

.
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The de�nition of g yields ‖|∇g|2/g‖∞<∞. Thus there is C > 0 independent of h and n suh that
|Eg(hn, f)| ≤ C‖hn‖L2(gµ).Here we used Lemma 9. By letting n→∞, we an replae hn with h in this inequality. Hene

f ∈ D(Lg) sine h is arbitrary in D(Eg). �We an now de�ne the path (g̃s)s>0. Let f ∈ D(L) ∩ Lipb(X) with ‖f‖∞ ≤ 1/4. We �x funtil the end of the following setion, and observe that f ∈ L
2(gµ). Then we let

g̃s := g(1 + f − P gs f). (38)By the L
∞-bound on f and the maximum priniple for P gs , we have

1

2
g ≤ g̃s ≤ 2g. (39)In what follows, we may assume without loss of generality that Lgf is not identially 0. For,by (31) and Lemma 10,

∫

Lf g dµ = −
∫

Γ(f, g) dµ = −
∫

Γ(f, log g)g dµ =

∫

Lgf log g g dµ. (40)Thus, if Lgf is identially 0, then ∫ Lf g dµ = 0; hene (44) below holds in this spei� ase(without the next setion) sine the CD(R,∞) ondition holds on our RCD(R,∞) spae.4.4.2 Three key estimatesThe proof of Theorem 8 is based on (44) in Proposition 15 below. In turn, this bound is basedon the three key estimates in Lemmas 11, 12 and 14, whih in the manifold ase of Setion 3.2orrespond to (20), (22) and (23). The proofs are a bit di�erent sine we use g̃s instead of gs.The Hopf-Lax semigroup (Qs)s>0 given by (16) will again play a ruial role. Requiredproperties for Qs in this framework are given in [3, Se. 3℄ or [4, Se. 3℄ for instane.We begin with the �rst estimate, orresponding to (20):Lemma 11 (First estimate)
lim inf
s→0

W 2
2 (Ptg̃sµ,Ptgµ)

2s2
> −1

2

∫

Pt(|∇f |2)g dµ+

∫

Γ(f, Ptf)g dµ.Proof. It su�es to prove an lower bound on the right-hand side of (18). By a rearrangement,
∫

QsfPtg̃s − fPtg

s
dµ =

∫

Qsf − f

s
Pt(g̃s−g) dµ+

∫

Qsf − f

s
Ptg dµ+

∫

f
Pt(g̃s − g)

s
dµ. (41)Sine gµ ∈ P(X), the Cauhy-Shwarz inequality yields s−1(g̃s − g) → −g Lgf in L

1(µ). Thusthe last term in (41) onverges to −
∫

fPt(gL
gf) dµ. By Lemma 9, and as in Setion 3.2, thisquantity is equal to the seond term on the right-hand side of the assertion. Moreover, by thegeneral bound (19), the �rst term on the right-hand side of (41) goes to 0. Finally, by (19)19



and the Lebesgue dominated onvergene theorem we onlude on the seond term as in theRiemannian ase of Setion 3.2. More preisely, we have
lim inf
s→0

∫

Qsf(x) − f(x)

s
Ptg(x)µ(dx)

> −1

2
lim sup
s→0

∫

sup
y∈B(x,

√
4s‖f‖∞)\{x}

(

f(y) − f(x)

d(x, y)

)2

Ptg(x)µ(dx) = −1

2

∫

|∇f |2Ptg dµ.Thus the assertion holds. �Next lemma deals with the seond estimate and orresponds to (22).Lemma 12 (Seond estimate)
lim sup
s→0

W 2
2 (g̃sµ, gµ)

2s2
≤ 1

2(1 − 2‖f‖∞)

∫

Γ(f)g dµ.Proof. Again, by the dual form (17), we need to bound ∫ Qsψ g̃sdµ −
∫

ψgdµ uniformly fromabove on the bounded Lipshitz funtions ψ. We an assume that ψ is moreover supportedon a bounded set. Then the funtion (s1, s2) 7→
∫

Qs1(ψ)g̃s2 dµ satis�es the assumption of [2,Lem. 4.3.4℄ sine we have (39) and ‖Qs1ψ‖∞ ≤ ‖ψ‖∞. Thus, instead of (21), we obtain
d

ds

∫

Qs(ψ)g̃s dµ ≤ d

ds

∫

Qs(ψ)g̃s0 dµ

∣

∣

∣

∣

s0=s

+
d

ds

∫

Qs0(ψ)g̃s dµ

∣

∣

∣

∣

s0=s

=

∫
[

−1

2
|∇Qsψ|2(1 + f − P gs f) −Qsψ L

gP gs f

]

g dµfor a.e. s > 0. Here the equality follows from [4, Thm. 3.6℄, the properties ‖Qsψ‖Lip < ∞,
‖Qsψ‖∞ <∞ and the Lebesgue dominated onvergene theorem. Note that Qsψ ∈ D(Eg) sine
Qsψ is Lipshitz with a bounded support. Thus, by virtue of Lemma 9 and (26),
−
∫

Qsψ (LgP gs f)g dµ = Eg(Qsψ,P gs f) ≤
√

Eg(Qsψ)Eg(P gs f) ≤
√

∫

|∇Qsψ|2g dµ Eg(P gs f).By ombining this estimate with the last one, we obtain
d

ds

∫

Qs(ψ)g̃s dµ ≤ 1

2(1 − 2‖f‖∞)
Eg(P gs f) ≤ 1

2(1 − 2‖f‖∞)
Eg(f) =

1

2(1 − 2‖f‖∞)

∫

Γ(f)g dµ.Here the seond inequality follows from the spetral deomposition for quadrati forms and theequality follows from Lemma 9 again sine f ∈ D(L) ⊂ D(E). Thus the onlusion follows byintegrating this estimate, as in the proof of (22). �For the third estimate, we still require some preparation. We all C2(X) the set of ontinuousfuntions ψ on X for whih there exists C > 0 suh that |ψ(x)| ≤ C(1+d(o, x)2). For ψ ∈ C2(X)and ν ∈ P2(X), we have ψ ∈ L
1(ν). By assumption on g, ψ ∈ L

p(gµ) for any ψ ∈ C2(X)and p ∈ [1,∞). The following lemma ensures integrability properties required in the proof ofLemma 14 below.Lemma 13 In the above notation 20



(i) ψgµ ∈ P2(X) for any ψ ∈ L
2(gµ) with ψgµ ∈ P(X).(ii) logPug ∈ C2(X) for u > 0.Proof. (i) Using Assumption (Reg1) and (36), this follows from

∫

d(o, x)2ψ(x)g(x)µ(dx) ≤
(
∫

d(o, x)4g(x)µ(dx)

)1/2(∫

ψ2g dµ

)1/2

<∞.(ii) By (36) this is obvious for u = 0 and hene we onsider the ase u > 0. First of all,
log Pug is ontinuous on X sine Pug > 0. Moreover, sine (X, d, µ) is an RCD(R,∞) spae, wehave the log-Harnak inequality

Pu(log g)(o) −
Rd(x, o)2

2(e2Ru − 1)
≤ log Pug(x) ≤ log ‖g‖∞(see [6, Lem. 4.6℄ or [19, Prop. 4.1℄). Moreover log g ∈ C2(X) and Puδo ∈ P2(X) by the propertiesafter (29), so we have ∫ log g dPuδo = Pu(log g)(o) ∈ R. Thus log Pug ∈ C2(X). �We reall haraterizations of onvergene in W2 for later use. Let νn ∈ P2(X), n ∈ N and

ν ∈ P2(X). Then W2(νn, ν) → 0 is equivalent to either of the following (see e.g. [26, Thm. 6.9℄):
• νn → ν weakly and ∫ d(o, x)2νn(dx) →

∫

d(o, x)2ν(dx),
•
∫

ψ dνn →
∫

ψ dν for any ψ ∈ C2(X).We now turn to the third estimate.Lemma 14 (Third estimate)
lim inf
s→0

1

s2

∫ t

0
e−2R(t−u)[Entµ(Pug̃s) − Entµ(Pug)]

2du >

∫ t

0
e−2R(t−u)

[
∫

Pu
(

gLgf
)

log Pug dµ

]2

du.Proof. By the Fatou lemma, it su�es to show
lim inf
s→0

[

Entµ(Pug̃s) − Entµ(Pug)

s

]2

>

[
∫

Pu
(

gLgf
)

log Pug dµ

]2for eah u > 0. By (39) and sine Entµ(Pug) ∈ R, we have Pug̃s logPug, Pug log Pug ∈ L
1(µ).Moreover a2 > (a+ b)2/(1 + δ) − b2/δ for δ > 0 and

0 ≤ x log x− x+ 1 ≤ (x− 1)2for x > 0, so
(Entµ(Pug̃s) − Entµ(Pug))

2
>

1

1 + δ

(
∫

(Pug̃s − Pug) log Pug dµ

)2

−1

δ

(
∫

(Pug̃s − Pug)
2

Pug
dµ

)2

.By the Cauhy-Shwarz inequality for Pu,
lim sup
s→0

1

s

∫

(Pug̃s − Pug)
2

Pug
dµ ≤ lim sup

s→0

1

s

∫

Pu

(

(g̃s − g)2

g

)

dµ = lim sup
s→0

s

∫
∣

∣

∣

∣

P gs f − f

s

∣

∣

∣

∣

2

g dµ = 0.
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Sine δ > 0 is arbitrary, it su�es to show
lim
s→0

1

s

∫

Pu
(

g(P gs f − f)
)

logPug dµ =

∫

Pu
(

gLgf
)

logPug dµ (42)in order to omplete the proof. Here the well-de�nedness of the right-hand side is inludedin the assertion. Sine r 7→ r+ is 1-Lipshitz, s−1(P gs f − f)+ = (s−1(P gs f − f))+ onvergesto (Lgf)+ in L
2(gµ) and hene in L

1(gµ). By [3, Thm. 4.16 (d)℄, ∫ Lgf g dµ = 0. Hene
‖(Lgf)+‖L1(gµ) > 0 sine Lgf is not identially 0 (as assumed at the end of Setion 4.4.1). Thus
‖(P gs f − f)+‖L1(gµ) > 0 for su�iently small s > 0. Let us now de�ne νfs , νf0 ∈ P(X) as follows:

νfs :=
(P gs f − f)+

‖(P gs f − f)+‖L1(gµ)
gµ, νf0 :=

(Lgf)+
‖(Lgf)+‖L1(gµ)

gµ.Then νfs → νf0 weakly in P(X) as s → 0. Moreover, by (i) in Lemma 13, νfs ∈ P2(X) for
s > 0 sine f, P gs f, Lgf ∈ L

2(gµ). Furthermore W2(ν
f
s , ν

f
0 ) → 0 as s → 0 by the remark afterLemma 13 : for

∣

∣

∣

∫

d(o, ·)2dνfs −
∫

d(o, ·)2dνf0
∣

∣

∣

≤
(

∫

d(o, ·)4g dµ
)1/2∥

∥

∥

s

‖(P gs f − f)+‖L1(gµ)

(P gs f − f)+
s

− 1

‖(Lgf)+‖L1(gµ)
(Lgf)+

∥

∥

∥

L2(gµ)
→ 0as again s−1(P gs f − f)+ → (Lgf)+ in L

2(gµ) (and hene in L
1(gµ)).Then, likewise, Puνfs ∈ P2(X) for u, s > 0 and

lim
s→0

W2(Puν
f
s , Puν

f
0 ) = 0 (43)by (28). By Lemma 13 again, log Pug ∈ C2(X) and in partiular log Pug ∈ L

1(Puν
f
0 ). Hene,by (43) and the remark after Lemma 13, we obtain

lim
s→0

1

s

∫

Pu(g(P
g
s f − f)+) log Pug dµ = lim

s→0

‖(P gs f − f)+‖L1(gµ)

s

∫

logPug dPuν
f
s

= ‖(Lgf)+‖L1(gµ)

∫

log Pug dPuν
f
0 =

∫

Pu(g(L
gf)+) log Pug dµ ∈ R.We an apply the same argument to (P gs f−f)− instead of (P gs f−f)+ to show the orrespondingassertion. In partiular, the integral in the right-hand side of (42) is well-de�ned and these twolaims yield (42). �4.4.3 Conlusion of the proof of Theorem 8Let g be as in the last setion, that is, given by (36). To proeed, we reall the notion of semigroupmolli�ation introdued in [6, Se. 2.1℄. Let κ ∈ C∞

c ((0,∞)) with κ > 0 and ∫∞
0 κ(r) dr = 1.For ε > 0 and f ∈ L

p(µ) with p ∈ [1,∞], we de�ne hεf by
hεf :=

1

ε

∫ ∞

0
Prf κ

(r

ε

)

dr.
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It is immediate that ‖hεf − f‖E → 0 as ε → 0 for f ∈ D(E). Moreover, for f ∈ L
2(µ) ∩ L

∞(µ),
hεf, L(hεf) ∈ D(L) ∩ Lipb(X). Here the latter one omes from the following representation:

Lhεf = − 1

ε2

∫ ∞

0
Prf κ

′
(r

ε

)

dr.Proposition 15 Following the same assumptions as in Theorem 8, let f = hεf0 for some ε > 0and f0 ∈ L
2(µ) ∩ L

∞(µ). Then Γ(f) ∈ D(E), and for g as above
1

2

∫

Γ(Γ(f), g) dµ +

∫

Γ(f, Lf)g dµ ≤ −R
∫

Γ(f)g dµ− 1

m

(
∫

Lf g dµ

)2

. (44)Proof. By assumption, f ∈ D(L)∩ Lipb(X). Moreover, Γ(f) = |∇f |2 µ-a.e. by [6, Thm. 3.17℄.Let η > 0 be so small that η‖f‖∞ ≤ 1/4. By applying Lemma 11, Lemma 12 and Lemma 14 to
ηf instead of f in (8),

− η2

2

∫

PtΓ(f) g dµ+ η2

∫

Γ(f, Ptf)g dµ

≤ e−2Rtη2

2(1 − 2η‖f‖∞)

∫

Γ(f)g dµ− η2

m

∫ t

0
e−2R(t−u)

(
∫

Pu((L
gf)g) log Pug dµ

)2

du.By dividing this inequality by η2 and letting η → 0,
− 1

2

∫

PtΓ(f) g dµ+

∫

Γ(f, Ptf)g dµ

≤ e−2Rt

2

∫

Γ(f)g dµ − 1

m

∫ t

0
e−2R(t−u)

(
∫

Pu((L
gf)g) log Pug dµ

)2

du. (45)By virtue of molli�ation by hε, we have Lf ∈ D(E) and
d

dt

∣

∣

∣

∣

t=0

∫

Γ(f, Ptf)g dµ = − 1

ε2

∫ ∞

0
κ′
(r

ε

)

∫

Γ(f, Prf0)g dµdr =

∫

Γ(f, Lf)g dµ.Note that Γ(f) ∈ D(E) (hene the left-hand side of (44) is well-de�ned). This fat followsfrom [24, Lem. 3.2℄ with the aid of molli�ation by hε. Then, by Lemma 16 below, we andi�erentiate (45) at t = 0 to obtain
1

2

∫

Γ(Γ(f), g) dµ +

∫

Γ(f, Lf)g dµ ≤ −R
∫

Γ(f)g dµ − 1

m

(
∫

(Lgf)g log g dµ

)2

= −R
∫

Γ(f)g dµ − 1

m

(
∫

(Lf)g dµ

)2

.Here we have used (40) also in the last equality. This is nothing but the desired inequality. �Lemma 16 For ψ ∈ L2(gµ),
lim
u→0

∫

Pu(ψg) log Pug dµ =

∫

ψg log g dµ.
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Proof. We may assume ψ ≥ 0 and ψgµ ∈ P(X) without loss of generality. Then in partiular
ψgµ ∈ P2(X) by Lemma 13 (i). First of all,

∫

Pu(ψg)| log Pug| dµ <∞by a similar argument as in Lemma 13. Thus
∫

Pu(ψg) log Pug dµ =

∫

ψgPu(log Pug) dµ ≤
∫

ψg log P2ug dµby the Fubini theorem and the Jensen inequality for Pu as integral operator. Now, for eah x,
limu→0W2(Puδx, δx) = 0 by the remarks in the end of Setion 4.1, and g is bounded and on-tinuous, so Pug(x) =

∫

gdPuδx → g(x). Moreover log P2ug ≤ log ||g||∞ and ψgµ is a probabilitymeasure, so by the Fatou lemma
lim sup
u→0

∫

Pu(ψg) log Pug dµ ≤
∫

ψg log g dµ. (46)For the opposite bound, again by the Jensen inequality for Pu,
∫

Pu(ψg) log Pug dµ >

∫

Pu(ψg)Pu(log g) dµ =

∫

log gP2u(ψg) dµ.Moreover log g is in C2(X) and W2(P2u(ψg)µ,ψgµ) → 0 as u → 0, again by the remarks in theend of Setion 4.1. Hene, by the remark after Lemma 13, we obtain
lim inf
u→0

∫

Pu(ψg) log Pug dµ > lim
u→0

∫

P2u(ψg) log g dµ =

∫

ψg log g dµ. (47)Hene the onlusion follows from the ombination of (46) and (47). �Now we are in turn to omplete the proof of Theorem 8.Proof of Theorem 8. The last ruial step onsists in transforming (
∫

(Lf)g dµ)2 into
∫

(Lf)2g dµ whih will be done by a loalization proedure. Let f be as in Proposition 15.Remark �rst that, by letting λ → 0 in the de�nition (36), we obtain (44) for g0 instead ofthe funtion g of (36). To put the square inside the integral in (44), we need to loalize thisinequality, and thus we employ a partition of unity. Let η > 0. Sine Lf ∈ Lipb(X), we antake δ > 0 su�iently small so that |Lf(x) − Lf(y)| < η for any x, y ∈ X with d(x, y) < 4δ.Sine supp g0 is ompat, there is {xi}ni=1 ⊂ X suh that supp g0 ⊂ ⋃n
i=1Bδ(xi) (note that werequire the regularity assumption (Reg2) only at this point). Let us de�ne ψ̃i (i = 1, . . . , n) by

ψ̃i(x) := 0 ∨ (2δ − d(xi, x)) and
ψi(x) :=











ψ̃i(x)
∑n

j=1 ψ̃j(x)
if ψ̃i(x) 6= 0,

0 if ψ̃i(x) = 0.Then ψi ∈ Lip(supp g0), 0 ≤ ψi ≤ 1, suppψi ⊂ B2δ(xi) and ∑n
i=1 ψi(x) = 1 for x ∈ supp g0. Byapplying (44) for ψig0/‖ψig0‖L1(µ) instead of g0, we have

1

2

∫

Γ(Γ(f), g0) dµ+

∫

Γ(f, Lf)g0 dµ =

n
∑

i=1

(

1

2

∫

Γ(Γ(f), ψig0) dµ+

∫

Γ(f, Lf)ψig0 dµ

)

≤ −R
∫

Γ(f)g0 dµ− 1

m

n
∑

i=1

1

‖ψig0‖L1(µ)

(
∫

(Lf)ψig0 dµ

)2

.
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By the hoie of δ and {ψi}ni=1, with η < 1,
n
∑

i=1

1

‖ψig0‖L1(µ)

(
∫

(Lf)ψig0 dµ

)2

> (1 − η)

n
∑

i=1

‖ψig0‖L1(µ)Lf(xi)
2 − η

> (1 − η)

∫

(Lf)2g0 dµ − η − 2η(1 − η)‖Lf‖∞By letting η → 0,
−1

2

∫

Γ(Γ(f), g0) dµ −
∫

Γ(f, Lf)g0 dµ > R

∫

Γ(f)g0 dµ +
1

m

∫

(Lf)2g0 dµ.Let now g ∈ D(L) ∩ L
∞(µ) with g > 0 and Lg ∈ L

∞(µ), as in Theorem 8. By virtue ofmolli�ation by hε, (26) and (29), we have Γ(f),Γ(f, Lf), (Lf)2 ∈ L
1(µ)∩L

∞(µ). Thus we anreplae g0 in the last inequality with g1 ∈ Lipb(X) ∩ D(E), by a standard trunation argument.Then we an replae g1 with g sine D(E) ∩ Lipb(X) is dense in D(E) with respet to ‖ · ‖E .Finally, we remove the molli�ation hε. Let f ∈ D(L) with Lf ∈ D(E) and fn := (−n)∨f∧n.Then we have, from the integration by parts formula (31),
1

2

∫

Γ(hεfn)Lg dµ−
∫

Γ(hεfn, Lhεfn)g dµ > R

∫

Γ(hεfn)g dµ +
1

m

∫

(Lhεfn)
2g dµ.By virtue of molli�ation by hε, ‖hεfn− hεf‖E → 0 and ‖Lhεfn−Lhεf‖E → 0 as n→ ∞. Thuswe obtain (27) by letting n→ ∞ and ε→ 0 after it, with taking Lhεf = hεLf into aount. �5 Links with funtional inequalitiesA new proof of the entropy-energy inequalityWe now onsider the ase where R > 0 and µ is a probability measure. It is lassial thatthe CD(R,m) ondition implies the entropy-energy inequality

Entµ(h) ≤
m

2
log

(

1 +
1

mR
I(h)

) (48)for any funtion h suh that ∫ hdµ = 1. Here I(h) =
∫

Γ(h)/h dµ is the Fisher informationof h. This inequality is given in [8, Thm. 6.8.1℄ for instane, and also in [13, Cor. 3.28℄ via the
(R,m)-onvexity of Entµ.Inequality (48) improves upon the standard non dimensional logarithmi Sobolev inequality
Entµ(h) ≤ I(h)/2R, a onsequene of the CD(R,∞) ondition. It leads for example to a sharpbound on the instantaneous reation of the entropy of the heat semigroup in P2(X), namely

Entµ(Pth) ≤ m

2
log

1

1 − e−2Rtfor all h and t > 0. For similar bounds, see also [13, Prop. 2.17℄ for a gradient �ow argumentstarting from the (R,m)-onvexity of Entµ, and [10, Prop. 3.1℄ for Fokker-Plank equations on
R
m with R-onvex potentials. 25



The two approahes of [8℄ and [13℄ are rather involved, and we now give a formal (and belowrigorous) and diret way of reovering (48) from the ontration inequality (8) in Theorem 1(whih is equivalent to the CD(R,m) ondition). The key point is the (formal) identity
lim sup
δ↓0

W 2
2 (Pδ+thµ, Pthµ)

δ2
= I(Pth) (49)(see e.g. [22, Equation (26)℄) and the lassial identity d
duEntµ(Puh) = −I(Puh). Indeed, frominequality (8) and the Fatou Lemma, for any 0 ≤ s < t,

I(Pth) = lim sup
δ↓0

W 2
2 (Pt+δhµ, Pthµ)

δ2
≤ e−2R(t−s) lim sup

δ↓0

W 2
2 (Ps+δhµ, Pshµ)

δ2

− 2

m

∫ t

s
e−2R(t−u) lim inf

δ↓0

(

Entµ(Pu+δh) − Entµ(Puh)

δ

)2

du

= e−2R(t−s)I(Psh) −
2

m

∫ t

s
e−2R(t−u)I(Puh)

2du.This yields the di�erential inequality
d

dt
I(Pth) ≤ −2RI(Pth) −

2

m
I(Pth)

2and then
I(Pth) ≤

mRI(h)

e2Rt(I(h) +mR) − I(h)
(50)by integration on [0, t]. The entropy-energy inequality (48) follows by further integrating (50)on [0,+∞) and using lim

t→∞
Entµ(Pth) = 0.Before making this argument rigorous we give a formal argument to (49) at t = 0, alternativeto [22℄. For simpliity, assume that µ = dx is the Riemannian measure and (Pt)t>0 is the heatsemigroup assoiated with the Laplae-Beltrami operator L = ∆. Let h be a probability densitywith respet to dx. First

∂sPsδh+ ∇ · (wsPsδh) = 0,where ws = −δ∇ log Psδh. Then one an hek that at the �rst order in δ, the ouple (Psδh,ws)s∈[0,1]is optimal between Pδhµ and hµ in the Benamou-Brenier formulation (see [26, Chap. 7℄). Hene
W 2

2 (Pδhµ, hµ)

δ2
=

∫ 1

0

∫

|∇ logPsδh|2Psδhdµds + o(1) → I(h), δ → 0.Theorem 17 In a REM spae as in Setion 4, the ontration inequality (8) implies the entropy-energy inequality (48).Proof. Let h be a probability density with hµ ∈ P2(X) and I(h) < ∞, as we an assume.Reall that (X, d, µ) is a RCD(R,∞) spae under our assumption (8). Thus, by [3, Thm. 9.3 (i)and Thm. 8.5 (i)℄,
− d

du
Entµ(Puh) = I(Puh) = lim sup

δ↓0

W 2
2 (Pu+δhµ, Puhµ)

δ2
(51)
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for a.e. u ∈ (0,+∞). In partiular, (49) holds almost everywhere and, proeeding as above,
I(Pth) ≤ e−2R(t−s)I(Psh) −

2

m

∫ t

s
e−2R(t−u)I(Puh)

2du (52)for any t > s > 0 where (51) is valid.We now prove that (52) holds for all t > s > 0. For this, set ψ(t) := e2RtI(Pth). Then
ψ is non-inreasing on [0,∞) by a standard argument: Indeed, by CD(R,∞) with the self-improvement argument in [24℄, we have √Γ(Pth) ≤ e−RtPt(

√

Γ(h)) for all t > 0. It yields
Γ(Pth)

Pth
≤ e−2R(t−s)

(

Pt−s(
√

Γ(Psh))
)2

Pt−s(Psh)
≤ e−2R(t−s)Pt−s

(

Γ(Psh)

Psh

)

.Thus the laim follows by integrating this inequality by µ. Moreover t 7→ I(Pth) is lower semi-ontinuous (see e.g. [3, Lem. 4.10℄). Thus ψ is lower semi-ontinuous and non-inreasing on
[0,∞), so also right-ontinuous. This implies that (52) holds for t > s > 0.Let now δ > 0. By dividing (52) by e−2Rt(ψ(t) + δ)(ψ(s) + δ), for t > s > 0,

2

m(ψ(s) + δ)(ψ(t) + δ)

∫ t

s
e−2Ruψ(u)2 du ≤ 1

ψ(t) + δ
− 1

ψ(s) + δ
· (53)We laim

2(1 − δ)

m

∫ t

0
e−2Ru

(

ψ(u)

ψ(u) + δ

)2

du ≤ 1

ψ(t) + δ
− 1

ψ(0) + δ
(54)for any t ∈ [0,∞). For the proof of the laim, we let J be the subset of t ∈ [0,∞) satisfying (54)and prove J = [0,∞). First, 0 ∈ J obviously holds and hene J 6= ∅. Seond, if t ∈ J and

t′ ∈ (t,∞) with t′ − t su�iently small, then t′ ∈ J . Indeed, by the right ontinuity of ψ, wehave ψ(u) + δ > (1 − δ)(ψ(t) + δ) for any u > t being su�iently lose to t. We take t′ > t sothat this holds for all u ∈ (t, t′). Thus (54) for this t, (53) and ψ being non-inreasing yield
2(1 − δ)

m

∫ t′

0
e−2Ru

(

ψ(u)

ψ(u) + δ

)2

du

≤ 1

ψ(t) + δ
− 1

ψ(0) + δ
+

2

m(ψ(t) + δ)(ψ(t′) + δ)

∫ t′

t
e−2Ruψ(u)2 du

≤ 1

ψ(t′) + δ
− 1

ψ(0) + δand hene t′ ∈ J . Third, J is losed under inreasing sequenes. That is, for any boundedinreasing sequene (tn)n∈N in J , then lim
n→∞

tn ∈ J . This property follows from the fat that ψ islower semi-ontinuous. Now these three properties imply J = [0,∞) and hene the laim holds.Finally we obtain (50) for all t > 0 by taking δ ↓ 0 and rearranging terms in (54). But
Entµ(h) − Entµ(Pth) =

∫ t

0
I(Psh)ds (55)for all t by [3, Thms. 9.3 (i) and 8.5 (i)℄ again. Hene integrating (50) in t onludes the proof. �27



A dimensional HWI type inequalityFor R being 0 or negative, no logarithmi Sobolev inequality for µ holds in general, andfollowing [22℄ it an be replaed by a HWI interpolation inequality with an additional W2 term :this is inequality giving an upper bound on the entropy H in terms of the distane W2 and theFisher information I. As above, let us see how to derive a dimensional form of this inequalityfrom the ontration property (7) in Theorem 1.In a REM spae as in Setion 4, with a referene measure µ in P2(X), assume the ontrationproperty (7) with R = 0. Let g, h suh that gµ, hµ ∈ P2(X), I(h) < ∞ and gµ has boundedsupport. Reall �rst that (X, d, µ) is a RCD(0,∞) spae under our assumption (7). In partiular
I(Pth) ≤ I(h) for all t > 0. Then [1, Thm. 6.3℄ and the Cauhy-Shwarz inequality yield

1

2

d

dt
W 2

2 (Pthµ, gµ) > −W2(Pthµ, gµ)
√

I(Pth)for almost every t > 0. In partiular
1

2
W 2

2 (Pthµ, gµ)−1

2
W 2

2 (hµ, gµ) > −
∫ t

0
W2(Pshµ, gµ)

√

I(Psh) ds > −
∫ t

0
W2(Pshµ, gµ)

√

I(h) dsfor all t > 0.If now g onverges to 1 in suh a way that gµ onverges to µ in the W2 distane, then usingthe triangular inequality
∣

∣W2(Pshµ, gµ) −W2(Pshµ, µ)
∣

∣ ≤W2(gµ, µ)for any 0 ≤ s ≤ t one an pass to the limit above, leading to
1

2
W 2

2 (Pthµ, µ) − 1

2
W 2

2 (hµ, µ) > −
∫ t

0
W2(Pshµ, µ)

√

I(h) ds.Now by (7) the left-hand side is bounded from above by
−4m

∫ t

0
sinh2

(

Entµ(Psh)

2m

)

ds.Finally s 7→ W2(Pshµ, µ) and s 7→ Entµ(Psh) are ontinuous on [0, t], so one an let t go to 0and obtain
sinh2

(

Entµ(h)

2m

)

≤ 1

4m
W2(hµ, µ)

√

I(h). (56)In [13℄, they proved the HWI inequality
exp

(

Entµ(g1) − Entµ(g0)

m

)

≤ 1 +
1

m
W2(g1µ, g0µ)

√

I(g1),and we an obtain (56) also from this inequality by onsidering the ases (g0, g1) = (h, 1) and
(g0, g1) = (1, h) in this inequality and summing them up. The inequality obtained in the ase
(g0, g1) = (1, h) is in fat better than (56) (and has the same behaviour for large Entµ(h)).Here is a possible appliation of (56): in the above notation and assumptions (with R = 0),there exists a positive numerial onstant C suh that

Entµ(Pth) ≤
m

2
max

{

C, log
W 2

2 (hµ, µ)

mt

}

, t > 028



for all h with hµ ∈ P2. This bound is a onsequene of (55), (56) with Pth instead of h, thebounds W2(Pthµ, µ) ≤W2(hµ, µ) and sinh4(x) > e4x/32 for x large enough.For short time, this gives a regularization bound of the entropy as m/2 log(1/t), whih isexatly the behaviour observed above for R > 0, and also for the heat kernel on R
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