
Theory of mixed motives

Masaki Hanamura

1. From Grothendieck’s theory of motives to the theory of mixed motives.

One of the main motivations for A. Grothedieck for laying the foundations of algebraic
geometry and developing the theory of étale cohomology was the Weil conjecture on the zeta
function. This conjecture concerns the congruence zeta function of an algebraic variety defined
over a finite field. If X is a smooth projective variety over a finite field Fq, its zeta function
Z(X; t) ∈ Q[[t]] is by definition the formal power series exp(

∑
n≥1Nnt

n/n), encoding the num-
ber of rational points Nn of X over Fqn for n ≥ 1. The Weil conjecture asserts that (a) Z(X; t)
is a rational function in t; (b) a functional equation is satisfied for Z(X; t); and (c) an analogue
of the Riemann hypothesis should hold.

It was known to A. Weil that if there was a cohomology theory for varieties over Fq with
suitable properties, then the Weil conjecture follows. After years of search for such a cohomology
theory, the ℓ-adic étale cohomology was introduced by M. Artin and Grothendieck, and was
shown to satisfy most of the required properties. To be more precise, for a prime integer ℓ and
for a variety X over a field with characteristic p ̸= ℓ, one can define a vector space over the
field Qℓ of ℓ-adic numbers, H i

ét(X,Qℓ), called the ℓ-adic étale cohomology; one may view it as
an analogue of the Betti (namely singular) cohomology, say with Q-coefficients, for topological
spaces. As for Betti cohomology, one has properties such as finite dimensionality, Poincaré
duality, the Künneth formula (k is assumed separably closed for these properties), and an
algebraic cycle has its associated class in the étale cohomology.

To explain the connection to the zeta function, let X be a smooth projective variety over
a finite field Fq, X = X ⊗ Fq, and let F : X → X be the Frobenius endomorphism (the
map that sends a point with coordinates x to the point with coordinates xq). There is then the
induced action F ∗ on the ℓ-adic cohomology H i

ét(X,Qℓ), and one can consider the characteristic
polynomial

Pi(t) = det(1− tF ∗|H i
ét(X,Qℓ) ∈ Qℓ[t]

for i = 0, . . . , 2 dimX. Using the trace formula (of Lefschetz type) it can be shown that the zeta
function factors as an alternating product Z(X; t) =

∏
i=0,··· ,2 dimX Pi(t)

(−1)i+1
over Qℓ. With

this it is not hard to verify part of the Weil conjecture, namely the rationality and the functional
equation. The remaining part, the analogue of the Riemann hypothesis, can be deduced from
the following statement regarding the eigenvalues of the Frobenius endomorphism acting on the
ℓ-adic cohomology of the variety: The polynomial Pi(t) has integer coefficients, independent of
ℓ, whose reciprocal roots are of absolute value qi/2. It was the conjecture in this form that was
finally proven by P. Deligne (see [De-3]).

Going back to the 1950’s, in his letter addressed to Weil, J.-P. Serre formulated and proved
the following analogue of the Weil conjecture for complex varieties (see [Se]): LetX be a smooth
projective variety over C, and F : X → X a map. Assume there is an integer q > 0 and an
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ample divisor H such that F ∗H is algebraically equivalent to qH. Then the eigenvalues of
the endomorphism F ∗ on Hr(X,C) induced by F has qr/2 for absolute values. The proof uses
that the cohomology has Hodge structure, along with the Lefschetz “primitive” decomposition
(which follows from the hard Lefschetz theorem) and the polarization (which exists by the
Hodge index theorem).

Inspired by this work, Grothendieck formulated the “standard conjectures” on the cohomol-
ogy classes of algebraic cycles. These conjectures can be formulated for any Weil cohomology
theory, including the “usual” cohomology, such as Betti, ℓ-adic, or the algebraic de Rham the-
ory. The Betti cohomology is another name for the singular cohomology of an algebraic variety
over C. The algebraic de Rham cohomology H i

DR(X/k) of a smooth projective variety X over
a field k (assumed of characteristic zero) is by definition the Zariski hypercohomology of the
algebraic de Rham complex Ω•

X of the variety. By a Weil cohomology we mean any abstract
cohomology theory for smooth projective varieties over a field k, namely a contravariant func-
tor X 7→ H∗(X), that takes values in graded K-vector spaces, with K a field of characteristic
zero, subject to a set of axioms such as finite dimensionality, Poincaré duality, the Künneth
formula and the cycle class map. The standard conjectures consist of the conjectures of Lef-
schetz type, and those of Hodge type; the former asserts that certain cohomology classes be
algebraic, and the latter is an analogue of the Hodge index theorem for “primitive” algebraic
classes. Grothendieck observed that these conjectures for any Weil cohomology over a finite
field imply the Weil conjecture via an argument similar to Serre’s. But even further, the same
conjectures for any Weil cohomology over a field k imply the existence of a “good” theory
of pure motives. Briefly speaking, through a Weil cohomology one can construct an additive
category M(k) of pure motives over k. The conjectures imply that M(k) is independent of
the choice of a Weil cohomology, that it is a semi-simple abelian category, and that there is a
contravariant functor X 7→ h(X) ∈ M(k), called the motivic cohomology, from the category
of smooth projective varieties over k, such that each Weil cohomology functor factors through
h; in other words various cohomology theories (Betti, ℓ-adic, and de Rham) can be “unified”
to motivic cohomology. (An abelian category is semi-simple if any sub-object of an object is
a direct summand.) This is Grothendieck’s theory of motives. See [Kl-1],[Kl-2], [Ma] for
this; we will briefly mention it in §4.

Before Grothendieck’s theory evolved into the theory of mixed motives, there were several
developments in algebraic geometry; the principal ones being, as we review below, the theory
of weights on cohomology, algebraic K-theory and the values of zeta functions, and the study
of Chow groups.

Firstly, P. Deligne established the theory of weights of the cohomology of a variety over C
or over a finite field. Recall that for a smooth projective variety X over C, the cohomology
H i(X(C),Q) has so-called Hodge structure of weight i (namely there is the Hodge decomposi-
tion H i(X,Q)⊗C =

⊕
p+q=iH

p,q, Hp,q = Hq,p). Generalizing this, Deligne [De-2] showed that,
for any quasi-projective variety X, its cohomology has a mixed Hodge structure; informally, a
mixed Hodge structure is an iterated extension of Hodge structures of different weights. Hodge
structure of weight i is often called pure Hodge structure in order to distinguish it from mixed
Hodge structure. For varieties over a finite field, generalizing the Weil conjecture, Deligne de-
veloped the theory of pure ℓ-adic sheaves, [De-4]. Subsequently the theory was extended to the
theory of mixed sheaves in [BBD], which is an ℓ-adic analogue of mixed Hodge theory.

Secondly, algebraic K-theory for exact categories was developed in the 1970’s by D. Quillen.
For a noetherian schemeX there correspond the groupsKn(X) for n ≥ 0, the algebraicK-group
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of the exact category of vector bundles on X; for n = 0, K0(X) is the Grothendieck group of
the commutative monoid of the isomorphism classes of vector bundles on X. In [Bo], A. Borel
showed the algebraic K-group of a number field F and the zeta function of F are connected
as follows. He defined the regulator map, K2m−1(F ) → Vm for integers m ≥ 2, where Vm is a
certain finite dimensional R-vector space, and related this map to the value (more precisely the
order and the leading coefficient) of ζF (s) at s = m. Subsequently S. Bloch ([Bl-3]) defined a
regulator map for an elliptic curve E over C, K2(E) → C; when E has complex multiplication,
defined over an imaginary quadratic field, then he showed that the value of the L-function
L(E, s) at s = 2 can be expressed using this regulator map. This should be contrasted to the
Birch-Swinnerton-Dyer conjecture on the value of L(E, s) at s = 1, which has to do with the
Mordell-Weil group.

Thirdly, we look at some works on algebraic cycles. For a smooth projective variety X
over C, one has the Chow group CHr(X) of algebraic cycles of codimension r modulo rational
equivalence. If r = 1, it is an extension of an abelian variety Pic0(X) by a finitely generated
abelian group. In contrast, for r ≥ 2, D. Mumford has shown that CHr(X) is too large so
that it does not have any finite dimensional algebro-geometric structure. But S. Bloch ([Bl-1])
postulated that the Chow group (tensored with Q) have a certain filtration by subgroups, in
such a way that the successive quotients are controlled by the usual cohomology of X. This
conjecture, which has far-reaching consequences, has since served as a guiding principle for the
study of Chow groups.

Pushing this circle of ideas further, A. Beilinson proposed the framework of the abelian
category of mixed motives over a field, [Be]. In an ideal form, one may summarize the theory
as follows.

(1) it contains the theory of Grothendieck’s motives over a field;
(2) it unifies the theory of weights for not-necessarily smooth quasi-projective varieties;
(3) it naturally explains the existence of the filtration on the Chow group as conjectured by

Bloch;
(4) it gives rise to the theory of motivic cohomology of varieties; and
(5) it clarifies the meaning of the regulator maps for varieties.

We now give further explanation for these conjectures, in particular (1)-(4), although the
details are postponed to later sections. As for (5), we point out that the theory of mixed motives
is loosely connected to the so-called Beilinson conjectures: he made conjectures on the values
of zeta functions of varieties over number fields, generalizing the works of Borel, of Bloch, and
the conjecture of Birch-Swinnerton-Dyer.

The hypothetical abelian category of mixed motives over a field k is an Q-linear abelian
category MM(k), with tensor product structure and Tate objects Q(r), r ∈ Z, satisfying the
following properties:

• There is a weight structure on MM(k). Namely each object M of M(k) comes
equipped with a finite increasing filtration (the weight filtration) W•M , and each morphism in
MM(k) is strictly compatible with the weight filtration. The category of Grothendieck mo-
tives M(k), defined through a Weil cohomology, is an exact full subcategory of MM(k), and it
coincides with the full subcategory of semi-simple objects.

• LetDb(MM(k) ) be the bounded derived category ofMM(k). To each quasi-projective
variety X over k there corresponds an object h(X) in Db(MM(k) ), and the association X 7→
h(X) forms a contravariant functor from the category of quasi-projective varieties over k to
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Db(MM(k) ). Thus for integers i, r with r ≥ 0, one can define

H i
M(X,Q(r)) := HomDb(MM(k))(Q(0), h(X)⊗Q(r)[i])

which we call the motivic cohomology group of X.
Since h(X) is represented by a complex in MM(k), one has the “canonical” increasing

filtration τ≤ih(X), and one has cohomology

H i(X) := H i(h(X)) = τ≤ih(X)/τ≤i−1h(X) .

• If X is smooth over k, H i
M(X,Q(r)) coincides with the group K2r−i(X)

(r)
Q , the r-th

eigenspace of K2r−i(X)⊗Q with respect to the action of the Adams operation.
• If X is smooth and i = 2r, the group H2r

M (X,Q(r)) coincides with CHr(X)⊗Q. The
filtration τ≤ih(X) on h(X) induces a filtration F • on the Chow group given by the formula

F ν CHr(X)Q

= Im[HomDb(MM(k))(Q(0), τ≤2r−νh(X)⊗Q(r)[2r]) → HomDb(MM(k))(Q(0), h(X)⊗Q(r)[2r])] .

• If X is smooth and projective, there is a non-canonical direct sum decomposition

h(X) =
⊕

i=0,...,2 dimX

H i(X)[−i] .

Hence one has the following formula for the graded pieces of the Chow group

GrνF CHr(X) = HomDb(MM(k))(Q(0), H2r−ν(X)⊗Q(r)[ν]) .

2. The triangulated category of mixed motives over a field k
Regarding this section we refer the reader to [Ha-1, 2, 3] for details.
Let k be a field and let (Smooth Proj /k) denote the category of smooth projective algebraic

varieties over k. The triangulated category of mixed motives is closely related to this category.
We review some categorical notions. Recall that a triangulated category is an additive

category C, together with an additive functor T : C → C called the shifting functor, and a
collection of diagrams of the form X

u−−−→Y
v−−−→Z

w−−−→TX called the distinguished triangles,
that satisfy certain axioms (see [Har], for example). We will usually write X[1] for TX. The
basic examples are the following. For an abelian categoryA, letK(A) be the homotopy category
of complexes with values in A; it has the structure of a triangulated category. If we localize it
with respect to the class of quasi-isomorphisms, we obtain the derived category of A, denoted
D(A), which again has the structure of a triangulated category.

A tensor product structure on an additive category C is a biadditive functor C × C → C,
(X, Y ) 7→ X ⊗ Y , satisfying the conditions of associativity, commutativity, and the existence
of the unit object (as are satisfied for the tensor product in the category of modules). A
triangulated category equipped with a tensor product structure is called a tensor triangulated
category if the two structures are compatible (see [Ha 2, §3]).

An additive category is pseudo-abelian if for any object X and an endomorphism p : X → X
such that p ◦ p = p, the kernel of p exists.

We can construct a theory of mixed motives based on higher Chow groups:
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Theorem 2.1 ([Ha-2, §4, §5]) There is a pseudo-abelian triangulated category D(k), called the
triangulated category of mixed motives, satisfying the following properties.

(1) There is a tensor product structure on D(k), that is compatible with the structure of
triangulated category. There are objects Z(n) for n ∈ Z, called the Tate objects, such that Z(0)
is the unit object for the tensor product, Z(−1) the inverse of Z(1) with respect to the tensor
product, and for n > 0, one has Z(n) = Z(1)⊗n and Z(−n) = Z(−1)⊗n.

(2) There is a functor h : (Smooth Proj /k)opp → D(k) such that one has a functorial
isomorphism, for X smooth projective,

HomD(k)(Z(0), h(X)⊗ Z(r)[2r − n]) = CHr(X,n) .

The right hand side is the higher Chow group, as defined by S. Bloch.
(3) If k is a subfield of C, there is a functor, called the Betti cohomology functor, H∗

B :
D(k) → gr V ectQ such that the composition with h coincides with the Betti cohomology X 7→
H∗(X(C), Q). Here gr V ectQ denotes the abelian category of finite dimensional graded Q-vector
spaces. Similarly for any field and a prime ℓ ̸= char k, there is the ℓ-adic étale cohomology
functor H∗

ℓ : D(k) → gr V ectQℓ
such that the composition with h coincides with the ℓ-adic

étale cohomology H∗
ét(X ⊗k k̄, Qℓ).

The higher Chow group of a not necessarily smooth quasi-projective algebraic variety X is
defined as follows (cf. [Bl-2]). There are two versions of the theory, one using simplicies and
the other using cubes. We will use the latter, as we need the product defined at the chain level.

Let □1 = P1
k − {1} and □n = (□1)n with coordinates (x1, · · · , xn). A codimension one

face of □n is a divisor of the form □n−1
i,a = {xi = a} where a = 0 or ∞; an intersection of

codimension one faces is called a face. A face of dimension m is canonically isomorphic to □m.
Let X be an equi-dimensional variety (or a scheme). Let Zr(X × □n) be the free abelian

group on the set of codimension r irreducible subvarieties of X × □n meeting each X × face
properly, namely satisfying the condition codimX×□n(V ∩ (X × F )) ≥ r. The inclusions of
codimension one faces δi,a : □n−1

i,a ↪→ □n induce the map

∂ =
∑

(−1)i(δ∗i,0 − δ∗i,∞) : Zr(X ×□n) → Zr(X ×□n−1) .

One has ∂ ◦ ∂ = 0. Let πi : X × □n → X × □n−1, i = 1, · · · , n be the projections, and
π∗
i : Zr(X×□n−1) → Zr(X×□n) be the pull-backs. Let Zr(X,n) be the quotient of Zr(X×□n)

by the sum of the images of π∗
i . Thus an element of Zr(X,n) is represented uniquely by a cycle

whose irreducible components are non-degenerate (not a pull-back by πi). The map ∂ induces
a map ∂ : Zr(X,n) → Zr(X,n − 1), and ∂ ◦ ∂ = 0. The complex Zr(X, •) thus defined is the
cycle complex of X in codimension r. The higher Chow groups are the homology groups of this
complex:

CHr(X,n) = HnZ
r(X, •) .

Note if n = 0 we get the Chow group CHr(X, 0) = CHr(X).
Bloch proved that there is a functorial isomorphism

CHr(X, n)Q ∼= K ′
n(X)

(r)
Q

(version of Riemann-Roch theorem). Here, for an abelian group A, set AQ = A ⊗Z Q. The
group K ′

n(X) on the right is the algebraic K-group of the exact category of coherent sheaves
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on X, and it is known the Admas operators ψk acting on K ′
n(X)Q splits it to the direct sum of

eigenspaces K ′
n(X)

(r)
Q .

We outline the construction of the triangulated category D(k). There is a triangulated
subcategory Dfinite(k) such that D(k) is its pseudo-abelian completion. Since the difference
between the two categories is slight, we focus on the construction of Dfinite(k).

A finite symbol K over k is a finite formal sum
⊕

α(Xα, rα), where Xα is a smooth projective
variety and rα an integer. One has the direct sum and the tensor product for finite symbols:
(X, r) ⊗ (X ′, r′) = (X × X ′, r + r′). For finite symbols K, L, one has a complex of abelian
groups Hom(K,L)•. If K = (X, r) and L = (Y, s), then we set

Hom((X, r), (Y, s) )• = ZdimX+s−r(X × Y,−•) .

In general, Hom(K,L)• is defined by extending this by linearity. For finite symbols K,L and
M , there is a partially defined, associative composition map

Hom(L,M)• ⊗ Hom(K,L)• −− → Hom(K,M)•

that sends v ⊗ u to v ◦ u. If K = (X, r), L = (Y, s) and M = (Z, t), it is the map

Z(Y × Z,m)⊗ Z(X × Y, n) → Z(X × Z, n+m)

given by
v ⊗ u 7→ v ◦ u = pXZ ∗(p

∗
Y Zv · p∗XY u) .

Here pXY , for example, is the projection X×Y ×Z → X×Y , p∗, p∗ are the inverse image and
direct image of cycles, and p∗Y Zv·p∗XY u is the intersection of cycles. The intersection is not always
defined, so the composition map is only partially defined. (This will not present an essential
problem, since one can show that there is quasi-isomorphic subcomplex of Hom(L,M)• ⊗
Hom(K,L)• on which the composition is defined. This is an example of “moving” lemmas,
that are systematically developed in [Ha-2].) For general symbols one can extend the above
definition linearly and define the composition map.

An object of Dfinite(k) is of the form K = (Km; fm,n). Here Km is a sequence of symbols,
one for each m ∈ Z, such that Km = 0 for all but a finite number of m’s. For m,n ∈ Z with
m < n, there corresponds fm,n ∈ Hom(Km, Kn)−(n−m−1), and they are subject to the condition

(−1)n∂fm,n +
∑

m<ℓ<n

f ℓ,n ◦ fm,ℓ = 0 .

Here the composition f ℓ,n ◦fm,ℓ is assumed to be defined. Note that, if fm,n = 0 for n−m ≥ 2,
then the condition becomes fm+1,m+2 ◦ fm,m+1 = 0, which is the same as the condition of
differentials of a complex of abelian groups.

Let (Lm; gm,n) be another object. A morphism u : K → L is represented by a collection of
elements um,n ∈ Hom(Km, Ln)−n+m for m ≤ n such that

(−1)n∂um,n −
∑

(−1)m+ℓuℓ,n ◦ fm,ℓ +
∑

(−1)ℓ+ngℓ,n ◦ um,ℓ = 0 .

It defines the zero morphism if there exist Um,n ∈ Hom(Km, Ln)−n+m−1 for m ≤ n such that

um,n = (−1)n∂Um,n +
∑

(−1)m+ℓU ℓ,n ◦ fm,ℓ +
∑

(−1)ℓ+ngℓ,n ◦ Um,ℓ .
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One thus obtains an additive category. The reader should observe the similarity to the construc-
tion of the homotopy category K(A) of an abelian category. Tensor product can be defined,
and we can show that the category has the structure of a triangulated category, compatible
with the tensor structure.

We next turn to the problem of how to extract an abelian category from D(k). For this we
need to assume the following three conjectures.

Let X be a smooth projective variety over k, and let H i(X) stand for one of the following:
the Betti cohomology H i(X(C), Q), the ℓ-adic étale cohomology H i

ét(X ⊗k k̄, Qℓ), or the de
Rham cohomology H i

DR(X/k). There is the cycle class map cl : CHr(X) → H2r(X). Denote
by H2r

alg(X) the linear subspace of H2r(X) generated over Q by the image of cl; an element
in the subspace is called algebraic. Grothendieck’s standard conjectures consists of two
parts.

(1) The subspace H2r
alg(X) satisfies the following analogue of the hard Lefschetz theorem. If

L ∈ H2(X) is the class of an hyperplane section, then for r < n the map Ln−r : H2r
alg(X) →

H2n−2r
alg (X) is an isomorphism.
(2) The primitive part of the subspace H2r

alg(X) satisfies an analogue of the Hodge index
theorem.

The conjecture (1) asserts there should be “enough” algebraic cycles (thus similar to the
Hodge conjecture in that regard). For example it implies that following statement: If ∆X ⊂ X×
X is the diagonal and cl(∆X) ∈ H2 dimX(X ×X) its cycle class, then its Künneth components
are all algebraic. The conjecture (2) is known if k = C as the Hodge index theorem. Note
that for both conjectures properties special to the cohomology theory in question (such as the
Frobenius action or the Hodge structure) are irrelevant. The Weil conjecture can be deduced
from the standard conjectures, and Grothendieck repeatedly stressed the importance of the
latter. The theory of pure motives based on the standard conjectures was a model for later
development of the theory of mixed motives.

To explain the Bloch-Beilinson-Murre filtration conjecture, let X be a smooth projec-
tive variety, and consider the group CHr(X)Q = CHr(X)⊗Q; we will abbreviate it to CHr(X)
in this paragraph. The conjecture states that there be a finite (exhaustive and separated)
filtration

CHr(X) = F 0 ⊃ F 1 ⊃ · · · ⊃ F r+1 = (0)

which is functorial for the action of algebraic correspondences, and whose successive quotients
F ν CHr(X)/F ν+1CHr(X) “depends only on” H2r−ν(X) in a sense that can be made precise.
The existence of such a filtration was first suggested by Bloch. Subsequently Beilinson gave
an “explanation” on how the filtration be given in the framework of the hypothetical theory of
the abelian category of mixed motives, as we already mentioned in §1. On the other hand J.P.
Murre formulated a conjecture as to the existence of the decomposition of the diagonal class
in the ring of self-correspondences CHdimX(X × X), and related it to the filtration as Bloch
conjectured to exist. For these, see [Bl-1], [Be], [Ja], and [Mu].

The Beilinson-Soulé vanishing conjecture asserts that for X smooth projective, one
has

CHr(X, n)Q = 0

if n > 0 and 2r − n ≤ 0.
We need to recall another categorical notion. A t-structure of a triangulated category D

is a pair of full additive subcategories (D≤0, D≥0) satisfying certain axioms, [BBD]. Given a
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t-structure, the full subcategory D≤0 ∩ D≥0 is indeed an abelian category, which we call the
heart of the triangulated category. One also has the functor (“cohomology” with respect to the
t-structure) H i : D → D≤0 ∩ D≥0 for i ∈ Z, which takes an exact triangle to a long exact
sequence in the heart. If D and D′ are triangulated categories with t-structures, F : D → D′ is
an exact functor of triangulated categories, we say F respects the t-structures if F sends D≤0

(resp. D≥0) to D′≤0 (resp. D′≥0).
For example, the derived category D(A) of an abelian category A has a natural structure

of a triangulated category, where D(A)≤0 (resp. D(A)≥0) is the subcategory of objects K
with H i(K) = 0 for i > 0 (resp. i < 0). Its heart can be identified with A. Likewise the
abelian category of finite dimensional graded Q-vector spaces gr V ectQ has a t- structure by
the grading.

The additive category D(k)Q by definition has the same objects as D(k), and has the
homomorphism groups

Hom(X,Y ) = HomD(k)(X, Y )⊗Q .

This also is a triangulated category, and one has all the properties that D(k) has as stated in
Theorem (2.1), except that CHr(X,n) should be replaced with CHr(X,n)⊗Q. In this category
the object Z(r) will be written Q(r). For the rest of this section only, we let D(k) stand for
D(k)Q.

Theorem 2.2([Ha-3, Theorem (3.4)]). Assume the above three conjectures. Then there is a
unique t-structure on D(k) such that the Betti and the étale cohomology functor H∗ : D(k) →
gr V ectK (where K is the coefficient field of the cohomology: K = Q,Qℓ) respects the t-
structures.

In particular, under the same conjectures, the heart of the t-structure would be an abelian
category, which we call the abelian category of mixed motives.

The triangulated subcategory generated by Q(r) is denoted DT (k), and called the trian-
gulated category of mixed Tate motives over k. For this subcategory, the existence of the
t-structure (so that the cohomology functors respect the t-structures) is equivalent to the van-
ishing conjecture for Spec k; this can be shown by repeating part of the proof for the above
theorem. Since the vanishing conjecture is known for a number field k, one has the abelian
category of mixed Tate motives over k.

§3. Motivic cohomology

For this section we refer to [Ha-MP], [Ha-HC]. We start with an analogy. In topology,
recall that there are four homology theories, say with Z-coefficients, for good topological spaces.
They are the singular homology H∗, singular cohomology H∗, Borel-Moore homology HBM

∗ (the
homology of the complex of infinite chains), and singular cohomology with compact support,
H∗

c . Among these four theories, there are two types of duality. One is the “obvious” duality
between the singular homology and cohomology as well as between the Borel-Moore homology
and singular cohomology with compact support. If the space is a topological manifold, one has
Poincaré duality between singular homology and Borel Moore homology (of complementary
dimension) as well as between cohomology and compactly supported cohomology.

The higher Chow group for an algebraic variety has properties similar to the Borel-Moore
homology; for example it is contravariant for proper maps and contravariant for open immer-
sions. One may thus call the higher Chow group the motivic Borel-Moore homology, and
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write HM,BM
i (X,Z(r)) for CHdimX−r(X, i−2r). As shown in [Ha-HC], starting from the higher

Chow groups one can construct the other three theories, which are the motivic cohomology
H∗

M(X,Z(r)), motivic homology HM
∗ (X,Z(r)), and motivic homology with compact

support, H∗
M,c(X,Z(r)). In this section we explain the construction of one of them, the mo-

tivic cohomology. Throughout this section we assume that the characteristic of the field is zero,
so there is resolution of singularities. The next theorem contains the existence of the motivic
cohomology. Denote by (Q-Proj /k) the category of not necessarily smooth quasi-projective
varieties over k.

Theorem 3.1([Ha-HC, Theorems I, II]). (1) The functor h in Theorem 2.1 can be extended
to a functor

h : (Q-Proj /k)opp → D(k)

from (Q-Proj /k).
(2) For integers i, r with r ≥ 0, there is a contravariant functor, called the motivic coho-

mology, taking values in abelian groups

X 7→ H i
M(X, Z(r));

it coincides with CHr(X, 2r − i) for X smooth.
(3) There is a functorial isomorphism of abelian groups

H i
M(X, Z(r)) = HomD(k)(Z(0), h(X)⊗ Z(r)[i]) .

The proof of the theorem consists of showing (2) first, then constructing the functor h so
that (3) holds. In this article we focus on the definition of the functor H i

M(X, Z(r)).
For a quasi-projective variety X, consider its cubical hyperresolution

a : X• → X

as in [GNPP]. This is a truncated strict simplicial scheme, consisting of smooth quasi-projective
varieties, with an augmentation a to X, satisfying certain conditions.

A truncated strict simplicial scheme X• is a collection of schemes Xn, one for each n with
0 ≤ n ≤ p (for some fixed integer p ≥ 0), along with a set of maps di : Xn → Xn−1 for
0 ≤ i ≤ n, such that didj = dj−1di for i < j. An augmentation to X is a map a : X0 → X such
that ad0 = ad1.

For a truncated strict simplicial scheme X• with an augmentation to X be a cubical hy-
perresolution, it is required that each Xn be smooth and a certain condition be satisfied for
Xn with respect to the maps di. Referring to [GNPP] for the precise condition, we just give
the basic idea. Let p : X̃ → X be a desingularization of X, and Y ⊂ X be closed subset such
that X − Y is open dense and p is an isomorphism outside Y . Set W = p−1(Y )red. One has
closed immersions i : Y → X, i′ : W → X̃, the map p′ = p|W : W → Y , and the following
commutative square

W
i′−−−→ X̃yp′ yp

Y
i−−−→ X .

9



This diagram, which has X at the end, is called a 2-resolution of X. Set X0 = X̃
⨿
Y , X1 =W ;

let d0, d1 : X1 → X0 be the maps given by i′ and p′, and let a : X0 → X be the map (p, i).
Then one obtains a truncated strict simplicial scheme (with p = 1) X• with an augmentation
to X. If Y and W are smooth, then X• gives a cubical hyperresolution (note it arises forms a
“square”, which is a cube of dimension two, whence the name).

If Y or W is not smooth, one takes 2-resolutions W• →W of W , Y• → Y of Y so that there
is a map W• → Y• over p′ : W → Y . When combined, the 2-resolutions form a “cube” with
W and Y on one edge. By replacing these W and Y with X̃ and X, respectively, one forms
another “cube” diagram with X at the end vertex. As a square does, the cube gives rise to
a truncated strict simplicial scheme (with p = 2) X• augmented to X. If all the varieties Xn

are smooth, this gives a cubical hyperresolution of X. If not, we perform the same procedure
on one “face” of the cube, obtaining a 4-dimensional “cube” with X at the end. After a finite
number of such procedures, we arrive at an n-dimensional “cube” X• → X with all Xn smooth.
The associated truncated strict simplicial scheme is by definition a cubical hyperresolution of
X.

An important property of a cubical hyperresolution is that the cohomology of X• and of X
are isomorphic, namely a∗ : H∗(X)

∼→ H∗(X•). Recall that a hypercovering appearing in the
mixed Hodge theory of Deligne also satisfies the same property. So cubical hyperresolutions
are analogous to hypercoverings. The main theme of [GNPP] is the application of cubical
hyperresolutions to the mixed Hodge theory.

In [Ha-HC] we apply the technique of hyperresolutions to the cycle theory and define the
motivic cohomology. LetX be a quasi-projective variety and a : X• → X be its hyperresolution.
For each Xn take its cycle complex Zr(Xn, •), and form a double complex

0 → Zr(X0, •) → Zr(X1, •) → · · ·

where Zr(X0, 0) is placed in degree 0 and the horizontal differentials are given by
∑

(−1)id∗i ,
the alternating sums of the pull-backs by di. Let Z

r(X•, •)∗ be its total complex and set

H i
M(X, Z(r)) = H2r−iZr(X•, •)∗ .

In [Ha-HC] it is proven that the right hand side is independent, up to canonical isomorphism, of
the choice of hyperresolution, and that the assignmentX 7→ H i

M(X, Z(r)) forms a contravariant
functor. The proof rests on the properties of the category of hyperresolutions as discussed in
[GNPP].

Properties of the motivic cohomology
• The motivic cohomology satisfies the homotopy invariant property, namely the projec-

tion X × A1 → X induces an isomorphism

H i
M(X, Z(r))

∼→ H i
M(X × A1, Z(r)) .

Also one has the Mayer-Vietoris exact sequence for an open covering X = U ∪ V :

→ H i
M(X,Z(r)) → H i

M(U,Z(r))
⊕

H i
M(V,Z(r)) → H i

M(U ∩ V,Z(r))
→ H i+1

M (X,Z(r)) → · · · .
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• The functor h of Theorem 3.1 also satisfies the homotopy invariance h(X)
∼→ h(X×A1).

One has the Mayer-Vietoris property: for an open covering X = U ∪V , namely a distinguished
triangle of the form

h(X)−−−→h(U)⊕ h(V )−−−→h(U ∩ V )
[1]−−−→ .

• In place of the functor h, one can also consider the functor hc of motives with compact
support. Let ( Q-Proj /k; proper) be the category of quasi-projective varieties over k and proper
maps between them. Then one can show:

(1) The functor h of Theorem 2.1 extends to a functor

hc : ( Q-Proj /k; proper)opp → D(k) .

(2) There is a contravariant functor, called the motivic cohomology with compact support,
taking values in abelian groups

X 7→ H i
M,c(X, Z(r)) ,

which coincides with CHr(X, 2r − i) for X smooth projective.
(3) There is a functorial isomorphism H i

M,c(X, Z(r)) = HomD(k)(Z(0), hc(X) ⊗ Z(r)[i]).
There is also a functorial isomorphism relating it to the higher Chow group:

CHdimX−s(X,n) = HomD(k)(hc(X)⊗ Z(s)[2s− n],Z(0) ) .

§4. The theory of relative Chow motives.

There is the theory of pure (or classical) motives over a field k, more specifically those
of Chow motives and Grothendieck motives (see [Kl-1], [Kl-2], [Ma]). In [CH] this was
extended to the theory of pure motives over an algebraic variety. As we will describe below, to
a quasi-projective variety S over k, there corresponds a category of pure motives over S. The
classical theory over k is the special case where we take S = Spec k.

Consider a smooth quasi-projective variety X over k, equipped with a (not necessarily
smooth) projective map p : X → S; let (Smooth/k, Proj/S) be the category of such varieties
X/S. For a pair of objects p : X → S and q : Y → S in this category, consider the Chow group
CH∗(X ×S Y ); an element in this of group is an algebraic correspondence from X to Y over S.
Given three such objects one can define a map

CHa(X ×S Y )⊗ CHb(Y ×S Z) → CHa+b−dimY (X ×S Z),

u⊗ v 7→ v ◦ u,

called composition; it is associative, namely one has

w ◦ (v ◦ u) = (w ◦ v) ◦ u .

In particular CHdimX(X ×S X) has the structure of a non-commutative ring with respect to
composition, in which the class of the diagonal [∆X ] is the identity.

If S = Spec k, the operation of composition is easier to explain. We take smooth projective
varieties X, Y over k and consider the Chow group CH∗(X × Y ). The composition CHa(X ×
Y )⊗ CHb(Y × Z) → CHa+b−dimY (X × Z) is defined by

v ◦ u = pXZ ∗(p
∗
Y Zv · p∗XY u)
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where for example pXY is the projection X×Y ×Z → X×Y . In other words, v ◦u is obtained
by pulling back u and v to X × Y ×Z, taking intersection there, and then pushing forward by
the projection X × Y × Z → X × Z. The associativity can be easily verified. For a general S,
the definition of composition is more involved, using the refined Gysin map as in [Fu].

The pseudo-abelian category of Chow motives over S, denoted CHM(S), consists of ob-
jects of the form (X/S, r, P ) where X/S is an object of (Smooth/k, Proj/S), r is an inte-
ger, and if X =

⨿
iXi is the decomposition into irreducible components, P is an element of⊕

i CHdimXi
(X ×SXi) satisfying P ◦P = P . If (Y/S, s,Q) is another object and Y =

⨿
Yj the

irreducible decomposition, we define the homomorphism group by

Hom ((X, r, P ), (Y, s,Q)) = Q ◦

(⊕
j

CHdimYj−s+r(X ×S Yj)

)
◦ P,

and the composition as the map induced by the composition of correspondences. We set
h(X/S) = (X/S, 0,∆X), and call it the motive of X/S. An object of CHM(S) is called a
Chow motive over S.

In the case S = Spec k, we obtain the category CHM(k) of Chow motives over k. An
object there is of the form (X, r, P ), where X is a smooth projective variety over k, r ∈ Z, and
P ∈

⊕
i CHdimXi

(X ×Xi) satisfies P ◦ P = P . We have h(X) = (X, 0,∆X), the Chow motive
of X.

In the above construction, one could use the group CH(X×SY )⊗Q in place of CH(X×SY ).
The resulting pseudo-abelian Q-linear category is denoted CHM(S)Q. In the rest of this section,
the latter will be simply written CHM(S).

Assume now k ⊂ C, and let Db
c(S) = Db

c (S(C),Q) be the derived category of constructible
sheaves of Q-vector spaces on the topological space S(C). There is a functor “Betti cohomology
realization” ρ : CHM(S) → Db

c(S) such that

ρ ( (X/S, r,∆X) ) = Rp∗QX [2r]

where p : X → S is the structure map.
Let us now briefly recall the concept of perverse sheaves ([BBD]). There is a t-structure on

Db
c(S,Q), called the perverse t-structure. The heart of this t-structure is a Q-linear abelian

category denoted Perv(S). An object of Perv(S) is called a perverse sheaf. There is thus the
perverse cohomology functor

pHi : Db
c(S) → Perv(S) .

Set pH∗ =
⊕

i
pHi : Db

c(S) → Perv(S), the total perverse cohomology. Composing with the
realization functor we obtain a functor

pH∗ρ : CHM(S) → Perv(S) .

If S = Spec k, one has the realization functor ρ : CHM(k) → Db(V ectQ) such that
ρ( (X, r,∆X) ) = RΓ(X(C),Q)[2r]. The latter is a complex computing H∗(X) = H∗(X(C),Q),
the Betti cohomology of X.

We next proceed to define the pseudo-abelian category M(S) of Grothendieck motives
over S. By a symbol over S we mean a pair M = (X/S, r) consisting of an object X/S of
(Smooth/k, Proj/S) and an integer r. Let N = (Y/S, s) be another symbol. We may view M
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and N as objects of CHM(S), so we have the map of homomorphism groups associated with
the functor pH∗ρ,

HomCHM(S)(M,N) → HomPerv(S)(
pH∗ρ(M), pH∗ρ(N)) ;

we denote the image of this map by HomPerv(S)(
pH∗ρ(M), pH∗ρ(N))alg. For a third symbol

L = (Z/S, t) the composition

HomPerv(S)(
pH∗ρ(M), pH∗ρ(N))alg ⊗ HomPerv(S)(

pH∗ρ(N), pH∗ρ(L))alg

→ HomPerv(S)(
pH∗ρ(M), pH∗ρ(L))alg

sending u⊗ v to v ◦ u is defined, and the associativity holds. In particular if M = N the group
HomPerv(S)(

pH∗ρ(M), pH∗ρ(M))alg is a ring with respect to the composition.
If S = SpecC, Perv(S) is identified with the category of finite dimensional Q-vector spaces

V ectQ, the functor pH∗(X) with Betti cohomology H∗(X). We take M = (X, r), N = (Y, s),
and the above map can be identified with the cycle class map

CHdimX+s−r(X × Y ) → H2(dimX+s−r)(X × Y ) .

The image HomV ectQ(H
∗(X), H∗(Y ))alg = H2(dimX+s−r)(X × Y )alg is the same as the group

of algebraic cycles on X × Y modulo homological equivalence. The category M(k) has as
objects triples (X, r, p) where M = (X, r) is a symbol over k, and p is an element of the ring
Hom(H∗(X), H∗(X))alg, satisfying p ◦ p = p. The homomorphism group is given by

HomM(S)((X, r, p), (Y, s, q))

= q ◦ HomV ectQ(H
∗(X), H∗(Y ) )alg ◦ p

and the composition induced from the composition for HomV ectQ(H
∗(X), H∗(Y ) )alg.

As can be seen from the constructions, there are a natural full functor cano : CHM(S) →
M(S) and a faithful functor (cohomology realization) ρ : M(S) → Perv(S). Via the realization
functors ρ, the functor cano and the perverse cohomology functor pH∗ are compatible, namely
the following diagram commutes:

CHM(S)
cano−−−→ M(S)yρ yρ

Db
c(S)

pH∗
−−−→ Perv(S) .

Note that if S = Spec k, the construction of M(k) is parallel to that of CHM(k), using
homological equivalence of cycles instead of rational equivalence. Since Grothendieck focused
mostly on M(k), it is called the category of Grothendieck motives over k.

In what follows we assume k = C. When S = SpecC, if we assume Grothendieck’s standard
conjectures and the Bloch-Beilinson-Murre conjecture, we have: (1) For a smooth projective
variety X over C, there exists a direct sum decomposition h(X) =

⊕
hi(X) in CHM(C) such

that ρ(hi(X)) = H i(X). (2) Such a decomposition is not unique, but the filtration of h(X) given
by
⊕

j≤i h
j(X) is uniquely determined. Parts (1) and (2) of the following theorem generalize

this.

Theorem 4.1([CH, Theorem 7.2]) Assume Grothendieck’s standard conjectures and the Bloch-
Beilinson-Murre conjecture for smooth projective varieties over k. Let p : X → S be an object of
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(Smooth/C, Proj/S). There is then an algebraic Whitney stratification {Sα} of S with respect
to which the following holds:

(1) There are a direct sum decomposition

h(X/S) =
⊕
j,α

hjα(X/S)

in CHM(S), Q-local systems Vj
α on smooth strata Sα − Sα+1, and isomorphisms in Db

c(S)

ρ
(
hjα(X/S)

) ∼= ICSα

(
Vj
α

)
[−j + dimSα] .

Here IC(V) is the intersection complex of a local system V.
(2) For each i, the subobject ⊕

j≤i, α

hjα(X/S)

(the sum over j ≤ i and all α) is uniquely determined, independent of the choice of the decom-
position of h(X/S).

(3) The category M(S) is a semi-simple abelian category. The functor ρ : M(S) → Perv(S)
is exact and faithful.

By an algebraic Whitney stratification we mean a decreasing sequence of Zariski closed sets
S = S0 ⊃ S1 ⊃ · · · ⊃ SdimS such that Sα − Sα+1 is smooth and of codimension α, satisfying a
certain local condition called the Whitney condition. The notion of the intersection complex of
a local system is due to M. Goresky and R. MacPherson, [GM]. Let S be an algebraic variety
over C, U a smooth dense open subset of S, and L a Q-local system on U . Then the intersection
complex ICS(L) is determined as an object in the derived category Db

c(S). It is characterized
by the following conditions: (i) ICS(L)|U = L, (ii) ICS(L)[dimS] is a perverse sheaf on S,
(iii) there are no subobjects or quotient objects of ICS(L)[dimS] in Perv(S), with support on
S − U .

According to the decomposition theorem in the theory of perverse sheaves (see [BBD]), for
a map p : X → S satisfying the condition of the theorem, there are an algebraic Whitney
stratification {Sα}, local systems Vj

α on Sα − Sα+1, and a direct sum decomposition

Rp∗QX
∼=
⊕
j,α

ICSα

(
Vj
α

)
[−j + dimSα] .

So the decomposition in (1) of the above theorem is a “lifting” of this to the category of motives
over S; we thus refer to it as a relative motivic decomposition of X/S. If S = SpecC,
which we mentioned just before the theorem, it is called an absolute motivic decomposition
of X.

There are interesting examples of fibrations p : X → S for which the statement (1) of
the above theorem can be proven without assuming any conjectures. In [GHM-1], we showed
the existence of the relative decomposition in case S is a Hilbert modular variety and X a
self-product of the universal family of abelian varieties over S. In this case one can further
show the existence of the absolute motivic decomposition of X, verifying in particular that the
algebraicity of the Künneth components of the diagonal class of X (see [GHM-2]).
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