Splitting of singular fibers and vanishing cycles

Takayuki OKUDA
the University of Tokyo

Kanazawa University
Satellite Plaza
January 18, 2017
Degenerations and their splitting deformations
Degeneration of Riemann surfaces

\(M \): a smooth complex surface \hspace{1cm} \(\Delta \): the unit disk in \(\mathbb{C} \)
\(\pi : M \to \Delta \): a proper surjective holomorphic map s.t.

- \(X_s := \pi^{-1}(s) \ (s \neq 0) \) are smooth curves of genus \(g \).
- \(X_0 := \pi^{-1}(0) \) is a singular fiber.

\(0 \) is a unique critical value.

\(\pi : M \to \Delta \) is called a degeneration (or, degenerating family) of Riemann surfaces of genus \(g \).

Regard \(X_0 \) as the divisor defined by
\[
X_0 = \sum m_i \Theta_i,
\]
where \(\Theta_i \) is an irreducible component with multiplicity \(m_i \).
M: a smooth complex surface \hspace{1cm} \Delta$: the unit disk in \mathbb{C}

$\pi: M \to \Delta$: a proper surjective holomorphic map s.t.

- $X_s := \pi^{-1}(s)$ ($s \neq 0$) are smooth curves of genus g.
- $X_0 := \pi^{-1}(0)$ is a singular fiber.

$(\iff) 0$ is a unique critical value.)

$\pi: M \to \Delta$ is called

a degeneration (or, degenerating family)

of Riemann surfaces of genus g.

Regard X_0 as the divisor defined by π:

$X_0 = \sum m_i \Theta_i$,

where Θ_i is an irreducible component with multiplicity m_i.
Degeneration of Riemann surfaces

M: a smooth complex surface \hspace{5mm} Δ: the unit disk in \mathbb{C}

$\pi: M \rightarrow \Delta$: a proper surjective holomorphic map s.t.

- $X_s := \pi^{-1}(s) \ (s \neq 0)$ are smooth curves of genus g.
- $X_0 := \pi^{-1}(0)$ is a singular fiber.

($\iff 0$ is a unique critical value.)

$\pi: M \rightarrow \Delta$ is called a degeneration (or, degenerating family) of Riemann surfaces of genus g.

Regard X_0 as the divisor defined by π:

$X_0 = \sum m_i \Theta_i$,

where Θ_i is an irreducible component with multiplicity m_i.
\(M\) : a smooth complex surface \(\Delta\) : the unit disk in \(\mathbb{C}\)
\(\pi : M \to \Delta\) : a proper surjective holomorphic map s.t.

- \(X_s := \pi^{-1}(s) (s \neq 0)\) are smooth curves of genus \(g\).
- \(X_0 := \pi^{-1}(0)\) is a singular fiber.

\(\pi : M \to \Delta\) is called a degeneration (or, degenerating family) of Riemann surfaces of genus \(g\).

Regard \(X_0\) as the divisor defined by \(\pi\):
\[
X_0 = \sum m_i \Theta_i,
\]
where \(\Theta_i\) is an irreducible component with multiplicity \(m_i\).
Degeneration of Riemann surfaces

\(M \): a smooth complex surface \hspace{1cm} \(\Delta \): the unit disk in \(\mathbb{C} \)

\(\pi : M \rightarrow \Delta \): a proper surjective holomorphic map s.t.

\(X_s := \pi^{-1}(s) \) (\(s \neq 0 \)) are smooth curves of genus \(g \).

\(X_0 := \pi^{-1}(0) \) is a singular fiber.

(\(\iff 0 \) is a unique critical value.)

\(\pi : M \rightarrow \Delta \) is called a degeneration (or, degenerating family) of Riemann surfaces of genus \(g \).

Regard \(X_0 \) as the divisor defined by \(\pi \):

\[X_0 = \sum m_i \Theta_i, \]

where \(\Theta_i \) is an irreducible component with multiplicity \(m_i \).
M: a smooth complex surface \hspace{1cm} Δ: the unit disk in \mathbb{C}

$\pi: M \to \Delta$: a proper surjective holomorphic map s.t.

- $X_s := \pi^{-1}(s) \ (s \neq 0)$ are smooth curves of genus g.
- $X_0 := \pi^{-1}(0)$ is a singular fiber.

$(\iff) 0$ is a unique critical value.)

$\pi: M \to \Delta$ is called a \textit{degeneration} (or, degenerating family) of Riemann surfaces of genus g.

Regard X_0 as the divisor defined by π:

$$X_0 = \sum m_i \Theta_i,$$

where Θ_i is an irreducible component with \textit{multiplicity} m_i.

3/19
Splitting of singular fibers

\(\pi : M \to \Delta \) : a degeneration with singular fiber \(X_0 \)

\(\{ \pi_t : M_t \to \Delta \} \) : a family of deformations of \(\pi : M \to \Delta \)
i.e. \(\pi_0 : M_0 \to \Delta \) coincides with \(\pi : M \to \Delta \).

\[
\text{If } \pi_t (t \neq 0) \text{ has } k \text{ singular fibers } X_{s_1}, \ldots, X_{s_k}, k \geq 2, \\
\text{We say that } X_0 \text{ splits into } X_{s_1}, \ldots, X_{s_k}. \]
Splitting of singular fibers

\(\pi : M \to \Delta \) : a degeneration w/ singular fiber \(X_0 \)

\(\{ \pi_t : M_t \to \Delta \} \) : a family of deformations of \(\pi : M \to \Delta \)
i.e. \(\pi_0 : M_0 \to \Delta \) coincides with \(\pi : M \to \Delta \).

If \(\pi_t \ (t \neq 0) \) has \(k \) singular fibers \(X_{s_1}, \ldots, X_{s_k} \), \(k \geq 2 \),
\(\implies \) We say that \(X_0 \) splits into \(X_{s_1}, \ldots, X_{s_k} \).
How to construct splittings

- **Double covering method**
 - Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

- **Barking deformation**
 - Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a topological viewpoint)
Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.
Splittability of singular fibers

How to construct splittings

- **Double covering method**
 - Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)

- **Barking deformation**
 - Takamura (some criterion)

Fact (Atoms of singular fibers)

(1) A *Lefschetz fiber* and (2) a *multiple smooth fiber* admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a topological viewpoint)
Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.
Splittability of singular fibers

How to construct splittings

- Double covering method
 - Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)
- Barking deformation
 - Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A **Lefschetz fiber** and (2) a **multiple smooth fiber**
 admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a topological viewpoint)
Every singular fiber can split into singular fibers
each of which is (1) or (2), in finite steps of deformations.
How to construct splittings

- Double covering method
 - Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)
- Barking deformation
 - Takamura (some criterion)

Fact *(Atoms of singular fibers)*
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture *(from a topological viewpoint)*
Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.
Splittability of singular fibers

How to construct splittings

- Double covering method
 - Moishezon (genus 1 case), Horikawa (genus 2 case), Arakawa-Ashikaga (hyperelliptic case)
- Barking deformation
 - Takamura (some criterion)

Fact (Atoms of singular fibers)
(1) A Lefschetz fiber and (2) a multiple smooth fiber admit no splittings (i.e. any deformation is equisingular).

Conjecture (from a topological viewpoint)
Every singular fiber can split into singular fibers each of which is (1) or (2), in finite steps of deformations.
Topological classification

\[\pi : M \to \Delta \] is topologically equivalent to another degeneration \(\pi' : M' \to \Delta \)

\[\iff \exists \text{ ori. preserving homeomorphisms} \]

\[\begin{align*}
H : M &\to M', \\
h : \Delta &\to \Delta \quad \text{s.t.} \quad h \circ \pi = \pi' \circ H.
\end{align*} \]

Theorem (Terasoma)

Top. equivalent degenerations are deformation equivalent.

The top. classes of degenerations are completely determined by their topological monodromies.

Theorem (Imayoshi, Shiga-Tanigawa, Earle-Sipe)

Every topological monodromy is pseudo-periodic of negative twist.
\[\pi : M \to \Delta \text{ is topologically equivalent} \]

to another degeneration \(\pi' : M' \to \Delta \)

\[\iff \exists \text{ ori. preserving homeomorphisms }\]

\[H : M \to M', h : \Delta \to \Delta \text{ s.t. } h \circ \pi = \pi' \circ H. \]

Theorem (Terasoma)

Top. equivalent degenerations are deformation equivalent.

The top. classes of degenerations are completely determined by their topological monodromies.

Theorem (Imayoshi, Shiga-Tanigawa, Earle-Sipe)

Every topological monodromy is pseudo-periodic of negative twist.
Topological classification

\(\pi : M \to \Delta \) is **topologically equivalent** to another degeneration \(\pi' : M' \to \Delta \):

\[\iff \exists \text{ ori. preserving homeomorphisms } H : M \to M', h : \Delta \to \Delta \text{ s.t. } h \circ \pi = \pi' \circ H. \]

Theorem (Terasoma)

Top. equivalent degenerations are deformation equivalent.

The top. classes of degenerations are completely determined by their **topological monodromies**.

Theorem

(Imayoshi, Shiga-Tanigawa, Earle-Sipe)

Every topological monodromy is **pseudo-periodic of negative twist**.
The top. classes of degenerations are completely determined by their topological monodromies.

Theorem (Imayoshi, Shiga-Tanigawa, Earle-Sipe)
Every topological monodromy is pseudo-periodic of negative twist.
Theorem (Matsumoto-Montesinos, 91/92)

\[
\begin{align*}
\{ \text{top. equiv. classes of minimal degenerations of Riemann surfs. of genus } g \} & \quad \overset{1:1}{\leftrightarrow} \quad \{ \text{conj. classes in } \text{MCG}_g \text{ of pseudo-periodic mapp. classes of negative twist} \} \\
\text{via topological monodromy, for } g \geq 2.
\end{align*}
\]
Theorem (Matsumoto-Montesinos, 91/92)

\[
\begin{align*}
\text{top. equiv. classes of} & \quad \text{conj. classes in } \text{MCG}_g \text{ of} \\
\text{minimal degenerations of} & \quad \text{pseudo-periodic mapp. classes} \\
\text{Riemann surfs. of genus } g & \quad \text{of negative twist}
\end{align*}
\]

via \textbf{topological monodromy}, for \(g \geq 2 \).

\[\text{Multiple smooth fiber}\]

\[\text{Periodic mapping class w/o multiple points}\]
Theorem (Matsumoto-Montesinos, 91/92)

\[
\begin{align*}
\text{top. equiv. classes of} & \quad \leftrightarrow_{1:1} \quad \text{conj. classes in } \text{MCG}_g \\
\text{minimal degenerations of} & \quad \text{of pseudo-periodic mapp. classes} \\
\text{Riemann surfs. of genus } g & \quad \text{of negative twist}
\end{align*}
\]

via topological monodromy, for \(g \geq 2 \).
Topological classification

Theorem (Matsumoto-Montesinos, 91/92)

\[
\begin{align*}
\left\{ \text{top. equiv. classes of minimal degenerations of Riemann surfs. of genus } g \right\} & \quad \xymatrix{ & 1:1 \ar[rr] & & } \quad \left\{ \text{conj. classes in } \text{MCG}_g \text{ of pseudo-periodic mapp. classes of negative twist} \right\} \\
\end{align*}
\]

via topological monodromy, for \(g \geq 2 \).

Singular fiber

Smooth complex surface \(M \)

Pseudo-periodic mapping class of negative twist

Open disk \(\Delta \)
Splittability into Lefschetz fibers
A propeller surface is a Riemann surface Σ_g of genus $g \geq 2$ equipped with \mathbb{Z}_g-action s.t. Σ_g/\mathbb{Z}_g has genus 1.

ω_g: a propeller automorphism

X_g: the singular fiber with monodromy ω_g
Theorem (Y. Matsumoto)

$\pi : M \to \Delta :$ the degeneration of Riemann surfaces of genus 2 with monodromy ω_2

Then its singular fiber X_2 can split into four Lefschetz fibers.

Moreover, their vanishing cycles are as depicted below.
Theorem (Y. Matsumoto)

\[\pi : M \to \Delta : \text{the degeneration of Riemann surfaces of genus 2} \]

with monodromy \(\omega_2 \)

Then its singular fiber \(X_2 \) can split into four Lefschetz fibers. Moreover, their vanishing cycles are as depicted below.
Psudo-propeller maps

$\omega_{3}^{(2)}$

γ : a separating simple loop on Σ_g

s.t. $\Sigma_g \setminus \gamma = \Sigma_{m,1} \sqcup \Sigma_{n,1}$ \quad ($g = m + n, m \geq 1, n \geq 0$)

$\omega_{m}^{(n)}$: a pseudo-periodic map satisfying

- $\omega_{m}^{(n)} \mid_{\Sigma_{m,1}} \sim \text{a periodic map with a fixed pt of rot angle } \frac{2\pi}{m}$.
- $\omega_{m}^{(n)} \mid_{\Sigma_{n,1}} \sim \text{id.}$

$X_{3}^{(2)}$

NOTE: $(\omega_{m}^{(n)})^m = \tau_{\gamma}$

$X_{m}^{(n)}$: the singular fiber with monodromy $\omega_{m}^{(n)}$

$n = 2$

$m = 3$
Psuedo-propeller maps

\[\omega^{(2)}_3 \]

\[id \sim \gamma \]

\[n = 2 \]

\[m = 3 \]

\[m = 3 \]

\[X^{(2)}_3 \]

\[\{ n = 2 \} \]

\[\gamma : \text{a separating simple loop on } \Sigma_g \]

\[\text{s.t. } \Sigma_g \setminus \gamma = \Sigma_{m,1} \bigsqcup \Sigma_{n,1} \quad (g = m + n, m \geq 1, n \geq 0) \]

\[\omega^{(n)}_m : \text{a pseudo-periodic map satisfying} \]

\[\omega^{(n)}_m \mid_{\Sigma_{m,1}} \sim \text{a periodic map with a fixed pt of rot angle } \frac{2\pi}{m}. \]

\[\omega^{(n)}_m \mid_{\Sigma_{n,1}} \sim \text{id.} \]

\[\text{NOTE: } (\omega^{(n)}_m)^m = \tau_\gamma \]

\[X^{(n)}_m : \text{the singular fiber with monodromy } \omega^{(n)}_m \]
Psudo-propeller maps

$X_4^{(1)}$

$X_5^{(0)}$

$\omega_4^{(1)}$

$\omega_5^{(0)} = \omega_5$

γ
Psudo-propeller maps

\[X^{(3)}_2 \]

\[X^{(4)}_1 \]

\[\omega^{(3)}_2 \]

\[\omega^{(4)}_1 = \tau_\gamma \]
Theorem (O-Takamura)

1. For any $m \geq 2$, $n \geq 0$, the singular fiber $X_m^{(n)}$ can split into $X_{m-1}^{(n+1)}$ and three Lefschetz fibers.

2. For any $g \geq 2$, we have the following sequence:

\[X_g^{(0)} \rightarrow X_{g-1}^{(1)} \rightarrow \cdots \rightarrow X_{2}^{(g-2)} \rightarrow X_{1}^{(g-1)}, \]

where “$A \rightarrow B$” means “A splits into B and 3 Lefschetz fibers.”
Theorem (O-Takamura)

1. For any $m \geq 2$, $n \geq 0$, the singular fiber $X_m^{(n)}$ can split into $X_{m-1}^{(n+1)}$ and three Lefschetz fibers.

2. For any $g \geq 2$, we have the following sequence:

$$X_g^{(0)} \rightarrow X_{g-1}^{(1)} \rightarrow \cdots \rightarrow X_2^{(g-2)} \rightarrow X_1^{(g-1)},$$

where “$A \rightarrow B$” means “A splits into B and 3 Lefschetz fibers”.

\[\begin{array}{c}
X_m^{(n)} \\
\begin{array}{c}
\{ \begin{array}{c}
m \\
1
\end{array} \end{array}
\end{array} \rightarrow \begin{array}{c}
X_{m-1}^{(n+1)} \\
\begin{array}{c}
\{ \begin{array}{c}
m \\
1
\end{array} \end{array}
\end{array} \]
Theorem (O-Takamura)

1. For any \(m \geq 2, \ n \geq 0 \), the singular fiber \(X_{m}^{(n)} \) can split into \(X_{m-1}^{(n+1)} \) and three Lefschetz fibers.

2. For any \(g \geq 2 \), we have the following sequence:

\[
X_{g}^{(0)} \rightarrow X_{g-1}^{(1)} \rightarrow \cdots \rightarrow X_{2}^{(g-2)} \rightarrow X_{1}^{(g-1)},
\]

where “\(A \rightarrow B \)” means “\(A \) splits into \(B \) and 3 Lefschetz fibers”.

\[
\begin{align*}
\{ \ &m \
\} \ n \
\end{align*}
\]

\[
\begin{align*}
\{ \ &m-1 \
\} \ n+1
\end{align*}
\]
\[X_m^{(n)} \rightarrow X_{m-1}^{(n+1)} \]

\[g = 2 \]

\[g = 3 \]

\[g = 4 \]
\[X_m^{(n)} \rightarrow X_{m-1}^{(n+1)} \]

\[
\begin{align*}
g &= 2 \\
g &= 3 \\
g &= 4
\end{align*}
\]
Results

\[X_m^{(n)} \rightarrow X_m^{(n+1)} \]

\[g = 2 \]

\[g = 3 \]

\[g = 4 \]
$$X^{(n)}_m \rightarrow X^{(n+1)}_{m-1}$$

\[g = 2 \]

\[g = 3 \]

\[g = 4 \]
$$X_m^{(n)} \rightarrow X_m^{(n+1)}$$

\[g = 2 \]

\[g = 3 \]

\[g = 4 \]
Results

$X_m^{(n)} \rightarrow X_{m-1}^{(n+1)}$

$g = 2$

$g = 3$

$g = 4$
Remark of Theorem

1. Generalization of Matsumoto’s splitting for genus 2.
2. Analogous to adjacency diagrams of singularities:

\[A_6 \rightarrow A_5 \rightarrow A_4 \rightarrow A_3 \rightarrow A_2 \rightarrow A_1 \]

\[D_6 \rightarrow D_5 \rightarrow D_4 \]

\[E_6 \]

3. A splitting of a singular fiber into Lefschetz fibers gives a **Dehn-twist expression** of its topological monodromy.
Case $g = 2$ (bis)

Theorem (Y. Matsumoto)

1. The singular fiber X_2 can split into four Lefschetz fibers, and their vanishing cycles are as depicted below.

2. $\omega_2 = \tau_0 \circ \tau_a \circ \tau_b \circ \tau_c$.

![Diagram](image-url)
Theorem (Y. Matsumoto)

1. The singular fiber X_2 can split into four Lefschetz fibers, and their vanishing cycles are as depicted below.

2. $\omega_2 = \tau_0 \circ \tau_a \circ \tau_b \circ \tau_c$.

\[\omega_2 \]

[Diagram of singular fiber with labeled cycles]
Proposition

1. $X_3^{(0)}$ can split into $X_2^{(1)}$ and three Lefshetz fibers, and their vanishing cycles are as depicted below.

2. $\omega_3 = \omega_2^{(1)} \circ \tau_{a_1} \circ \tau_{b_1} \circ \tau_{c_1}$.
Case $g = 3$

Proposition

1. $X_3^{(0)}$ can split into $X_2^{(1)}$ and three Lefshetz fibers, and their vanishing cycles are as depicted below.

2. $\omega_3 = \omega_2^{(1)} \circ \tau_{a_1} \circ \tau_{b_1} \circ \tau_{c_1}$.

[Diagram of vanishing cycles and Lefshetz fibers]
Proposition

1. $X_2^{(1)}$ can split into four Lefshetz fibers (including $X_1^{(2)}$), and their vanishing cycles are as depicted below.

2. \[\omega_2^{(1)} = \tau_0 \circ \tau_{a_1} \circ \tau_{b_1} \circ \tau_{c_1}. \]
Proposition

1. $X_2^{(1)}$ can split into four Lefshetz fibers (including $X_1^{(2)}$), and their vanishing cycles are as depicted below.

2. \[\omega_{2}^{(1)} = \tau_0 \circ \tau_{a_1} \circ \tau_{b_1} \circ \tau_{c_1}. \]
Case $g = 3$

Proposition

$$\omega_3 = \tau_0 \circ (\tau_{a_2} \circ \tau_{b_2} \circ \tau_{c_2}) \circ (\tau_{a_1} \circ \tau_{b_1} \circ \tau_{c_1}).$$
Theorem

\[\omega_g = \tau_0 \circ (\tau_{a_{g-1}} \circ \tau_{b_{g-1}} \circ \tau_{c_{g-1}}) \circ \cdots \circ (\tau_{a_1} \circ \tau_{b_1} \circ \tau_{c_1}). \]
\(f \in \text{MCG}(\Sigma_g) : \) a periodic mapping class of order \(m \)

\[
b(f) := \# \{ \text{branch points of } \Sigma_g \to \Sigma_g/f \}
\]

\[
p(f) := \# \{ \text{propeller points of } f \} \leq h(f)
\]

\[
r(f) := \sum q_j/\ell_j \in \mathbb{Z}_+ : \text{the total valency sum}
\]

Theorem (O)

\(X \) : the singular fiber equipped with periodic monodromy \(f \)

Suppose \(f \) satisfies at least one of the following:

- \(b(f) - p(f) \leq r(f) \).
- \(b(f) - p(f) \leq 2, \ r(f) = 1 \) and \(\text{genus}(\Sigma_g/f) = 0 \).

Then \(X \) can splits into Lefschetz fibers.
\(f \in \text{MCG}(\Sigma_g) \): a periodic mapping class of order \(m \)

\(b(f) := \# \{ \text{branch points of } \Sigma_g \to \Sigma_g/f \} \)

\(p(f) := \# \{ \text{propeller points of } f \} \leq h(f) \)

\(r(f) := \sum q_j/\ell_j \in \mathbb{Z}_+ \): the total valency sum

Theorem (O)

\(X \): the singular fiber equipped with periodic monodromy \(f \)

Suppose \(f \) satisfies at least one of the following:

- \(b(f) - p(f) \leq r(f) \).
- \(b(f) - p(f) \leq 2, \ r(f) = 1 \) and \(\text{genus}(\Sigma_g/f) = 0 \).

Then \(X \) can splits into Lefschetz fibers.
Remark of Theorem

1. If $m = 2, 3$, then X can split into Lefschetz fibers.

2. | genus | 1 | 2 | 3 | 4 | 5 | 6 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># of periodic m.c.</td>
<td>8</td>
<td>17</td>
<td>47</td>
<td>72</td>
<td>76</td>
<td>203</td>
</tr>
<tr>
<td># of periodic m.c. satisfying (*)&</td>
<td>8</td>
<td>14</td>
<td>30</td>
<td>41</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td># of powers of periodic m.c. satisfying (*)&</td>
<td>8</td>
<td>16</td>
<td>45</td>
<td>66</td>
<td>66</td>
<td></td>
</tr>
</tbody>
</table>
Thank you for your attention.