
The explicit Hodge complexes I

Masaki Hanamura

Let (X,H) be a pair consisting of a smooth variety and a normal crossing divisor. We

will describe a particular type of Hodge complex that calculates the Hodge structure of the

cohomology of the pair. The Hodge complex is explicit in that it only uses only (1) the complex

of topological chains, (2) the complex of differential forms on X, possibly with logarithmic

singularities, and the maps given by integration. The construction is based on the Cauchy-

Stokes formula, a combination of the Cauchy formula and the Stokes formula, and involves the

dual of the complex of logarithmic forms, which should be viewed as “currents” where we allow

the test forms to have logarithmic singularities.

The comparison to the Hodge complex of Deligne and Beilinson is the main theorem.

1 Complexes of topological chains and integration

(1.1) Let Λ be the ring Z, Q, or C. We consider complexes of Λ-modules, and complexes of

sheaves of Λ-modules on a topological space X. For a sheaf F of Λ-modules and an open set U

of X, the module F(U) may be also written Γ(U,F) or Γ(F|U).
For a sheaf on X, let C•(F) be its canonical resolution by Godement, [Br], [Go].

(1.2) Assume that X is locally compact Haudorff space. We take Λ = Z for exposition, but

one may take any principal ideal domain (in particular a field) for Λ. For a complex of c-soft

sheaves of Z-modules, we recall the definition of its dual.

For a complex K• of Z-modules, its dual D(K•) is defined by

D(K•) = Hom(K•, I•) ,

where I• is the complex [Q → Q/Z] concentrated in degrees 0 and 1. For f ∈ Hom(K•, I•)

and x ∈ K•, df is defined by the formula

(df)(x) = (−1)|f |+1f(dx) + d(f(x))

(where |f | denotes the degree of f).

For L• a complex of c-soft sheaves on X, its dual D(L•) is the complex of flabby sheaves

given by

U 7→ Hom(Γc(U,L
•), I•) = DΓc(U,L

•) ,
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see [Br-V, §2].

(1.3) Next assume X is a locally compact Hausdorff topological space, which satisfies the

second axiom of countability, and which is locally contractible, and dimZX < ∞. (See [Br,

II-§16] for the notion of cohomological dimension.)

Let S•(X) (resp. S•(X)) be the chain complex (resp. cochain complex) of singular chains

(resp. singular cochains) on X. The boundary map of S•(X) is written ∂ and the coboundary

map of S•(X) is written d. The coefficient ring for these is Z.
The homology of S•(X) is canonically isomorphic to the singular homology H•(X;Z), and

the cohomology of S•(X) is isomorphic to the singular cohomology H•(X;Z).
One also has the chain complex of locally finite singular chains of X, denoted by S̃•(X). Its

homology is identified with the locally finite singular homology H lf
• (X;Z).

We define a subcomplex Š•(X) of S•(X) by

Šp(X) = lim−→Sp(X,X −K) .

where K varies over the compact subsets of X. We denote the cohomology of Š•(X) by H•
c (X).

For an open set U of X, let S•(U) be the complex of singular cochains, and S• be its

sheafication (the singular cochain sheaf). There is a canonical map

θ : S•(U)→ Γ(U, S•)

which is a surjective quasi-isomorphism.

(1.4) The assignment U 7→ Sp(U), where Sp(U) is the group of singular p-cochains on U , gives

a presheaf on X, and let Sp be the associated sheaf. Thus we have the differential sheaf S•,

called the singular cochain sheaf on X ([Br- Chap. I, §7]).
One verifies that S• is a resolution of the constant sheaf Z on X by flabby sheaves. As a

consequence there is a canonical identification

Hp(X;Z) = HpΓ(X,D(S•))

between the Borel-Moore homology of X with coefficient Z, and the homology of the complex

Γ(X,D(S•)).

The map θ gives by restriction the map

θ : Š•(U)→ Γc(U, S
•)

which is a surjective and quasi-isomorphism.

Passing to the dual we have a quasi-morphism

θ′ : Γ(U,D(S•))→ D(Š•(U)) .
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We define a map ξ : S̃•(X) → Hom(Š•(X),Z) ⊂ DŠ•(X) as follows. Let α ∈ S̃m(X). For

u ∈ Šm(X), let K be compact such that u ∈ Sm(X,X−K), write α = α′+α′′ with α′ ∈ Sm(X),

α′′ ∈ S̃m(X −K), and define ξ(α) ∈ Hom(Šm(X),Z) by

〈ξ(α), u〉 = (−1)m〈u, α′〉 .

This is well-defined independent of the choice of K and the decomposition of α; one also verifies

that it gives a map of complexes.

The maps

S̃•(X)
ξ−−−→DŠ•(X)

θ′←−−−Γ(X,D(S•))

turn out to be quasi-isomorphisms. They induce isomorphisms

H lf
p (X) ∼= HpDŠ

•(X) ∼= Hp(X) .

This is the canonical identification of the locally finite singular homology and the Borel-Moore

homology.

(1.5) Let now X be a real analytic manifold (satisfying the second axiom of countablity).

Instead of continuous singular chains one may consider subanalytic chains; one has the resulting

complex of subanalytic singular chains San
• (X). There are also the complex of smooth singular

cochains S•
an(X), the complex of locally finite smooth chains S̃an

• (X), the complex Š•
an(X) of

smooth cochains which vanish outside the complement of a compact set.

The canonical maps between smooth and continuous theories, San
• (X)→ S•(X) and S•(X)→

S•
an(X), are quasi-isomorphisms; the same holds for S̃•(X) and Š•(X) and their smooth coun-

terparts.

One has facts and results for these complexes parallel to those for continuous chains and

cochains.

• Let U 7→ Sp
an(U) be the presheaf of smooth singular cochains, and Sp

an be its sheafication.

There is a canonical map θ : S•
an(U)→ Γ(U, S•

an) which is a surjective qusi-isomorphism.

• The complex S•
an is resolution of the sheaf Z by flabby sheaves. Thus its dual D(S•

an) serves

to calculate the Borel-Moore homology of X.

• One has a surjective map θ : Š•
an(U)→ Γc(U, S

•
an) which is a surjective qusi-isomorphism.

Its dual θ′ : Γ(U,D(S•
an))→ D(Š•

an(U)) is a quasi-isomorphism.

• There is a map ξ : S̃an
• (X)→ DŠ•

an(X), and the maps

S̃an
• (X)

ξ−−−→DŠ•
an(X)

θ′←−−−Γ(X,D(S•
an))

are quasi-isomorphisms.

• There is a canonical map of complexes S• → S•
an, and the induced maps make the diagram

S̃an
• (X)

ξ−−−→ DŠ•
an(X)

θ′←−−− Γ(X,D(S•
an))y y y

S̃•(X)
ξ−−−→ DŠ•(X)

θ′←−−− Γ(X,D(S•))
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commute.

In the sequel the subanalytic theories play major roles. For the subanalytic theories we drop

the sub/super-script an and denote them S•, S
•, S•, etc.

(1.6) Assume that X is an abstract simplicial complex which is assumed to be locally finite,

countable, and of finite dimension. The geometric realization |X| will be also written X.

By C•(X) we denote the complex of ordered simplicial chains, and C•(X) its dual (see [Mu,

p. 76], [Sp. p.170]). Recall that Cm(X) is the free abelian group generated by (v0, · · · , vm),
where v0, · · · , vm are vertices of X (repetition allowed) spanning a simplex of dimension ≤ m.

Let C̃•(X) be the complex of (locally finite) infinite ordered simplicial chains. We let Č•(X) ⊂
C•(X) denote the subcomplex of cochains u satisfying the following condition: there exists a

finite subcomplex outside which u vanishes.

The homology of the complex C•(X) (resp. C̃•(X)) is the simplicial homology (resp. locally

finite simplicial homology) of X. When convenient, we write Hsimp
m (X) for Hm(C̃•(X)).

(1.7) In what follows we assume that X is a real analytic manifold, equipped with a subanalytic

triangulation. There are natural maps of complexes, which are known to be quasi-isomorphisms,

C•(X)→ S•(X), C̃•(X)→ S̃•(X) and S•(X)→ C•(X), Š•(X)→ Č•(X).

There is a map of complexes ξ : C̃•(X)→ DČ•(X) defined as the map ξ for singular theory.

The diagram
C̃•(X)

ξ−−−→ DČ•(X)y y
S̃•(X)

ξ−−−→ DŠ•(X)

commutes.

In each of the chain complex theories S•(X), S•(X), S• and C•(X), We show that there is

cap product operation, and they are naturally compatible with each other.

For the subanalytic singular theory there is the cap product pairing

∩ : S̃•(X)⊗ S•(X)→ S̃•(X) .

By definition it sends α⊗ u ∈ S̃m(X)⊗ Sp(X) with α =
∑
aσσ ∈ S̃m(X), u ∈ Sp(X) to

α ∩ u =
∑

aσ(σ ∩ u) ,

where for s simplex σ = [v0, · · · , vm], one has σ ∩ u := u([v0, · · · , vp])[vp, · · · , vm].
The same formula defines its smooth variant ∩ : S̃•(X) ⊗ S•(X) → S̃•(X), and simplicial

variant C̃•(X)⊗ C•(X)→ C̃•(X).

Similarly one has a pairing

∩ : D(S)⊗ S• → D(S) ;
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it sends f ∩ s for f of degree m and s of degree p is defined by

〈f ∩ s, t〉 = (−1)mp〈f, s ∪ t〉 .

By the same formula one defines a map

∩ : DŠ•(X)⊗ S•(X)→ DŠ•(X) .

These pairing are related via the commutative diagrams

C̃•(X) ⊗ C•(X)

��

∩ // C̃•(X)

��

S̃•(X) ⊗ S•(X)

OO

∩ // S̃•(X)

and
Γ(X,D(S•))⊗ Γ(X, S•)

θ′

��

∩ // Γ(X,D(S•))

θ′

��
DŠ•(X)⊗ S•(X)

θ

OO

∩ // DŠ•(X)

S̃•(X) ⊗ S•(X)

ξ

OO

∩ // S̃•(X) .

ξ

OO

(1.8) Assume X is an oriented real analytic manifold of real dimension m, equipped with a

triangulation. The quasi-isomorphisms

C̃•(X)→ S̃•(X)→ DŠ(X)← Γ(X,D(S))

induces isomorphisms

HmC̃•(X) ∼= HmS̃•(X) ∼= HmΓ(X,D(S)) = Hm(X) .

The fundamental class Γ ∈ Hm(X) of X may be represented by cycles of dimension m, namely

by

γsimp ∈ C̃m(X), γ ∈ S̃m(X) and γ ∈ Γ(X,D(S)−m) .

Note we may (and will) take γ = γsimp.

We obtain the map of complexes

γsimp ∩ (−) : C•(X)−−−→C̃•(X)[−m] ,

and similarly γ ∩ (−) : S•(X)−−−→S̃•(X)[−m], and

γ ∩ (−) : Γ(X, S•)−−−→Γ(X,D(S•))[−m] .
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When convenient these maps will be all denoted by the symbol κ.

The square diagram

C•(X)
γsimp∩−−−→ C̃•(X)x y

S•(X)
γ∩−−−→ S̃•(X)

commutes since we took γ = γsimp. Also in the diagram

S•(X)
γ∩−−−→ S̃•(X)[−m]

‖
yξ

S•(X)
ξ(γ)∩−−−→ DŠ•(X)[−m]yθ xθ′

Γ(X, S•)
γ∩
−−−→ Γ(X,D(S))[−m]

the upper square commutes and the lower square commutes up to homotopy.

We have therefore a digram, omitting the shifts [−m],

C•(X)

κ
��

S•(X) θ //oo

κ
��

Γ(S•)

κ

��

C̃•(X) //

ξ

��

S̃•(X)

ξ

����
DČ•(X) // DŠ•(X) Γ(X,D(S))

θ′
oo

where the two squares on the left commutes, and the right square commutes up to homotopy.

(1.9) Let A• = A•
X be the sheaf of smooth forms on X. For each open set U of X, set

S•(U)C = S•(U)⊗ C. There is a canonical map c : Γ(U,A•)→ S•
C(U) given by

〈c(ϕ), α〉 =
∫
α

ϕ

for a subanalytic singular chain α. Composing with the map θ, we get the map of complexes

c : Γ(U,A•)→ Γ(U, S•), giving a quasi-isomorphism of complexes of sheaves c : A•
X → S•

C.

The map c : Γ(U,A•)→ S•
C(U) gives by restriction c : Γc(U,A

•)→ Š•
C(U). We also have the

map θ : Š•(U) ↪→ Γc(U, S
•) for which we may take ⊗C; we have thus maps

Γc(U,A
•)

c−−−→Š•
C(U)

θ−−−→Γc(U, S
•
C) .

Passing to duals we have maps

Γ(U,D(S•))
θ′−−−→DŠ•(U)

c′−−−→Γ(U,D(A•))

(for the first two terms we need not take ⊗C), and the composition will also be denoted c′.
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Composition of the maps ξ : C̃•(U) → DŠ•(U) and c′ : DŠ•(U) → Γ(U,D(A•)) is denoted

Φ:

Φ = c′ ◦ ξ : C̃•(U)→ Γ(U,D(A•)) .

(1.10) Let S• ⊗Q A• = S•
C ⊗C A• be the tensor product of the complexes of sheaves. There are

maps

S• → S•
C = S•

C ⊗ C→ S•
C ⊗C A• ;

the latter is 1⊗ ε where ε : C→ A• being the augmentation. By composition one has the map

α : S• → S• ⊗Q A•. Note that the induced map S•
C → S• ⊗Q A• which is a quasi-isomorphism.

The map 1 ∪ c : S• ⊗A• → S•
C is a retraction to α : S•

C → S• ⊗A•. Let

λ = Φ ◦ κ ◦ (1 ∪ c) : S• ⊗A• → D(A)[−m] .

Note then that λ ◦ α = c′ ◦ κ.
Therefore we obtain a diagram

S•(X) θ // Γ(X, S•) α //

κ

��

Γ(X, S• ⊗Q A•)

λ

��
S•(X) κθ //

κ

��

Γ(X,D(S•))[−m] c′ //

θ′

��

Γ(X,D(A•))[−m]

Cm−•(X)
ξ // DŠ•(X)[−m] c′ // Γ(X,D(A•))[−m]

where all the squares commute except the lower left one, which commutes up to homotopy.

(1.11) Definition. Let K = K(X) be the triple of filtered complexes[
Γ(X,C•Q)−−−→Γ(X,C•A•)←−−−Γ(X,A•)

]
.

This is a mixed Hodge complex for X (take the trivial weight filtration). It is the same as the

one in [De], except we have used the complex A• instead of Ω•. We will call it the cohomological

Hodge complex.

Consider also a triple K(X) given by[
Γ(X, S•)

α−−−→Γ(X, S• ⊗Q A•)
β←−−−Γ(X,A•)

]
.

which is another mixed Hodge complex.

(1.12) There is a canonical quasi-isomorphism between K(X) and K(X).
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Proof. Recall that for a complex of sheaves F there is a canonical map F → C•F to its Godement

resoution; also if a map of complexes F → G induces a map C•F → C•G by functoriality. Con-

sider the following commutative diagram of complexes, with arrows of the kind just mentioned;

the vertical and horizontal arrows are quasi-isomorphisms.

Γ(X,C•Q) //

��

Γ(X,C•A•)

��

Γ(X,A•)oo

��
Γ(X,C•S•) α // Γ(X,C•(S• ⊗A•) ) Γ(X, S• ⊗A•)

βoo

Γ(X, S•) //

OO

Γ(X, S• ⊗A•)

OO

Γ(X,A•)oo

OO

The top and the bottom rows are K(X) and K(X), respectively.
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2 The comparison in case H = ∅

(2.1) Assume that X is triangulated, and given a partial ordering on vertices (which is assumed

to be a total ordering on each simplex) in the triangulation. One has the complex of simplicial

chains C•(X) and the complex of simplicial cochains C•(X). Then there is a natural map of

complexes S•(X) to C•(X).

One has the map of complexes κ : S•(X)→ C2n−•(X) which sends u ∈ Sp(X) to (−1)s(p)[X]∩
u ∈ C2n−p(X).

In general, if K• is a cohomological complex of C-vector spaces, we define its dual D(K•) to

be the complex with D(K)p = Hom(K−p,C) and differential f 7→ f ◦ d.
Let Φ : C•(X) → D(A•(X)) be the map of complexes which sends sends α ∈ Cp(X) to∫

α
(−). Let

λ = Φ ◦ κ ◦ (1 ∪ c) : Γ(X, S• ⊗Q A•)→ DA2n−•(X) .

Also, let P : A•(X)→ D(A•(X)[2n]) be the map which sends ψ to P(ψ), where

〈P(ψ), ϕ〉 := (−1)s(p)
∫
X

ψ ∧ ϕ

for ψ of degree p, ϕ of degree 2n− p, where s(p) := (−1)
p(p+1)

2 . Then P is a map of complexes.

By Poincaré duality this is a quasi-isomorphism.

One has a diagram of homomorphisms of complexes:

S•(X) α //

κ

��

Γ(X, S• ⊗Q A•)

λ
��

A•(X)
βoo

id

��
C2n−•(X) Φ // DA2n−•(X) A•(X)Poo

The left square commutes.

We give a variant of a theorem of Guggenheim [Gu].

Let X be a real analytic manifold equipped with a semi-analytic triangulation K. Consider

the category Cat(X) associated with X. The objects are subspaces X, and simplices σ of

K; the arrows are, besides the identities, inclusions between the subspaces, ισ : σ → X and

ισ,σ′ : σ → σ′. The complexes A• and C• are contravariant functors on this category, and the

map c : A• → C• is a natural transformation.

(2.2) Proposition. There exist maps ρM : A•(M) ⊗ A•(M) → C•
C(M) of degree -1, one for

each object M of Cat(X), that are functorial in M , and subject to the identities

(dρ+ ρd))(ψ ⊗ ϕ) = c(ψ ∧ ϕ)− c(ψ) ∪ c(ϕ) .
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Proof. Functoriality means that for each arrow ι : N →M in Cat(X) one has the identity

ι∗ρM = ρN ι
∗ .

Let A(2),•(M) = A•(M) ⊗ A•(M). Denote by m either of the wedge product A•(M) ⊗
A•(M)→ A•(M) or the cup product C•(M)⊗ C•(M)→ C•(M).

Write ρm for the restriction of ρ to the degree m part: ρm : A(2),m(M) → Cm−1
C (M). The

condition required for ρm is

dρm−1 + ρmd = −m(c⊗ c) + cm . (∗)m−1

With ρm = 0 for m ≤ 0, the identity (∗)m−1 obviously holds for m ≤ 0. We will find ρm,

m ≥ 1, by induction. Let

θm−1
M = dρm−1 −m(c⊗ c) + cm : A(2),m−1(M)→ Cm−1

C (M) .

Observe that m(c ⊗ c) = cm on A(2),0(M); hence when m = 1, θ0 = −m(c ⊗ c) + cm = 0.

Also note that for an arrow ι : N →M the identity ι∗θm−1 = θm−1ι∗ holds. We are to find ρm

such that ρmd = θm−1 holds; also ρm should satisfy ι∗ρm = ρmι∗.

When M is a simplex σ = ∆p, there is a map S : A(2),•(∆p)→ A(2),•(∆p) of degree −1 such

that

dS + Sd = 1− r∗b
where rb : ∆

p → {b} ⊂ ∆p is the contraction map to a base point b of ∆p.

We have

θm−1r∗b = 0

for any m. Indeed for m = 1, θ0 = 0; if m ≥ 2, then one has r∗b = 0 on A(2),m−1(∆p).

For a ∈ A(2),m(M), define an element ρmM(a) ∈ Cm−1
C (M) as follows. Let τ be an (m − 1)-

simplex of M , and ιτ : τ →M the inclusion. The value of ρm(a) at τ is given by

〈ρmM(a), τ〉 = 〈θm−1
τ Sι∗τa, τ〉 ∈ C .

Here ι∗τa ∈ A(2),m(∆m−1), and the maps S, θm−1 are as in the diagram

Cm−1
C (∆m−1)

A(2),m−1(∆m−1)

θm−1

OO

d // A(2),m(∆m−1) .

S

ll

(i) For an arrow ι : N →M in Cat(X) one has ι∗ρmM = ρmN ι
∗.

Indeed for an (m− 1) simplex τ of N ,

〈ι∗ρmM(a), τ〉 = 〈ρmM(a), τ〉
= 〈θm−1

τ Sι∗τa, τ〉 ,
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which equals 〈ρmN(ι∗a), τ〉.

(ii) One has θm−1d = 0.

Both c and m commute with d. Using also (∗)m−2 we have

θm−1d = −dρm−1d−m(c⊗ c)d+ cmd

= −dρm−1d− dm(c⊗ c) + dcm

= d(−ρm−1d−m(c⊗ c) + cm)

= d(dρm−2) = 0 .

(iii) One has θm−1Sd = θm−1 as maps A(2),m−1(M)→ Cm−1
C (M).

In the identity

θm−1Sd = θm−1(−dS + 1− r∗b )

the first term on the right is zero by (ii), and the term θm−1r∗b is also zero as noted before.

(iv) The identity ρmMd = θm−1
M holds.

For an (m− 1) simplex τ we have:

〈ρmd(a), τ〉 = 〈θm−1
τ Sι∗τ (da), τ〉

= 〈θm−1
τ Sd(ι∗τa), τ〉

= 〈θm−1
τ (ι∗τa), τ〉 [by (iii) ]

= θm−1
M (a) .

The next result concerns the indeterminacy of the map ρ. If ρ′ is another map of degree

−1 satisfying the requirement of the previous proposition, one has in particular the identity

dρ+ ρd = dρ′ + ρ′d.

(2.3) Proposition. Let ρ and ρ′ be functorial maps A•(X)⊗ A•(X)→ C•
C(X) of degree −1

such that dρ+ ρd = dρ′ + ρ′d. Then there exists a map π : A•(X)⊗A•(X)→ C•
C(X) of degree

−2, functorial in X, such that

dπ + πd = ρ− ρ′ .

Proof. Let πm : A(2),m(X) → Cm−2
C (X) be the degree m part of π. Set πm = 0 for m ≤ 1. By

induction on m we will find πm such that

dπm−1 + πmd = ρm−1 − ρ′m−1
: A(2),m−1(X)→ Cm−2

C (X) (∗)m−1
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holds. For m ≤ 1 it is trivially true. Assuming πj for j < m have been defined, let

τm−1 = −dπm−1 + ρm−1 − ρ′m−1 .

The map τm−1 is also functorial in X.

On ∆m−2 we take S : A(2),m(∆m−2)→ A(2),m−1(∆m−2) such that dS + Sd = 1− r∗b . One also

has τm−1r∗b = 0, since r∗b is non-zero only in degree 0, and τ 0 is trivially zero.

For any element a ∈ A(2),m(X) and v : ∆m−2 → X, we have v∗a ∈ A(2),m(∆m−2); we set

〈πm(a), v〉 = 〈τm−1Sv∗a, 1∆m−2〉 ,

which defines an element πm(a) ∈ Cm−2
C (X). The verification of the following facts are parallel

to the previous case, using slightly different hypotheses.

(i) One has f ∗πm = πmf ∗ for a map f : Y → X.

(ii) One has τm−1d = 0.

This follows by substituting the definition of τm−1, using the identity dρ+ρd = dρ′+ρ′d and

the hypothesis (∗)m−2.

(iii) One has τm−1Sd = τm−1.

In the identity

τm−1Sd = τm−1(−dS + 1− r∗b )

we have τm−1r∗b = 0, and also τm−1dS = 0 by (ii).

(iv) The identity πmd = τm−1 holds.

Using (iii) and the funtoriality of πm−1 we have:

〈πmd(a), v〉 = 〈τm−1Sv∗(da), 1∆m−1〉
= 〈τm−1Sdv∗(a), 1∆m−1〉
= 〈τm−1v∗(a), 1∆m−1〉 [by (iii) ]

= 〈v∗τm−1(a), 1∆m−1〉 [by v∗τm−1 = τm−1v∗]

= 〈τm−1(a), v〉 .
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(2.4) Sign conventions for the Hom complex. For a pair of complexes K,L, let D be the

differential of the complex Hom•(K,L) given by u 7→ u ◦ dK + (−1)k+1dL ◦ u for u of degree

k. In particular for a complex K of C-vector spaces, the complex Hom(K,C) coincides with

D(K) in (2.1).

Another choice of the differential, which we will use only for auxiliary purposes, is the map δ

which sends u ∈ Hom(Kp, Lq) to u ◦ dK + (−1)pdL ◦ u; this is obtained by viewing Hom•(K,L)

as a double complex and taking its total complex.

There is an isomorphism of complexes

ι : (Hom•(K,L), D)→ (Hom•(K,L), δ)

that takes f ∈ Hom(Kp, Lq) to (−1)s(q)f . (Here s(p) := (−1)
p(p+1)

2 .)

(2.5) Tensor and Hom adjunction. If M is another complex, this sign convention applies

to the complex Hom•(K⊗L,M), as well as to Hom•(K,Hom•(L,M)). There is an isomorphism

of complexes

Hom•(K ⊗ L,M)→ Hom•(K,Hom•(L,M))

after the signs are correctly chosen. Indeed for u : K ⊗ L → M of degree k, let u′ : K →
Hom(L,M) be the map given by

〈u′(x), y〉 = u(x⊗ y) .

If x is of degree p, modify this by sign and let ũ : K → Hom•(L,M) be the map given by

ũ(x) = (−1)s(p+k)u′(x) ∈ Homp+k(L,M) .

One verifies that this gives an isomorphism of complexes, functorial in each of K, L and M .

The sign (−1)s(p+k) may be obtained as follows. There is an obvious isomorphism of triple

complexes Hom•(K⊗L,M)→ Hom•(K,Hom•(L,M)). It induces an isomorphism of the total

complexes. The total complex of the left has differential δ. The total complex on the right has

differential given as follows: take the complex (Hom(L,M), δ), and then take the differential δ

for Hom(K.Hom(L,N). One may then apply the isomorphism ι in (2.4) once to the left total

complex, and twice on the right total complex, resulting in the sign as asserted.

We are particularly interested in the case where a map M → C[−m] is given, with m an

integer. In that case replacing M with C[−m], one is considering the isomorphism of complexes

Hom(K ⊗ L,C[−m])→ Hom(K,Hom(L,C[−m])) .

For the target complex, there are isomorphisms of complexes

Hom(L,C[−m])
∼→ Hom(L[m],C) = Hom(L,C)[−m] .

The first isomorphism sends f ∈ Homk(L,C[−m]) = Homk−m(L,C) to (−1)mkf ∈ Homk(L[m],C) =
Homk−m(L,C), and the second isomorphism sends f ∈ Homk(L[m],C) = Homk−m(L,C) to it-

self. If m is even, then one can write Hom(L,C[−m]) = Hom(L[m],C) = D(L[m]).
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We summarize below what we have for the particular case M = C[−m] with m even.

(2.6) Proposition. Let K,L be complexes and n be an integer. There is an isomorphism of

complexes

Hom(K ⊗ L,C[−2n])→ Hom(K,D(L[2n]))

which sends u to ũ. One has

D̃(u) = D(ũ) .

If u is of degree k, then ũ is also of degree k, so that D(ũ) = ũ ◦ d+ (−1)k+1d ◦ ũ.

(2.7) We apply this to the case K = L = A•(X) and M = S•
C; there is the trace map

S•
C → C[−2n], which sends u ∈ S2n

C to 〈u, [X]〉.
A map of degree k

u : A•(X)⊗ A•(X)→ C•
C

induces a map ũ : A(X)• → DA2n−•(X), also of degree k; for ψ ∈ Ap(X) one has

ũ(ψ)(ϕ) = (−1)s(p+k)〈u(ψ ⊗ ϕ), [X]〉 .

The map m(c⊗ c) : A•(X)⊗ A•(X)→ SC
• is of degree zero. One has

〈(m(c⊗ c))˜(ψ), ϕ〉 = (−1)s(p)〈c(ψ) ∪ c(ϕ), [X]〉 .

This coincides with 〈Φκc(ψ), ϕ〉. Since λ ◦ β = Φκc, we have (m(c⊗ c))˜ = λ ◦ β.
Also cm : A•(X)⊗ A•(X)→ SC

• is of degree zero, and

〈(cm)˜(ψ), ϕ〉 = (−1)s(p)〈c(ψ ∧ ϕ), [X]〉 = (−1)s(p)
∫
X

ψ ∧ ϕ .

This coincides with 〈P(ψ), ϕ〉, so we have (cm)˜ = P.

(2.8) Proposition. One has

dρ̃+ ρ̃d = −λ ◦ β + P .

Proof. The map ρ satisfies Dρ = −m(c⊗ c)+ cm. Apply the map u 7→ ũ to both sides and use

(2.6) to obtain the assertion.
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3 Complexes of differential forms with logarithmic poles

(3.1) Let Λ be a field and we consider complexes K• of Λ-vector spaces. For k ∈ Z, we set

Λ(k) = Λ · (2πi)−k, the one dimensional Λ-vector space with basis (2πi)−k, with filtration W

such that GrWm = 0 for m 6= −2k. When Λ = C, C(k) has also a decreasing filtration F • such

that GrpF = 0 for p 6= −k.
Let K = (KQ, K

′
C, KC) be a Q-mixed Hodge complex (see [Be]). Recall that KQ is a complex

of Q-vector spaces equipped with a (finite increasing) filtration W•, K
′
C is a complex of C-vector

spaces equipped with a filtration W•, and KC is a complex of C-vector spaces equipped with a

filtration W• and a finite decreasing filtration F •. There are comparison maps (KQ,W•)⊗C→
(K ′

C,W•) and (KC,W•)→ (K ′
C,W•).

An example of a mixed Hodge complex is the triple (Q(k),C(k),C(k)) with the obvious maps.

Given a mixed Hodge complex define the shift K[1] by

Wm(KQ[1]) = (Wm−1KQ)[1] ,

similarly for K ′
C, KC, and

F p(KC[1]) = (F pKC)[1] .

Then K[1] is a mixed Hodge complex.

If K and L are mixed Hodge complexes, their tensor product K ⊗ L, equipped with the

tensor product of the weight and Hodge filtrations, is a mixed Hodge complex. In particular,

K(i) = K ⊗Q(i) is a mixed Hodge complex.

The dual DK of K is the mixed Hodge complex defined by

WmD(K) = Wm+2(K/W−1−mK)

and

F pD(KC) = D(K/F 1−pKC) .

Let

K =
[
→ Ki → Ki+1 → · · ·

]
be a finite complex of mixed Hodge complexes. Consider the total complex Tot(KQ), which is⊕

iK
i
Q[−i] as a graded module; equip it with the filtration W• given by

Wm Tot(KQ) =
⊕
i

(Wm+iK
i
Q)[−i] .

Similarly the total complex Tot(K ′
C) is equipped with the filtration W•. The total complex

Tot(KC) is also equipped with W•, but in addition there is a filtration F • given by and

F p Tot(KC) =
⊕
i

(F pKi
C)[−i] .
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Then (Tot(K);W,F ) is a mixed Hodge complex. In particular, if u : K → L is a morphism of

mixed Hodge complexes, its cone Cu, with the filtrations

WmCu = (Wm−1K)[1]⊕WmL

and

F pCu = (F pK)[1]⊕ F pL ,

is a mixed Hodge complex.

(3.2) Let X a smooth complete variety, and H is a simple normal crossing divisor on X; we

assume that the irreducible components H1, · · · , Hr of H are totally ordered.

For a subset I of {1, · · · , r}, set HI = ∩i∈IHi and H∅ = X. If J ⊃ I, there is an inclusion

HJ → HI .

If I and J is a pair of the subsets {1, · · · , r} with J ⊃ I and |J | = |I| + 1, we will write

J � I. For a subset I of {1, · · · , r}, we set

HI =
⋂
i∈I

Hi ,

and H∅ = X. HI is a non-singular variety. Also let

ĤI =
∑
J

HJ ,

where J varies over the subsets with J � I; it is a normal crossing divisor on HI . One thus has

a smooth pair (HI , ĤI).

For an a ≥ 0, set

H(a) =
∐
|I|=a

(HI , ĤI)

the disjoint union of the smooth pairs (HI , ĤI).

If k = 0, · · · , a, the sum of the inclusions Hi1···ia → Hi1··· îk,···ia gives a map dk : H
(a) → H(a−1).

(3.3) For some of the facts in this subsection details may be found in [De], II, §3.
Let Ω•

X〈H〉 be the logarithmic de Rham complex of (X,H), namely the sheaf of holomorphic

forms on X with logarithmic singularities along H. There is an increasing filtration W• (the

weight filtration) on this complex , and a decreasing filtration F • (the Hodge filtration).

For each i one has the Poincaré residue map

ResHi
: Ω•

X〈H〉 → Ω•
Hi
〈Ĥi〉[−1] .

More generally, for I with |I| = a, a map

ResHI
= RI : Ω

•
X〈H〉 → Ω•

HI
〈ĤI〉[−a] ,
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It restricts to a map WaΩ
•
X〈H〉 → Ω•

HI
[−a] and induces an isomorphism of complexes

GrWa Ω•
X〈H〉 →

⊕
|I|=a

Ω•
HI
[−a] . (3.3.1)

Similarly for a pair (I, J) with I ⊂ J , one has

ResI,J : Ω•
HI
〈ĤI〉[−|I|]→ Ω•

HJ
〈ĤJ〉[−|J |] .

Since we have assumed the irreducible components of H are totally ordered, there is no ambi-

guity of signs. One also has the Hodge filtration F • on the complex Ω•
X〈H〉.

Let j : U = X − H → X be the inclusion. One has inclusions of filtered complexes (recall

there is the canonical filtration τ = τ≤ on a complex in a abelian category)

(Ω•
X〈H〉,W )← (Ω•

X〈H〉, τ)→ (j∗Ω
•
U , τ) . (3.3.2)

A fact of fundamental importance ([De], (3.18)) states that both maps are filtered quasi-

isomorphisms.

There is also a filtration F • on Ω•
X〈H〉 that extends the F • on Ω•

X , so the complex Ω•
X〈H〉

is bifiltered with W,F .

(3.4) The complex Ω•(X)H . The de Rham complex Ω•
X on X is also denoted Ω•(X); similarly

Ω•
X〈H〉 is also written Ω•(X)〈H〉.
For a closed subset Z of X, Ω•

X |Z denotes the restriction of Ω•
X to Z, often viewed as a

complex of sheaves on X. If Z is a smooth subvariety, there is the complex Ω•
Z of forms on Z.

The induced map Ω•
X |Z → Ω•

Z is a quasi-isomorphism of sheaves on Z.

We modify the maps ResI in the previous section as follows. Take I and let |I| = a. We

define a map RHI
(also written RI) by

RHI
= ResHI

⊗ e−a : Ω
•
X〈H〉 → Ω•

HI
〈ĤI〉(−a)[−a]

which sends ϕ to ResHI
(ϕ)·e−a. With the filtrationW• on the target defined as in (3.1) satisfies

Wm(Ω
•
HI
〈ĤI〉(−a)[−a]) = (Wm−aΩ

•
HI
〈ĤI〉)(−a)[−a], so the map RHI

respects the filtrations

W•. Also it respects the filtrations F •.

Similarly for subsets I ⊂ J one has the map of complexes

RI,J : Ω•(HI)〈ĤI〉(−|I|)[−|I|]→ Ω•(HJ)〈ĤJ〉(−|J |)[−|J |]

is bifiltered. To be precise, RI,J is a map of complexes of sheaves on HI , where the target

complex is identified with its direct image under the inclusion i : HJ → HI .

We will often drop the Tate twists for simplicity. If J = I ∪ {j}, one may write Rj for RI,J .

We have identities (twists and shifts are omitted)

RI = Ria · · ·Ri1 if I = (i1, · · · , ia),
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RiRj = −RjRi : Ω
•(HI)〈ĤI〉 → Ω•(HK)〈ĤK〉

if K = I ∪ {i, j}, and

RI,JRI = (−1)a+kRJ : Ω•(X)〈H〉 → Ω•(HJ)〈ĤJ〉

if I = (i1, · · · , ia) and J = (i1, · · · , ik, j, ik+1, · · · , ia).

For a ≥ 0 consider the sum
⊕

|I|=a Ω
•(HI)〈ĤI〉 which is a complex on X, and let

r :
⊕
|I|=a

Ω•(HI)〈ĤI〉[−|I|]→
⊕

|J |=a+1

Ω•(HJ)〈ĤJ〉[−|J |]

be the sum of the maps RI,J . Then r ◦ r = 0, so that we have a complex of bifiltered complexes

(on X)

0→ Ω•(X)〈H〉 r−−−→
⊕
i

Ω•(Hi)〈Ĥi〉[−1]
r−−−→

⊕
|I|=2

Ω•(HI)〈ĤI〉[−2]→ · · ·

(the term Ω•(X)〈H〉 is placed in degree 0).

Noting the identity

Ω•(H(a))〈Ĥ(a)〉 =
⊕
|I|=a

Ω•(HI)〈ĤI〉 ,

the above may be written

0→ Ω•(X)〈H〉 r−−−→Ω•(H(1))〈Ĥ(1)〉[−1] r−−−→Ω•(H(2))〈Ĥ(2)〉[−2] r−−−→· · · .

This double complex, as well as its total complex (which is a filtered complex), will be denoted

Ω•(X)H or (Ω•
X)H . In the proposition below, we consider the double complex obtained by

adding the complex Ω•(X) to the left.

(3.5) Proposition. The complex of bifiltered complexes

0→ Ω•(X)→ Ω•(X)〈H〉 → Ω•(H(1))〈Ĥ(1)〉(−1)[−1]→ Ω•(H(2))〈Ĥ(2)〉(−2)[−2]→ · · ·

is bifiltered exact. Therefore the natural map Ω•(X)→ Ω•(X)H is a filtered quasi-isomorphism.

Proof. One verifies using (3.3.1) that each weight graded piece GrWm GrpF of the sequence is

exact.

(3.6) The complexes A•(X)〈H〉 and A•(X)H . Denote by A•
X the complex of sheaves of smooth

differential forms on X. Let Ap,q
X be the sheaf of smooth forms of type (p, q). One has differ-

entials ∂, ∂ of degree (1, 0) and (0, 1), respectively, so that A•,•
X is a double complex. The total

complex of this is equal to A•
X . There is a filtration F • on the double complex A

•,•
X .
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We have the Dolbeault resolution OX → A
0,•
X . This extends a map of complexes Ω•

X → A
•,•
X .

For each p, the map Ωp
X → Ωp

X ⊗OX
A

0,•
X = Ap,• is induced by the Dolbeault resolution of OX ,

so it is also a resolution; hence the map (Ω•
X , F )→ (A•

X , F ) is a filtered quasi-isomorphism.

For each (p, q), let

A
p,q
X 〈H〉 = Ωp

X〈H〉 ⊗OX
A

0,q
X

Again one has differentials ∂, ∂, which makes it a double complex. For each p, the map

Ωp
X〈H〉 → Ωp

X〈H〉 ⊗OX
A

0,•
X is a resolution, and the map (Ω•

X〈H〉, F ) → (A•
X〈H〉, F ) is a

filtered quasi-isomorphism.

By the Malgrange preparation theorem, each term A0,q is flat over OX . For an OX-module

F, the canonical map F → F ⊗OX
A

0,•
X is therefore a quasi-isomorphism. Also the complex

F ⊗OX
A

0,•
X is exact in F. So if F has a filtration by OX-submodules, it induces a filtration on

F ⊗OX
A

0,•
X , and the map F → F ⊗OX

A
0,•
X is a filtered quasi-isomorphism.

In particular the filtration W• on Ωp
X〈H〉 induces a filtration W• on A

p
X〈H〉, and the map

Ωp
X〈H〉 → A

p,•
X 〈H〉 is a filtered quasi-isomorphism; it follows the map (Ω•

X〈H〉;W,F ) →
(A•

X〈H〉;W,F ) is a bifiltered quasi-isomorphism. Note also that GrW GrF A•
X〈H〉 is Γ(X,−)-

acyclic.

We will write A•(X)〈H〉 for A•
X〈H〉, as we did for the holomorphic de Rham complex.

As in the holomorphic case we have the residue maps

ResHI
: A•(X)〈H〉 → A•(HI)〈ĤI〉[−|I|]

and more generally for I ⊂ J one has ResI,J : A•(HI)〈ĤI〉[−|I|]→ A•(HJ)〈ĤJ〉[−|J |].
One may modify them, as in the holomorphic case, to the maps of bifiltered complexes

RHI
: A•(X)〈H〉 → A•(HI)〈ĤI〉(−|I|)[−|I|]

and

RI,J : A•(HI)〈ĤI〉(−|I|)[−|I|]→ A•(HJ)〈ĤJ〉(−|J |)[−|J |] .

The same facts hold for these maps as for the holomorphic ones; as a consequence the same

procedure as before gives us a bifiltered double complex

0→ A•(X)〈H〉 r−−−→A•(H(1))〈Ĥ(1)〉(−1)[−1] r−−−→A•(H(2))〈Ĥ(2)〉(−2)[−2] r−−−→· · · .

We denote this by A•(X)H or (A•
X)H .

There is a natural map of bifiltered double complexes

0 // Ω•(X) //

��

Ω•(X)〈H〉 r //

��

Ω•(H(1))〈H(1)〉(−1)[−1] r //

��

· · ·

0 // A•(X) // A•(X)〈H〉 r // A•(H(1))〈H(1)〉(−1)[−1] r // · · · .
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Each vertical map is a bifiltered quasi-isomorphism. Hence the map Ω•(X)H → A•(X)H is also

a bifiltered quasi-isomorphism. Also, the total complex of the second row is acyclic.

(3.7) Proposition. One has a commutative diagram of bifiltered complexes

CX
// Ω(X)• //

��

A(X)•

��
Ω(X)•H // A(X)•H

where all the arrows bifiltered quasi-isomorphisms.

(3.8) Each term of A• is an A0
X-module, hence fine, in particular c-soft. The same holds for

the complex (A•)H . Thus the quasi-isomorphism A•
X → (A•

X)H induces a quasi-isomorphism

on global sections

Γ(X,A•
X)→ Γ(X, (A•

X)H) .

Set A•(X) = Γ(X,A•
X) and

A•(X)H = Γ(X, (A•
X)H) ,

so that we have a quasi-isomorphism A•(X)→ A•(X)H .

Suppose Z ⊂ X is a closed set. The quasi-isomorphism A•
X → (A•

X)H restricts to a quasi-

isomorphism of sheaves on Z,

CZ → A•
X |Z → (A•

X)H |Z

where A•
X |Z and (A•

X)H |Z consist of c-soft sheaves on Z. Define

A•(Z) = Γ(A•
X |Z) and A•(Z)H := Γ((A•

X)H |Z) .

We have a quasi-isomorphism A•(Z)→ A•(Z)H and isomorphisms

Hp(Z,C) ∼= Hp(A•(Z)) ∼= Hp(A•(Z)H) .

The restriction map A•(X)→ A•(X)|Z induces by taking global section a map of complexes

i∗ : A•(X) → A•(Z). Similarly the map A•(X)H → A•(X)H |Z induces a map i∗ : A•(X)H →
A•(Z)H .

Suppose that the set Z is contractible. Then the map π : Z → ? induces a quasi-isomorphism

π∗ : C → A•(Z). For b a point of Z and εb : ? → Z is the map with image b, the pull-back

ε∗b : A
•(Z)→ C satisfies ε∗bπ

∗ = 1, hence they are homotopy inverse to each other.

If b ∈ Z −H, one extends the above ε∗b to ε∗b : A
•(Z)H → C in an obvious manner, and one

still has ε∗bπ
∗ = 1; Thus the maps π∗ : C→ A•(Z)H and ε∗b are homotopy inverse to each other.

We state this as a record:
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(3.9) Proposition. If Z is contractible and b ∈ Z −H, then the maps

C
π∗

// A•(Z)H
ϵ∗b

oo

are homotopy inverse to each other.

(3.10) For the complexes C•(X)H and C•(X)H , see a later section.

Recall we have the map of integration c : A•(X)→ C•(X). Extending this we define a map

of complexes c : A•(X)H → C•(X)H .

Let ϕ = (ϕHI
) ∈ Ai(X)H , where ϕHI

∈ Ai−2|I|(HI)〈ĤI〉. For each α ∈ Ci(X)H , define

c(ϕ) ∈ C•(X)H by setting

〈c(ϕ), α〉 =
∑
I

∫
α.HI

ϕHI
.

It follows from the Cauchy-Stokes formula that c is a map of complexes.

We have a variant of this for Z = D̄v, the dual cell of a vertex v ∈ H. There is a map of

complexes c : A•(Z)H → C•(Z)H defined below.

Recall that any sheaf F on X and a closed set Z in X, one has

Γ(F|Z) = lim−→
V⊃Z

Γ(F|V )

in the right hand side of which V varies over the open neighborhoods of Z. (See [Bredon], II,

Theorem 9.5.)

Thus an element ϕ of Ai(Z)H is represented by a set of elements (ϕHI∩V )I , where V is an

open set containing Z, and

ϕHI∩V ∈ Γ(Ai−2|I|(HI)〈ĤI〉|V ∩HI) .

For α ∈ Ci(Z)H , c(ϕ) is defined by

〈c(ϕ), α〉 =
∑
I

∫
α.HI

ϕHI∩V .

The resulting map is one of complexes.

The restriction maps i∗ : A•(X)H → A•(Z)H and i∗ : C•(X)H → C•(Z)H are compatible

with the maps c, namely the following diagram commutes:

A•(X)H
c−−−→ C•(X)Hyi∗ yi∗

A•(Z)H
c−−−→ C•(Z)H .

(3.11) One has the wedge product

A•(X)⊗ A•(X)H → A•(X)H
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which sends ψ ⊗ ϕ with ϕ = (ϕI) to ψ ∧ ϕ with components

ψ ∧ ϕHI
.

One verifies this gives a map of complexes.

There is a map of complexes

i∗ : A
•(H)[−2]→ A•(X)H , ϕ 7→ (0, ϕ)

and the following diagram commutes.

A•(X)⊗ A•(X)H
m // A•(X)H

A•(X)⊗ A•(H)[−2]

1⊗i∗

OO

m // A•(H)[−2]

i∗

OO
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4 The complex C•(X)H and its dual C•(X)H

(4.1) Let HI be defined as before, and for integers i ≥ 0, set H(i) = ∪|I|=iHI . This gives a

decreasing sequence of closed sets X = H(0) ⊃ H(1) ⊃ · · · .
We will henceforth assume that the triangulation K of X satisfies the following condition.

There is given a partial ordering on the set of vertices of K, which is a total ordering when

restricted to the set of vertices of each simplex. The ordering is assumed to be compatible with

H in the sense that if v, v′ are vertices, v < v′ and v′ ∈ HI , then v ∈ HI ; in other words v < v′

implies that v′ is more general than v with respect to H.

For example such an ordering is obtained as follows. Assume K0 is a triangulation of X such

that each HI is a subcomplex, and let K be its first barycentric subdivision. The vertices of

K are the barycenters σ̂ of the simplicies σ of K0. Give a partial ordering on the vertices of X

by: σ̂ < σ̂′ if and only if σ ≺ σ′ (notation meaning that σ and σ′ are simplicies of K0 and σ is

a proper face of σ′).

The chain complex of oriented simplices will be denoted C•(X), C•(K), or sometimes CK
• (X).

An m-simplex σ of X is written σ = v0 · · · vm, where v0 < · · · < vm. If p ≤ m, the front p-face

of σ is the simplex v0 · · · vp (also written σF
p ) and its back (m− p)-face is vp · · · vm (also written

σB
m−p).

Let ν = v0 · · · vp be a p-simplex. For an element α =
∑
cσσ ∈ Cm(X), define another element

αν ∈ Cm(X) by

αν =
∑
σF
p =ν

cσσ ,

the sum over those σ with front face ν. Also for the α define an element αB
m−p ∈ Cm−p(X) by

αB
m−p =

∑
σ

cσ σ
B
m−p ,

the “back (m− p) chain” of α. The homomorphism

d : Cm(X)→
⊕
p

Cp(X)⊗ Cm−p(X)

which sends a simplex σ to
∑
σF
p ⊗ σB

m−p is called the “decatenation” map, or the Alexander-

Whitney map. One readily verifies that it is a map of complexes, and also that it is coassociative.

It takes an element α ∈ Cm(X) to
∑

p

∑
ν ν ⊗ (αν)

B
m−p, in which 0 ≤ p ≤ m and ν varies over

the p-simplices of X.

If we denote by Cm(X)ν the submodule consisting of the α with α = αν , then clearly we

have Cm(X) =
⊕

ν Cm(X)ν .

In particular, if ν = v is a vertex, Cm(X)v is the submodule of α which is a sum of simplicies

with first vertex v, and Cm(X) =
⊕

v Cm(X)v.

(4.2) Let h = HI with |I| = r ≥ 1. An m-simplex σ is said to be h-transversal if dim(σ ∩ h) ≤
m− 2r.
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We introduce equivalent conditions. Let Nσ(h) be the number of vertices of σ that are

contained in h (set Nσ(h) = −∞ if there is no such vertex). The following are equivalent:

(i) σ is h-transversal.

(ii) If σ = v0 · · · vm, then vm−2r+1 6∈ h.
(iii) Nσ(h) ≤ m− 2r + 1.

(4.3) Definition. h = HI . An element α =
∑
cσ σ ∈ Cm(X) is h-transversal if each σ with

cσ 6= 0 is h-transversal. It is said to be h-admissible if α and ∂α are h-transversal.

Let Cm(X)h be the submodule of Cm(X) consisting of the h-admissible elements; one obtains

a subcomplex C•(X)h of C•(X).

The following is obvious.

(4.4) Proposition. For α =
∑
cσ σ ∈ Cm(X) be h-admissible, it is necessary and sufficient

that the following two conditions are satisfied:

(i) If cσ 6= 0, then the simplex σ is h-transversal, and

(ii) For each (m− 1)-simplex τ which is not h-transversal, the coefficient of τ in ∂α is zero:

coeff(τ ; ∂α) =
∑
σ≻τ

cσ[σ : τ ] = 0 (∗)

where σ varies over the m-simplices having τ as a face, and [σ : τ ] is the coefficient of τ in ∂σ.

(4.5) Proposition. Let σ = v0 · · · vm be an m-simplex, p is an integer with p ≤ m and let

s = σB
m−p = vp · · · vm. If σ is h-transversal, then s is also h-transversal.

Proof. If vp ∈ h, then vi ∈ h for i ≤ p so we have Nσ(h) = Ns(h) + p. By hypothesis

Nσ(h) ≤ m− 2r + 1, hence Ns(h) ≤ (m− p)− 2r + 1.

If vp 6∈ h, then vi 6∈ h for i ≥ p, thus Ns(h) = −∞.

(4.6) Definition. For the normal crossing divisor H, α ∈ Cm(X) is said to be H-transversal

(resp. H-admissible) if α is HI-transversal (resp. HI-admissible) for each HI .

In the previous propositions one may replace h-admissibility with H-admissibility (or h-

transversality with H-transversality).

(4.7) Lemma. Let σ = v0 · · · vm be an m-simplex satisfying H-transversality. Suppose σ ∩
H(r + 1) is empty. Let τ = v0 · · · v̂i · · · vm be an (m− 1)-face of σ.

(1) If i ≤ m− 2r, then τ is H-transversal.

(2) If i > m− 2r, then σF
m−2r = τFm−2r.
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Proof. An m-simplex σ = v0 · · · vm disjoint from H(r + 1) is H-transversal iff vm−2k+1 6∈ H(k)

for 1 ≤ k ≤ r. If σ satisfies satisfies this, then τ = ∂iσ with i ≤ m − 2r satisfies a similar

condition, namely (1) holds. (2) is obvious.

(4.8) Proposition. Suppose α ∈ Cm(X)H such that |α| ∩H(r + 1) = ∅, and ν is a p-simplex

with p ≤ m− 2r. Then αν ∈ Cm(X)H .

Proof. Let α =
∑
cσσ, where σ varies over the H-transversal m-simplices. Then

αν =
∑

cσ σ (the sum over the m-simplices σ, H-transversal, and σF
p = ν) .

To verify that αν is H-admissible, we verify the condition (ii) of Proposition (4.4). Take an

(m− 1)-simplex τ that is not H-transversal, and we must show that

coeff(τ ; ∂αν) =
∑

cσ[σ : τ ] (the sum over σ, H-transversal, σF
p = ν and σ � τ) (4.8.1)

is zero.

On the other hand from hypothesis

0 = coeff(τ ; ∂α) =
∑

cσ[σ : τ ] (the sum over σ, H-transversal, and σ � τ) . (4.8.2)

For each σ appearing in (4.8.2), if τ = ∂iσ, one must have i > m − 2r by (1) of (4.7). Thus

σF
m−2r = τFm−2r by (2) of (4.7), and since p ≤ m− 2r we have σF

p = τFp = ν. Therefore the sums

in the right hand sides of (4.8.1) and (4.8.2) are over the same set of σ’s, so they are equal.
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(4.9) 　 Let h = HI be of codimension r. We define a map of complexes

i∗ : C•(X)h → C•−2(h)

which sends an element α to i∗α = α.h; intuitively α.h is the intersection of α with h with

adequate multiplicities.

An element α ∈ Cm(X) determines its support |α|, which is a subcomplex of K, and α

determines a cycle in C•(|α|, |∂α|), so one has its homology class [α] ∈ Hm(|α|, |∂α|).
Let uh ∈ H2r

h (X) be the Thom class of h in X. Suppose α ∈ Cm(X)H . Cap product with uh
gives us a map

∩uh : Hm(|α|, |∂α|)→ Hm−2r(|α| ∩ h, |∂α| ∩ h) .

and there is a natural inclusion

Hm−2r(|α| ∩ h, |∂α| ∩ h) ↪→ Cm−2r(|α| ∩ h)

due to the fact that |α| ∩ h has dimension ≤ m − 2 and |∂α| ∩ h has ≤ m − 3. The image of

[α] ∩ uh in Cm−2r(h) is denoted by α.h or i∗α.

We have the following properties:

(1) (additivity) For α, α′ ∈ Cm(X)h, one has (α + α′).h = α.h+ α′.h.

(2) (boundary) One has ∂(α.h) = (∂α).h.

(3) If h′ = HJ meets h transversally, then one has (α.h).(h ∩ h′) = α.(h ∩ h′).
These follow from the known properties of cap product (see [Iv], p. 378-379).

We write

α.h =
∑

µh(s;α)s

the sum over the (m − 2r)-simplicies s in h, where µh(s;α) ∈ Z is the coefficient of s in α.h.

We will usually write µ(s;α), dropping the subscript h.

(4.10) Let h = HI be of codimension r. Given an element α ∈ Cm(K)h, write it as α =
∑
cσ σ

where σ are h-transversal m-simplices. For a simplex s of dimension ≤ m − 2r in h (possibly

s = ∅), define
α(s) =

∑
cσ σ (sum over the σ with σ ∩ h = s) .

Then each α(s) is in Cm(K)h and we have

α =
∑

α(s)

the sum over s in h. It is obvious that µ(s;α) is carried by α(s) with dim s = m − 2r alone.

More precisely,

(1) For each s of dimension m− 2r, one has

α(s).h = µ(s;α(s))s and µ(s;α) = µ(s;α(s)) .

(2) For each s of dimension < m− 2r, one has α(s).h = 0.
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The study of the intersection α.h is thus reduced to that of α(s).h for dim s = m − 2r.

Then the support |α(s)| of α(s) is an m-dimensional subcomplex of K. We shall study such

subcomplexes in a more general framework.

(4.11) Definition. Suppose m is a non-negative integer, and s be a simplex in h of dimension

` ≤ m − 2r (thus s is empty if m ≤ 1). A finite subcomplex K ′ of K is an m-dimensional

subcomplex centered at the simplex s if the following conditions hold:

(i) One has |K ′| ∩ h = s.

(ii) The maximal simplices of K ′ are all of dimension m. Each maximal simplex σ meets h

exactly in s: σ ∩ h = s.

Of course, for α(s) in the previous subsection, K ′ = |α(s)| is centered at s.

(4.12) Suppose K ′ is an m-dimensional subcomplex centered at an (m − 2r)-simplex s in h.

The subcomplex of C•(K
′) consisting of h-admissible chains is denoted by C•(K

′)h, namely

C•(K
′)h = C•(K

′) ∩ C•(K)h .

Let L′ be the subcomplex of K ′ consisting of simplices not containing s (we say L′ is the

subcomplex associated with K ′).

One may reformulate the construction of i∗ in terms of the pair of simplicial complexes

(K ′, L′): Each element β ∈ Cm(K
′)h satisfies ∂β ∈ Cm−1(L

′), hence determines a cycle in

Cm(K
′, L′). Let [β] ∈ Hm(K

′, L′) be its homology class.

Let uh ∈ H2r
h (X) be the Thom class of h. Consider the cap product

∩uh : Hm(K
′, L′)→ Hm−2r(K

′ ∩ h, L′ ∩ h)

where K ′∩h, say, means the subcomplex K ′ induces on h. There is inclusion Hm−2r(K
′∩h, L′∩

h) → CK′
m−2r(h) since K ′ ∩ h has dimension m − 2r and L′ ∩ h has dimension ≤ m − 2r − 1.

The image of [β] under the composition is denoted by i∗β ∈ Cm−2r(h).

That this agrees with the first construction of i∗ follows from the following fact, the verifica-

tion of which is left to the reader.

Claim. If α ∈ Cm(K)H , dim s = m− 2r and K ′ = |α(s)|, then L′ coincides with |∂(α(s))|.

(4.13) With K ′ and L′ as above, let s = v0 · · · vm−2r, and let K̄ ′ (resp. L̄′) be the subcomplex

of K consisting of the simplices meeting h at most in vm−2r (resp. not meeting h). Then K̄ ′ is

a simplicial subcomplex of dimension 2r centered at the vertex vm−2r, and L̄
′ is the associated

subcomplex to it.

There is an isomorphism of complexes

b : Ci(K
′, L′)→ Ci−m+2r(K̄

′, L̄′) .
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which takes an i-simplex ρ to its back (i−m+2r)-face ρBi−m+2r. We have an induced isomorphism

of homology

b : Hi(K
′, L′)→ Hi−m+2r(K̄

′, L̄′)

This is compatible with cap product with the Thom class uh. Hence for any β ∈ Cm(K
′)h

and its image β̄ ∈ C2r(K̄ ′)vm−2r one has

µ(s; β) = µ(vm−2r; β̄) .

Consequently we have

µ(s;α(s)) = µ(vm−2r;α(s)) (4.13.1)

where α(s) is the back 2-chain of α(s).

(4.14) Proposition. Let ν be any p-simplex in X, where 0 ≤ p ≤ m. Then for α ∈ Cm(X)H ,

one has

(αν)
B
m−p ∈ Cm−p(X)H .

We remark that αν need not be in Cm(X)H .

Proof. Write α =
∑
cσ σ, a sum over m-simplices σ that are H-transversal. Then

αν =
∑

cσ σ (the sum over σ, H-transversal, satisfying σF
p = ν) .

Thus

(αν)
B
m−p =

∑
s

(
∑
σ

cσ) s ,

where s varies over the (m − p)-simplices that are H-transversal, and σ varies over the m-

simplices, H-transversal, satisfying σF
p = ν, σB

m−p = s. To show this is H-admissible, we verify

condition (ii) of (4.4).

For an (m−p−1)-simplex t that is not H-transversal, the number coeff(t; ∂((αν)
B
m−p)) equals∑

s

(
∑
σ

cσ) [s : t] (4.14.1)

where s varies over the (m − p)-simplices that are H-transversal and s � t, and σ varies over

the m-simplices, H-transversal, satisfying σF
p = ν, σB

m−p = s. Also [s : t] means the coefficient

of t in ∂s.

For each such σ, there is an (m− 1)-face τ of σ such that τFp = ν, τBm−p−1 = t; note τ is not

H-transversal by (4.5). Thus the above can be written∑
τ

∑
s

(
∑
σ

cσ) [s : t] (4.14.2)

where

τ varies over the (m− 1)-simplices, not H-transversal, τFp = ν, τBm−p−1 = t;

s varies over the (m− p)-simplices, H-transversal, s � t;
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σ varies over the m-simplices, H-transversal, σF
p = ν, σB

m−p = s.

Now let v = νB0 be the last vertex of ν.

(i) If the first vertex of t is not equal to v, then there exists no σ as above, since if one existed,

then t is the back (m− p− 1)-face of σ; but σ is H-transversal, a contradiction to (4.5). Thus

the sum (4.14.2) equals zero in this case.

(ii) Suppose the first vertex of t is v. Then for each σ we have σF
p = ν. Indeed assume

τ = ∂iσ where 0 ≤ i ≤ m. If i ≤ p, then t is the back (m− p− 1)-face of σ, which contradicts

the H-transversality of σ. Hence i ≥ p+ 1, and it follows σF
p = τFp = ν.

For each τ in the sum, since α is H-admissible we have

0 = coeff(τ ; ∂α) =
∑

cσ[σ : τ ]

in which σ varies over the m-simplices, H-transversal, and σ � τ . By what we just noted one

may also assume σF
p = ν. If t is the back (m − p − 1)-face of τ , then s � t and one has the

equality [ν ◦ s : ν ◦ t] = (−1)p[s : t], thus

0 =
∑
s

∑
σ

cσ [s : t]

the sum over the (m − p)-simplices s, H-transversal, s � t, and the sum over σ with σ � τ ,

σF
p = ν, σF

m−p = s. Taking the sum of these over τ to obtain that (4.14.2) equals zero.

As a consequence of (4.14) the decatenation map restricts to a map of complexes

d : Cm(X)h →
⊕
p

Cp(X)⊗ Cm−p(X)h .

(4.15) Proposition. Let ν be a p-simplex contained in h, with p ≤ m− 2r. For α an element

of Cm(X)h one has

αν .h = (α.h)ν .

Proof. One has

(α.h)ν =
∑

µ(s;α(s)) s ,

the sum over the (m − 2r)-simplices s contained in h satisfying the condition: sFp = ν, and

there exists an m-simplex σ, h-transversal, such that σ ∩ h = σF
m−2r = ν. Also we have

(αν).h =
∑

µ(s;αν(s)) s ;

the sum is over the (m−2r)-simplices s in h satisfying the condition: there exists an m-simplex

σ which is h-transversal, such that σF
p = ν, and σ ∩ h = σF

m−2r = ν.

One sees that the two set of s are identical; in addition one verifies that when sFp = ν we

have

α(s) = α(s)ν .

29



(4.16) Proposition.Let ν be a p-simplex with p ≤ m− 2r. For α an element of Cm(X)h one

has

((α.h)ν)
B
m−p−2r = (αν)

B
m−p.h in Cm−p−2r(h) .

Proof. We may assume α = αν . The identity follows from

µ(s;α) = µ(sBm−p−2r;α
B
m−p) .

To show this note

µ(s;α) = µ(s;α(s)) ,

µ(sBm−p−2r;α
B
m−p) = µ(sBm−p−2r;α

B
m−p(s

B
m−p−2r)) = µ(sBm−p−2r; (α(s))

B
m−p) .

Both are equal to µ(vm−2r;α(s)) by (4.13).

Consider the diagram of complexes

Cm(X)h
d //

i∗

��

Cp(X)⊗ Cm−p(X)h

1⊗i∗

��
Cm−2(h) d

// Cp(h)⊗ Cm−p(h) i∗⊗1
// Cp(X)⊗ Cm−p−2(h)

where the lower horizontal arrow is the composition of the decatenation map with i∗⊗ 1. This

diagram commutes. Indeed for α ∈ Cm(X)h, look at the terms in the expression

d(α) =
∑

ν ⊗ (αν)
B
m−p .

If ν is not contained in h, then (αν)
B
m−p has support disjoint from h, hence i∗((αν)

B
m−p) = 0.

Now Proposition (4.16) implies the assertion.

(4.17) Definition. The cup product

m : Cp(X)⊗ Cq(X)h → Cp+q(X)h

is defined by dualizing the map Cp+q(X)h → Cp(X)⊗Cq(X)h. Thus for u ∈ Cp(X), v ∈ Cq(X)h
and α ∈ Cp+q(X)h, we have

(u ∪ v)(α) =
∑
ν

u(ν)v((αν)
B
m−p) .

Dualizing the map of restriction i∗ : C•(X)h → C•−2r(h) gives a map of complexes

i∗ : C
•(h)[−2r]→ C•(X)h .

We have a commutative diagram

C•(X)⊗ C•(X)h
m // C•(X)h

C•(X)⊗ C•(h)[−2r]
i∗⊗1

//

1⊗i∗

OO

C•(X)⊗ C•(h)[−2r] m
// C•(h)[−2r] .

i∗

OO
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(4.18) Let h = HI be of codimension r in X. For a semi-analytic map f : ∆m → X, we say f

is transversal to h if f−1(h) = ∆ℓ, where ` ≤ m− 2r and ∆ℓ is the front `-face of ∆m.

If γf ⊂ ∆m×X is the graph of f , and f ′ : ∆ℓ → h is the restriction of f to ∆ℓ, γf ′ ⊂ ∆ell×h
its graph, then γf ∩∆m × h = γf ′ .

If ω is a local section of A(X)〈H〉 then the integral
∫
γf
p∗Xω locally converges.

(4.19) Definition. Let α =
∑
cff be an element of San

m (X). It is said to be H-transversal if

each f with cf 6= 0 is H-transversal. It is H-admissible if α and ∂α are H-transversal.

Let Sm(X)H be the subgroup of Sm(X) consisting of H-admissible elements. Note S•(X)H
is a subcomplex of S•(X).

The inclusion S•(X)H → S•(X) is a quasi-isomorphism.

(4.20) Let N be large enough (N > 2 dimX). For f ∈ Sm(X) with m ≤ N , its graph γf
may be viewed as a semi-analytic m-simplex of ∆N ×X. The map γ gives an injective map of

complexes

γ : S•(X)→ C•(∆
N ×X) .

(one considers both complexes in degrees ≤ N). We denote the image of γ by Cgraph
• (∆N ×X),

consisting of the graphic elements of C•(∆
N ×X).

There is a map of complexes

i∗ : C•(∆
N ×X)∆N×H → C•−2(∆

N ×H) ,

and it takes the graphic elements of the former to graphic elements of the latter. Therefore it

induces a map of complexes

i∗ : S•(X)→ S•−2(H) .

(4.21) The facts from (4.4) through (4.17) we have shown for C∗(X) carry over to S∗(X).

The proofs are mostly easy modifications. In particular we have the map of complexes i∗ :

S•(X)H → S•−2(H), the product S•(X) ⊗ S•(X)H → S•(X)H . They are subject to the same

compatibilities as for C•(X).
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Refinement of the moving lemma.

1. Let M be a smooth projective complex variety of dimension d, and H a smooth divisor.

Given a semi-algebraic triangulation K of M , one has the complex of K-chains CK
∗ (M), and

the subcomplex

CK
∗ (M)H := {α ∈ CK

∗ (M) | α and ∂α meets H properly}.

Passing to the limit over K, we obtain complexes,

C∗(M)H ⊂ C∗(M) .

Proposition 1. The inclusion C∗(M)H ⊂ C∗(M) is a homology isomorphism.

[Proof is omitted here. In the proof, the following fact is used: For each α ∈ Cp(M), there

exists H(α) ∈ Cp+1(M) and h(α) ∈ Cp(M)H such that

∂H(α) +H(∂α) = α− h(α) .

Further, if α ∈ Cp(M)H , then H(α) ∈ Cp+1(M)H as well. ]

If K ′ is a refinement of K, then one has the subdivision map λ : CK
∗ (M) → CK′

∗ (M) as in

[Mu, §17]. Since this map preserves support, it restricts to a map λ : CK
∗ (M)H → CK′

∗ (M)H .

Proposition 2. For any triangulation K, the map λ : CK
∗ (M)H → CK′

∗ (M)H is injective on

homology.

Proof. It is shown in [Mu, p.97] that if g : K ′ → K is a simplicial approximation to the identity

of M , then λ and

g♯ : C
K′

∗ (M)→ CK
∗ (M)

are homotopy inverse to each other, and also that g♯ ◦ λ = id (see [Mu, p. 100]).

One can take g so that if v is a K ′-vertex not contained in H, then g(v) is not contained in H

either. Indeed, the K-simplex σ containing v in its interior is not contained in H, and one can

take as g(v) one of its vertices not in H. (See [Mu, Lemma 15.1]). If g is so made, intersection

property with H of K ′-chains, when g♯ is applied, gets no worse. In particular, g♯ restricts to

define

g♯ : C
K′

∗ (M)H → CK
∗ (M)H .

We also have g♯◦λ = id, so the assertion follows. (The homotopy between λ◦g♯ may not restrict

to homotopy between the complexes (−)H , since it is not carried by a chain in CK
∗ (M)H . Thus

we fall short of verifying homology isomorphism.
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Proposition 3. There is a triangulation K such that the inclusion CK
∗ (M)H → CK

∗ (M) is a

homology isomorphism.

Proof. We take a triangulation K. For each cycle α ∈ CK
p (M), by what we recalled above,

there exists a refinement K ′ of K, chains H(α) ∈ CK′
p+1(M) and h(α) ∈ CK′

p (M)H such that

∂H(α) = α − h(α). Thus the image of [α] ∈ HpC
K
∗ (M) in HpC

K′
∗ (M) comes from [h(α)]

HpC
K′
∗ (M)H .

Since M is compact, the group HpC
K
∗ (M) is finitely generated. The above being the case for

each of a finite set of generators of HpC
K
∗ (M), taking a refinement K ′ that works for them all,

it follows that the map CK′
∗ (M)H ⊂ CK′

∗ (M) is surjective on homology.

Next, in the commutative diagram

Hp(C
K′
∗ (M)H ) −−−→ Hp(C

K′
∗ (M) )y y∼=

Hp(C∗(M)H )
∼=−−−→ Hp(C∗(M) )

the lower horizontal arrow is an isomorphism by Proposition 1, the right vertical arrow is

obviously an isomorphism. Further the left vertical arrow is an injection by Proposition 2, and

the upper horizontal arrow is a surjection as we have just shown. It follows that all the maps

are isomorphisms.
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§5. The map c : A•(X)H → C•(X)H and its multiplicativity

One has the map c : A•(X)→ C•(X) and also the map c : A•(X)H → C•(X)H defined by

〈c(ϕX , ϕH), α〉 =
∫
α

ϕX +

∫
α.H

ϕH .

The latter is a map of complexes by the Cauchy-Stokes formula:

Theorem 1. Let α ∈ Cm(X)H . Then one has

−
∫
∂α

ϕ+

∫
α

dϕ+

∫
i∗α

RH(ϕ) = 0 .

Recall the wedge product A•(X) ⊗ A•(X)H → A•(X)H and and cup product ∪ : C•(X) ⊗
C•(X)H → C•(X)H defined before.

Let A(2),•(X)H = A•(X)⊗A•(X)H and C(2),•(X)H = C•(X)⊗C•(X)H . There are products

m : A(2),•(X)H → A•(X)H and m : C(2),•(X)H → C•(X)H .

For a vertex v in H. let Mv = D̄(v) be the corresponding dual cell. The collection of these

dual cells together with the simplices s = ∆p disjoint from H will play the role of “models”.

We will write M for one of these Mv or s. Write i : M → X for the inclusion in either case.

There are restriction maps i∗ : A•(X)H → A•(M)H and i∗ : C•(X)H → C•(M)H , as well as

i∗ : A(2),•(X)H → A(2),•(M)H and i∗ : C(2),•(X)H → C(2),•(M)H .

Proposition 2. There exist a map of degree -1

ρX : A•(X)⊗ A•(X)H → C•
C(X)H

and a map of degree -1

ρM : A•(M)⊗ A•(M)H → C•
C(M)H

for each model M , which satisfy the identities dρ+ ρd = −m(c⊗ c) + cm and i∗ρX = ρM i
∗ for

i :M → X.

Proof. If ρm is the restriction of ρ to A(2),m(X)H (or A(2),m(M)H), we need the condition

dρm−1 + ρmd = −m(c⊗ c) + cm . (∗)m−1

on X or M . If ρm = 0 for m ≤ 0, then (∗)m−1 holds for m ≤ 0. Assuming ρj for j < m have

been found, let

θm−1 = −dρm−1 −m(c⊗ c) + cm : A(2),m−1(X)→ Cm−1
C (X)

and similarly on M . Note that i∗θm−1 = θm−1i∗ holds.

If we choose a base point b ∈ M −H, there is a map S : A•(M)H → A•(M)H of degree −1
such that dS+Sd = 1−r∗b . There is a similar homotopy for the complex A•(M), hence there is
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an induced map S : A(2),•(M)H → A(2),•(M)H of degree −1 satisfying dS + Sd = 1− r∗b . Since
r∗b is zero in degrees 6= 0, and since θ0 = −m(c⊗ c) + cm = 0, one has θm−1r∗b = 0 for all m.

We now produce a map ρm : A(2),m(X)H → Cm−1
C (X)H . Let a ∈ A(2),m(X)H . If v is a vertex

in H, i :M =Mv → X the inclusion, one has i∗a ∈ A(2),m(M)H . For α ∈ Cm−1(X)H,v, recalling

that α ∈ Cm−1(Mv)H we let

〈ρm(a), α〉 = 〈θm−1Si∗a, α〉 ∈ C .

For a simplex v : s = ∆m−1 → X disjoint from H, let 〈ρm(a), v〉 = 〈θm−1Sv∗a, 1s〉. Since

Cm−1(X)H =
⊕

Cm−1(X)H,v ⊕ Cm−1(X)0

this defines an element ρm(a) ∈ Cm−1
C (X)H .

If in this argument X is replaced with a “model” M , one obtains a map ρm : A(2),m(M)H →
Cm−1

C (M)H .

(i) i∗ρm = ρmi∗ for a map i :M → X.

If v′ > v is another vertex in H, and α ∈ Cm−1(X)H,v′ , then for the inclusion i :Mv → X we

have

〈i∗ρm(a), α〉 = 〈ρm(a), α〉
= 〈θm−1Si′∗a, α〉

where i′ :Mv′ → X. The map i′ factors as Mv′
k−−−→Mv

i′−−−→X, and one has

〈ρm(i∗a), α〉 = 〈θm−1S(k∗i∗a), α〉 .

The two thus coincide. The verification for i : s→ X is obvious.

(ii) θm−1d = 0. (Follows from (∗)m−2.)

(iii) θm−1Sd = θm−1 on M . (Follows from (ii) and the fact θm−1r∗b = 0.)

(iv) One has ρmd = θm−1 on X and M .

For α ∈ Cm−1(X)H,v, we have

〈ρmd(a), α〉 = 〈θm−1Si∗(da), α〉
= 〈θm−1i∗(a), α〉 [by (iii) ]

= 〈i∗θm−1(a), α〉 [by i∗θm−1 = θm−1i∗]

= 〈θm−1(a), α〉 .

For s ∈ Cm−1(X), the same reasoning holds. If X is replaced with M , the same argument

holds.
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Proposition 3. Assume that ρ′ is another functorial map satisfying the same property as for

ρ. Then there exists a map π : A(2),•(X) → C•
C(X) of degree −2, and a similar map on M ,

satisfying

dπ + πd = ρ− ρ′

on X (and on M), and the identity i∗π = πi∗.
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We need a variant of Proposition 2. Consider now the failure of commutativitiy of the

diagram

A•(X)⊗ A•(H)[−2] m(i∗⊗1) //

c⊗c i∗
��

A•(H)[−2]

c i∗
��

C•(X)⊗ C•(X)H m
// C•(X)H .

(∗∗)

in which the top horizontal map is the composition A•(X)⊗A•(H)[−2] i∗⊗1−−−→A•(H)⊗A•(H)[−2]
m−−−→A•(H)[−2], and the c i∗ is the composition A•(H)[−2] i∗−−−→A•(X)H

c−−−→C•(X)H .

As in Proposition 2 also consider the diagram accompanying it, obtained by replacing X with

a “model” M , and H with M ∩H:

A•(M)⊗ A•(M ∩H)[−2] m(i∗⊗1) //

c⊗c i∗
��

A•(M ∩H)[−2]

c i∗
��

C•(M)⊗ C•(M)H m
// C•(M)H .

Note that if M = s is a simplex disjoint from H, then M ∩H is empty and A•(M ∩H) = 0.

Proposition 4. There exist a map of degree -1

ρX : A•(X)⊗ A•(H)[−2]→ C•
C(X)H

and a map of degree -1

ρM : A•(M)⊗ A•(M ∩H)[−2]→ C•
C(M)H

for each model M , which satisfy the identities dρ + ρd = −m(c ⊗ c) + cm on X and M , and

i∗ρX = ρM i
∗ for i :M → X.

Further, if (ρ′X , ρ
′
M) is another collection of maps satisfying the same property, there exists

a map of degree −2,
νX : A•(X)⊗ A•(H)[−2]→ C•(X)H

and a map of degree −2

νM : A•(M)⊗ A•(M ∩H)[−2]→ C•(M)H

for each M , satisfying

dν + νd = ρ− ρ′ ,

and i∗ν = νi∗ for i :M → X.

The proof of this is parallel to that for Proposition 2, with some differences as we point out.

The identity m(c⊗ c) = cm in degree 0 for the previous proposition must be replaced with:
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Lemma 5. The following diagram commutes:

A0(X)⊗ (A•(H)[−2])2 m //

c⊗c

��

(A•(H)[−2])2

c

��
C0(X)⊗ C2(X)H m

// C2(X)H .

Proof. For f ⊗ g ∈ A0(X)⊗ A0(H), one must show c(i∗(f |H · g)) = c(f) ∪ c(i∗g).
For an element α ∈ C2(X)H,v, with v a vertex in H, we have

〈c(i∗(f |H · g)), α〉 =
∫
α.H

f |H · g ;

if α.H = mv, then the right hand side equals m(f · g)(v). On the other hand,

〈c(f) ∪ c(i∗g), α〉 = f(v)

∫
α.H

g = f(v) ·mg(v) ,

so the two coincide.

As for a simplex s ∈ C2(X) disjoint from H, both cocycles obviously take the value zero.

Proof of Proposition 4. We take the proof of Proposition 2 and repeat it with changes as

follows.

• Let ρm be the restriction of ρ to the degree m part of the complex A•(X) ⊗ A•(H)[−2].
We set ρm = 0 for m ≤ 2.

Let m > 2 and proceed to find ρm. Defining θm−1 as before. We have θ2 = 0 by the above

lemma, and r∗b = 0 in degree 6= 2, thus θm−1r∗b = 0 in all degrees.

• If M = Mv = D(v), then M ∩ H = DH(v), the dual cell of v in the simplicial complex

H. Since DH(v) is contractible, there exists a map S from A•(M ∩ H) to itself satisfying

dS + Sd = 1 − r∗b , with b ∈ M ∩ H. It follows that there is a map S of degree -1 from

A•(M)⊗ A•(M ∩H) to itself with the property dS + Sd = 1− r∗b .
• In defining ρm(a) for an element a of degreem in A•(X)⊗A•(H)[−2], one has 〈ρm(a), s〉 = 0

for simplices s disjoint from H.

Our goal is Theorem 9. We first note the facts (projection formulas):

Lemma 6. The following digram commutes.

A(X)⊗ A(H)[−2] i∗⊗1 //

1⊗i∗
��

A(H)⊗ A(H)[−2] m // A(H)[−2]

i∗
��

A(X)⊗ A(X)H
m // A(X)H
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Lemma 7. The following digram commutes.

C(X)⊗ C(H)[−2] i∗⊗1 //

1⊗i∗
��

C(H)⊗ C(H)[−2] m // C(H)[−2]

i∗
��

C(X)⊗ C(X)H
m // C(X)H

The map c i∗m(i∗⊗1) : A•(X)⊗A•(H)[−2]→ C•(X)H appearing in the square (∗∗) is equal
to cm(1⊗ i∗) by the projection formula for A•(X), and also to i∗cm(i∗ ⊗ 1) by ci∗ = i∗c. The

other map in the same diagram m(c⊗ c i∗) is equal to m(c⊗ c)(1⊗ i∗) clearly, and also

m(c⊗ c i∗) = m(1⊗ i∗)(c⊗ c) = i∗m(i∗ ⊗ 1)(c⊗ c) = i∗m(c⊗ c)(i∗ ⊗ 1)

using the projection formula for C•(X) and ci∗ = i∗c.

Let now ρX be a homotopy as in Proposition 2; similarly let ρH : A(H) ⊗ A(H)[−2] →
C(H)[−2] be a map such that

dρH + ρHd = −m(c⊗ c) + cm : A(H)⊗ A(H)[−2]→ C(H)[−2] .

The element ρX(1⊗ i∗) gives a homotopy between the maps

ρX(1⊗ i∗) : m(c⊗ c)(1⊗ i∗) ' cm(1⊗ i∗)

and i∗ρH(i
∗ ⊗ 1) gives a homotopy

i∗ρH(i
∗ ⊗ 1) : i∗m(c⊗ c)(i∗ ⊗ 1) ' i∗cm(i∗ ⊗ 1) .

But we know that the source and the target for the maps are the same, thus by the latter half

of Proposition 4 there is a map ν of degree −2 giving homotopy

ν : ρX(1⊗ i∗) ' i∗ρH(i
∗ ⊗ 1) .

Proposition 8. Let

K u //

f
��

L

g

��
K ′

u′
// L′

be a commutative diagram of complexes. Assume there exists a map ξ : K → L (resp.

ξ′ : K ′ → L′) of degree −1 such that u = dξ + ξd (resp. u′ = dξ′ + ξ′d). Assume also there

exists a map ν : K → L′ of degree −2 such that

gξ − ξ′f = dν + νd .

Then the map

(u, u′) : Cf → Cg

is homotopic to zero.
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One has the map

P : A(X,H)→ D(A(X)〈〈H〉〉) .

Let QX : A(X,H)→ D(A(X)〈〈H〉〉) be the composition of the maps

A(X,H)
c−−−→C•(X,H)H

κ−−−→C2n−2−•(X | H)
Φ−−−→D(A(X)〈〈H〉〉) .

We apply the above to the diagram

A•(X)
PX−QX //

i∗

��

D(A•(X)H)

i∗

��
A•(H)

PH−QH

// D(A•(H)[−2])

and the maps ρX , ρH and ν. We obtain:

Theorem 9. There exists a map ξ : A(X)H → D(A(X)〈〈H〉〉) of degree -1 such that

dξ + ξd = P− Q .
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§6. The explicit complex E(X,H)

Let H be a smooth divisor on X. One has a map

Φ : C∗(X)→ D(A(X)H)

given by

〈Φ(α), (ϕX , ϕH)〉 =
∫
α

ϕX +

∫
α.H

ϕH .

Similarly one has Φ : C∗(H) → D(A(H)). The inclusion A(H)[−2] → A(X)H induces a

surjection i∗ : D(A(X)H)→ D(A(H)[−2]). The following square commutes:

C∗(X)H
Φ−−−→ D(A(X)H)yi∗ yi∗

C∗−2(H)
Φ−−−→ D(A(H)[−2])

There is the map P : A•(X)→ D(A(X)H) given by

〈P(ω), (ϕX , ϕH)〉 =
∫
X

ω ∧ ϕX +

∫
H

(ω|H) ∧ ϕH .

One also has a similar map P : A•(H)→ D(A(H)). The following square commutes:

A•(X)H
P−−−→ D(A(X)H)yi∗ yi∗

A•(H)
P−−−→ D(A(H)[−2])

The commutative diagram of complexes

C∗(X)H
Φ−−−→ D(A(X)H)

P←−−− A•(X)Hyi∗ yi∗ yi∗

C∗−2(H)
Φ−−−→ D(A(H)[−2]) P←−−− A•(H)

gives a Hodge complex; it may be abbreviated to

[C∗(X|H)
Φ−−−→D(A(X)〈〈H〉〉) P←−−−A•(X,H)] .

By means of the canonical map s∗ : D(A(X)〈〈H〉〉) → D(A(X)〈H〉) we obtain another Hodge

complex

[C∗(X|H)
Φ−−−→D(A(X)〈H〉) P←−−−A•(X,H)] .

This is the explicit Hodge complex E(X,H).

Definition 1. The complex[
Γ(X,C•Q)→ Γ(H,C•Q)

]
= Cone(i∗)[−1]

will be abbreviated to Γ(X,H;C•Q). Similarly one defines the complexes Γ(X,H;C•A•) and

Γ(X,H;A•). There are maps among these complexes[
Γ(X,H;C•Q)−−−→Γ(X,H;C•A•)←−−−Γ(X,H;A•)

]
.

This triple gives a Hodge complex, denoted K(X,H).
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Similarly we have a triple of complexes[
S•(X,H)

α−−−→(S• ⊗A•)(X,H)
β←−−−A•(X,H)

]
.

This gives a Hodge complex denoted K(X,H).

One shows that there is a quasi-isomorphism between the Hodge complexes K(X,H) and

K(X,H).

Proposition 2. There exists a quasi-isomorphism between the Hodge complexes K(X,H) and

E(X,H).

In the following diagram

S•(X,H) α //

κ

��

(S• ⊗A•)(X,H)

λ
��

A•(X,H)
βoo

id

��
C2n−•(X|H) Φ // D(A2n−•(X)〈〈H〉〉) A•(X,H)Poo

the left square commutes and the right square commutes up to homotopy.
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