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Abstract

We show that, for a simplicial complex, the supported cap product operation on the
Borel-Moore homology coincides with the supported cap product on simplicial homology.
For this we introduce the supported cap product for locally finite singular homology, and
compare the cap product on the three homology theories.

In this paper we shall compare the supported cap product operations on the Borel-Moore
homology, locally finite singular homology, and locally finite simplicial homology; we verify that
they agree via the canonical identifications of the three homology theories.

Let X be a locally compact Hausdorff space, and denote by H˚pXq “ H˚pX;Zq its Borel-
Moore homology with Z-coefficients. The definition (see [BM] and [Br]) is by means of sheaf
theory: take an injective resolution I˚ of the sheaf Z on X, take its “dual” DpI˚q, and then
apply the global section functor to get a complex ΓpX,DpI˚qq; its cohomology is the Borel-
Moore homology. For Z Ă X closed, the supported cap product for the Borel-Moore homology
is a map

HmpXq b Hp
ZpXq Ñ Hm´ppZq p1q

defined via sheaf theory. The importance of this operation in algebraic geometry is known by
its use in the theory of intersections on singular varieties over C (see [Fu], Chap. 19 and also
[FM]).

In this paper we address the following problems:

(I) Suppose X is equipped with a (sufficiently fine) triangulation such that Z is a sub-
complex. Let Hsimp

˚ pXq denote the locally finite simplicial homology of X, defined to be the
homology of the complex C̃˚pXq of infinite simplicial chains on X. We have the cap product
for locally finite simplicial homology,

Hsimp
m pXq b Hp

ZpXq Ñ Hsimp
m´ppZq . p2q

It is induced from the chain level map, given by the cap product formula of “Alexander-
Whitney” type. (More precisely, for the chain level map, one needs to replace Z with its closed
star – see §6 for details.) It is well-known that the group Hsimp

˚ pXq is independent of the choice
of a triangulation. (See [Mu], §18 or §34 for the homology of finite chains; the same holds for
locally finite homology.) Therefore one may ask if this map is independent of the triangulation
of X such that Z is a subcomplex.
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(II) For a reasonable locally compact Hausdorff space X, let H lf
˚ pXq denote the homology of

locally finite singular chains of X. It is known that there is an isomorphism H˚pXq – H lf
˚ pXq

(e.g. [Br], Theorem (12.20).) If X is triangulated, it is well-known that there is a natural
isomorphism H lf

˚ pXq – Hsimp
˚ pXq. It is thus natural to ask if one can construct a cap product

map
H lf

m pXq b Hp
ZpXq Ñ H lf

m´ppZq , p3q

using only singular chain methods; further one should have:

(i) it is is compatible with (1) via H˚pXq – H lf
˚ pXq, and

(ii) it is compatible with (2) when X is triangulated.

Notice that the construction of cap product (3) together with property (ii) solves the question
(I), since cap product (3) is a topological invariant.

We shall answer these questions; it will turn out that the essential problem is the case
Z ‰ X. As a consequence of the solution, we conclude that the cap product (1) can be
computed through the simplicial cap product (2). Also, we have that (2) is a topological
invariant, see Corollary to Theorem (6.6). (The latter statement itself can also be verified by
the method of acyclic models.) These statements – or, at least the latter statement – apparently
have been tacitly assumed, but a proof cannot be found in the literature.

This paper is organized as follows. In §§1 and 2, we review the definitions of singular
homology, cohomology, Borel-Moore homology, and the sheaf theoretic supported cap product
on Borel-Moore homology.

In §3, for a topological space X we produce a quasi-isomorphism from the complex of
locally finite singular chains S̃˚pXq to the complex DpŠ˚pXqq, the “dual” of the compactly
supported cochain complex Š˚pXq. If S˚ is the sheaf of singular cochains, one can take its
“dual” complex DpS˚q, and the complex ΓpX,DpS˚qq computes the Borel-Moore homology. It
is shown in §4 that there is a quasi-isomorphism from ΓpX,DpS˚qq to DpŠ˚pXqq. Therefore we
have quasi-isomorphisms

S̃˚pXq Ñ DpŠ˚pXqq Ð ΓpX,DpS˚qq , p˚q

and on homology an induced isomorphism H lf
m pXq Ñ HmpXq. This gives an explicit, chain-

level isomorphism between the Borel-Moore homology and the locally finite singular homology.
The presentation p˚q itself may not be found in the literature, but one can show that it induces
the same isomorphism as in [Br], Chap 5, (12.20).

In §4, we introduce the singular cap product (3) when Z “ X; indeed we have no difficulty
there, since the Alexander-Whitney formula provides the correct definition. The comparison
with the sheaf theoretic cap product can be made, in a natural manner, based on the presen-
tation p˚q. This section should be contrasted with the next section, which is central to this
paper.

In §5, we take a closed set Z in general and introduce the cap product (3). Given u P

SppX,X ´ Zq a cocycle, the Alexander-Whitney formula does not give a map a chain map
Xu : S̃˚pXq Ñ S̃˚´ppZq. This we overcome by resorting to the quasi-isomorphism S̃˚pXq Ñ

DpŠ˚pXqq; we attempt to create a chain map uY : Š˚´ppZq Ñ Š˚pXq, which we will indeed
do in the derived category. After the singular cap product is thus introduced, the comparison
with the sheaf theoretic cap product again exploits the presentation p˚q.
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In §6, the space is assumed to be triangulated. We first explain the definition of supported
cap product in the simplicial homology, essentially given on chain level by the Alexander-
Whitney formula. We show that it is compatible with the singular cap product; the quasi-
isomorphism S̃˚pXq Ñ DpŠ˚pXqq and its simplicial analogue are a necessary component in the
proof.

In §7, we generalize the results to pairs of spaces. If Y is a closed set of the space X,
then one has the relative Borel-Moore homology H˚pX,Y q “ H˚pX,Y ;Zq defined via sheaf
theory. Also one has the cap product operation HmpX,Y q b Hp

ZpXq Ñ Hm´ppZ,Z X Y q. All
of the results of §§4-6 are generalized to this setting, the proofs following the same pattern. In
addition, we discuss the localization isomorphism H˚pX,Y q – H˚pX ´Y q and its compatibility
with cap products.

Throughout the paper, the use of sheaf theory is prevalent. Some statements involve no
sheaves, but the proofs effectively use them, for example in (3.9) and (5.1).

The assumption on the space are precisely made as follows: In §1, X is a locally compact
Hausdorff space; in §2, we assume also that X is locally contractible and satisfies the second
axiom of countability. In §3- §5, we further add the assumption that X is of finite cohomological
dimension. In §6, X is a locally finite, countable simplicial complex of finite dimension.

We would like to warmly thank Professor T. Suwa for helpful discussions.
After this paper was completed, we learned that E. G. Sklyarenko [Sk] also studied various

cap product operations on homology theory. Among his results, Theorem 10.2 is most relevant
to our work; however his methods of proof involving Massey homology are quite different from
ours, and more importantly, they do not apply to our main problem – the cap product supported
on a proper closed set (see the remark after Theorem 10.11 of [Sk]). Our paper is thus in its
content essentially disjoint from [Sk].

§1. Singular homology and cohomology

For this section we refer the reader to [Ha], [Mu], and [Sp]. Let X be a locally compact
Hausdorff space. We denote by S˚pXq (resp. S˚pXq) the chain complex (resp. cochain complex)
of singular chains (resp. singular cochains) on X. Recall that SppXq is the free abelian group
on singular p-simplices on X, namely continuous maps from the topological p-simplex ∆p to
X, thus an element of SppXq is a finite Z-linear combination of p-simplices,

ÿ

aσσ ,

where σ is a singular p-simplex and aσ P Z; the boundary map B : SppXq Ñ Sp´1pXq is defined
in the usual manner. One has S˚pXq :“ HompS˚pXq,Zq, and for u P SppXq and x P Sp`1pXq,
pduqpxq “ p´1qp`1upBxq. This sign convention differs from the usual one. The homology of
S˚pXq is denoted Hc

˚pXq, and the cohomology of S˚pXq is denoted H˚pXq.
We also recall that, for a subset A Ă X, there correspond the relative singular chain complex

S˚pX,Aq and the relative singular cochain complex S˚pX,Aq.
Let S̃˚pXq be the chain complex of locally finite chains on X; an element of S̃ppXq is a

possibly infinite sum
ř

aσσ with p-simplices σ, which is locally finite. One defines H lf
˚ pXq to

be the homology of S̃˚pXq. The functor X ÞÑ S̃˚pXq, thus also H lf
˚ pXq, is covariantly functorial

for proper maps. (Locally finite homology appears as homology of the second kind in Cartan
Seminar, 1948-49.)
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We define a subcomplex Š˚pXq of S˚pXq by

ŠppXq “ lim
ÝÑ

SppX,X ´ Kq .

where K varies over the compact subsets of X. We denote the cohomology of Š˚pXq by H˚
c pXq.

The functors X ÞÑ Š˚pXq and H˚
c pXq are cotravariantly functorial for proper maps.

There is the cup product map Y : S˚pXq bS˚pXq Ñ S˚pXq given for u P SppXq, v P SqpXq

by
pu Y vqpσq “ p´1qpqupσ1qvpσ2q

where σ is a pp` qq-simplex, σ1 is its “front” p-face, and σ2 its “back” q-face. Notice again the
difference from the usual convention. One has dpu Y vq “ pduq Y v ` p´1qpu Y dv.

The cap product map X : S˚pXq b S˚pXq Ñ S˚pXq is given as follows. For u P SppXq and
σ a singular m-simplex, let

σ X u “ upσ1qσ2

where σ1 and σ2 are as above. We have the identity

Bpα X uq “ p´1qppBαq X u ` α X pduq .

For α P SmpXq and u P SppXq, v P Sm´ppXq, one verifies

vpα X uq “ p´1qppm´pqpu Y vqpαq .

§2. Borel-Moore homology and sheaf theoretic cap product

The references for the Borel-Moore homology include [BM], [Br] and [I]; we will use [Br] as
our main reference. We take Z as the ring of coefficients for simplicity, but one may take any
principal ideal domain (see [Br-Chap. V]). In this section, we assume:

(*) X is a locally compact Hausdorff topological space, which satisfies the second
axiom of countability, and which is locally contractible.

For example a locally finite, countable CW complex satisfies this condition. We note and use
the following facts (cf. [Br 2]):

‚ A space X satisfying (*) is paracompact.
‚ An open set of X also satisfies (*). A closed subset of X satisfies all the conditions of

(*) except the local contractibility.

The assignment U ÞÑ SppUq, where SppUq is the group of singular p-cochains on U , gives
a presheaf on X, and let Sp be the associated sheaf. Thus we have the differential sheaf S˚,
called the singular cochain sheaf on X ([Br- Chap. I, §7]).

The space U is paracompact, so the family of supports of U consisting of all closed sets is
paracompactifying. Since SppUq is conjunctive ([Br-I, p. 26]), applying [Br-I, (6.2)], one has
an exact sequence

0 Ñ Sp
0pUq Ñ SppUq

θ
´́ Ñ́ΓpU, Spq Ñ 0
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where θ is the canonical map, and Sp
0pUq is the kernel of θ; Sp

0pUq is the complex of singu-
lar cochains on U that are locally zero. The subcomplex S˚

0 pUq is acyclic, so θ is a quasi-
isomorphism.

(2.1) Proposition. S˚ is a resolution of Z on X by flabby sheaves.

Proof. The flabbiness follows from the surjectivity of θ and the surjectivity of the restriction
maps SppXq Ñ SppUq. The exactness of 0 Ñ Z Ñ S˚ follows from [Br-II-(1.2)], since X is
assumed locally contractible (indeed the weaker condition HLC8

Z will suffice.)

By this fact, the sheaf cohomology of Z, HppX;Zq, is identified with HpΓpX, S˚q. Since
θ : S˚pXq Ñ ΓpX, S˚q is a quasi-isomorphism, we also have HppS˚pXqq – HpΓpX, S˚q. We will
write HppXq for HppX;Zq.

We also note that for Z a closed subset of X, we have HppS˚pX,X ´ Zqq – Hp
ZpX;Zq.

Indeed, there are quasi-isomorphisms S˚pXq Ñ ΓpX, S˚q and S˚pX ´Zq Ñ ΓpX ´Z, S˚q which
make the right square in the following diagram commute

0 Ñ S˚pX,X ´ Zq ´́ Ñ́ S˚pXq ´́ Ñ́ S˚pX ´ Zq Ñ 0
§

§

đ
θ

§

§

đ

§

§

đ

0 Ñ ΓZpX, S˚q ´́ Ñ́ ΓpX, S˚q ´́ Ñ́ ΓpX ´ Z, S˚q Ñ 0 .

Since the rows of the diagram are exact, there is a unique map of complexes θ : S˚pX,X´Zq Ñ

ΓZpX, S˚q so that the left square commutes, and it is also a quasi-isomorphism.

For a complex K‚ of abelian groups, its dual DpK‚q is defined by

DpK‚q “ HompK‚, I‚q ,

where I‚ is the complex rQ Ñ Q{Zs concentrated in degrees 0 and 1. For f P HompK‚, I‚q and
x P K‚, df is defined by the formula

pdfqpxq “ p´1q|f |`1fpdxq ` dpfpxqq

(where |f | denotes the degree of f). Note that I‚ is an injective resolution of Z, and DpK‚q “

RHompK‚,Zq in the derived category of abelian groups. The functor D is exact, and takes
quasi-isomorphisms to quasi-isomorphisms. If K‚ is a complex of free Z-modules, then the
natural map HompK‚,Zq Ñ DpK‚q is a quasi-isomorphism.

If L˚ is a complex of c-soft sheaves on X, its dual DpL˚q is the complex of flabby sheaves
given by

U ÞÑ HompΓcpU,L
˚q, I‚q “ DΓcpU,L

˚q ,

see [Br-V, §2].
Recall from [Br-V, §3] that the Borel-Moore homology of X (assumed only locally compact

Hausdorff) is defined as

HppX;Zq “ HppXq “ HpΓpX,DpI˚qq ,

in which I˚ is the canonical injective resolution of Z, and DpI˚q is the dual of I˚. One should
distinguish it from homology with compact support Hc

ppX;Zq. We have (see [Br, 293, (10)]):
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(2.2)Proposition. If L˚ is a c-soft resolution of Z, then one has HppX;Zq “ HpΓpX,DpL˚qq.

Now for our X, since S˚ is a flabby resolution of Z (in particular a c-soft resolution of Z),
we have

HppX;Zq “ HpΓpX,DpS˚qq ,

namely the Borel-Moore homology can be calculated using S˚.
One has the product map S˚ b S˚ Ñ S˚, that is induced from the cup product of singular

cochains, and it is compatible with augmentations. Thus according to [Br-V-(10.3)]) one can
use it to produce a map of differential sheaves (cap product at the sheaf level)

X : DpS˚q b S˚ Ñ DpS˚q ,

where f X s for f of degree m and s of degree p is defined by

xf X s, ty “ p´1qmpxf, s Y ty .

(The value of a functional f at x will be written xf, xy. ) Then one has

dpf X sq “ p´1qpdf X s ` f X ds .

For Z a locally contractible closed subset of X, one has the induced map on sections

X : ΓpX,DpS˚qq b ΓZpX, S˚q Ñ ΓZpX,DpS˚qq “ ΓpZ,DpS˚|Zqq .

The last equality holds by the next proposition. Since S˚|Z is a c-soft resolution of Z on Z, the
homology of the complex ΓpZ,DpS˚|Zqq is identified with the Borel-Moore homology H˚pZq.
Therefore, passing to homology we obtain a map

X : HmpXq b Hp
ZpXq Ñ Hm´ppZq ;

this is the sheaf theoretic supported cap product.

(2.3) Proposition. If L a c-soft sheaf on X and Z a closed set, then

ΓZpX,DpLqq “ ΓpZ,DpL|Zqq

Proof. This is a special case of [Br-V-(5.5)], but we give a direct, simpler proof.
One has an exact sequence (with U “ X ´ Z)

0 Ñ ΓcpU,Lq Ñ ΓcpX,Lq Ñ ΓcpZ,L|Zq Ñ 0 ,

the last surjection being a consequence of c-softness. Taking dual, one has an exact sequence

0 Ñ ΓpZ,DpL|Zqq Ñ ΓpX,DpLqq Ñ ΓpU,DpLqq Ñ 0 .

The kernel of the second map equals ΓZpX,DpLqq.
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(2.4) Remark. In [Br-Chap. V], more general considerations are given:

(1) It defines the Borel-Moore homology with coefficients in a locally constant sheaf over a
principal ideal domain.

(2) It defines the cap product with families of support (see [Br-V], (10.3) ).

Extending the results of this paper in such set-ups may be done, under suitable hypotheses.

§3. The sheaf S˚ and the complex of locally finite singular chains.

For the rest of the paper (indeed starting with (3.9)), we add another condition to (*) and
assume that

(**) X is a locally compact Hausdorff topological space which satisfies the second
axiom of countability, which is locally contractible, and dimZX ă 8. (See [Br, II-
§16] for the notion of cohomological dimension.)

For example a locally finite countable CW complex of finite dimension satisfies these conditions.
If X satisfies (**), then an open set of X also satisfies (**), and a locally contractible closed
set of X also satisfies (**) (see [Br, II-(16.8)] for the notion of dimension of spaces).

We define a map of complexes ξ : S̃˚pXq Ñ HompŠ˚pXq,Zq Ă DŠ˚pXq as follows. Let
α P S̃mpXq. For u P ŠmpXq, let K P CptpXq such that u P SmpX,X ´ Kq, write α “ α1 ` α2

with α1 P SmpXq, α2 P S̃mpX ´ Kq, and define ξpαq P HompŠmpXq,Zq by

xξpαq, uy “ p´1qmxu, α1y .

This is well-defined independent of the choice of K and the decomposition of α; one also verifies
that it gives a map of complexes.

Toward the end of this section we will prove that the map ξ is a quasi-isomorphism; it is all
we need in later sections. The reader may opt to grant it and proceed to §4.

The complex SX,˚. We recall from [Br] the definition and properties of the complexes of
sheaves ∆X,˚ and SX,˚.

1. Consider the presheaf U ÞÑ SppX,X´Uq on X, and let ∆X,p be the associated sheaf. For
any paracompactifying family of supports Φ, ΓΦpX,∆X,pq coincides with the group of locally
finite singular chains with support in Φ; indeed by [Br, p.31, Exercise 12] ∆X,p is a monopresheaf
and conjunctive for coverings of X, so that [Br-I-(6.2)] applies. Since X is paracompact, we
may take Φ “ cld (the family of all closed sets of X) and since X is locally compact we may
take Φ “ c.

2. Let SppXq “ lim
ÝÑ

An, where An “ SppXq for each n ě 1, and the map An Ñ An`1 is the
subdivision map. There is a natural injection S˚pXq Ñ S˚pXq, which is a quasi-isomorphism.
For A Ă X, one defines S˚pX,Aq “ S˚pXq{S˚pAq. The assignment U ÞÑ SppUq, where U is
an open set of X, is a flabby cosheaf on X(see [Br-V, §1]).

In general, if L is a c-soft sheaf on X, then we denote by ΓctLu the flabby cosheaf U ÞÑ

ΓcpU,Lq (cf. [Br-V-(1.6)]). Conversely it is known that a flabby cosheaf L is of the form ΓctLu

for a unique c-soft sheaf L, [Br-V-(1.8)]
To the flabby cosheaf SppUq there corresponds a c-soft sheaf SX,p, thus we have SppUq “

ΓcpU, SX,pq. From the proof of this correspondence, SX,p is the sheaf associated with the presheaf
U ÞÑ SppX,X ´ Uq.
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3. One has a natural injection ∆X,p Ñ SX,p, induced from the injection SppX,X ´ Uq ãÑ

SppX,X ´ Uq. For any paracompactifying family of supports Φ, the induced map

ΓΦpX,∆X,˚q ãÑ ΓΦpX, SX,˚q

is a quasi-isomorphism (cf. [Br-V-(1.19)]). In particular, we have quasi-isomorphisms

S̃˚pXq “ ΓpX,∆X,˚q ãÑ ΓpX, SX,˚q

and
S˚pXq “ ΓcpX,∆X,˚q ãÑ ΓcpX, SX,˚q .

4. The formation of the sheaf SX,p is compatible with restriction to open sets, in the
following sense. Let SU,p be the sheaf on U associated with the presheaf V ÞÑ SppU,U ´ V q.
The natural injection SppU,U ´ V q ãÑ SppX,X ´ V q, for V Ă U open, induces a map of
sheaves SU,p Ñ SX,p|U . Since both sheaves are c-soft, and the induced map on each open set

ΓcpV, SU,pq Ñ ΓcpV, SX,p|Uq

can be identified with the identity map on SppV q, it follows that the map SU,p Ñ SX,p|U is
an isomorphism. Because of this fact, we will usually write Sp for SX,p or SU,p. Composing
the quasi-isomorphism S̃˚pUq ãÑ ΓpU, SU,˚q with the isomorphism ΓpU, SU,˚q – ΓpU, SX,˚q,
we obtain a quasi-isomorphism S̃˚pUq ãÑ ΓpU, SX,˚q. Similarly we have a quasi-isomorphism
S˚pUq ãÑ ΓcpU, SX,˚q.

Dual complexes of S̃˚pXq. We introduce duals and double duals of the complex S̃˚pXq;
instead of naive duals, we pass to a direct family of complexes, and then proceed to take duals.

For an open set U of X, and a compact K Ă U , one has a complex S˚pU,U ´ Kq. For
K Ă K 1, there is an induced surjective map S˚pU,U ´ K 1q Ñ S˚pU,U ´ Kq, so one has an
inverse system of complexes tS˚pU,U ´ Kqu, where K varies over CptpUq, the directed set of
compact subsets of U . One has S̃˚pUq “ lim

ÐÝKPCptpUq
S˚pU,U ´ Kq, as is easily verified. Taking

the dual, we have a direct system of complexes tDS˚pU,U ´ Kqu, and we let

}DS˚pUq :“ lim
ÝÑ

KPCptpUq

DS˚pU,U ´ Kq .

The natural inclusion S˚pU,U´Kq ãÑ DpS˚pU,U´Kqq induces an injection Š˚pUq ãÑ }DS˚pUq.
Taking another dual, one has an inverse system tDDS˚pU,U ´ Kqu, and

ČDDS˚pUq :“ lim
ÐÝ

KPCptpUq

DDS˚pU,U ´ Kq .

(3.1) Proposition. Let S˚ “ SX,˚ and let U be an open set of X. We have maps of complexes,
each of them being a quasi-isomorphism,

S̃˚pUq
Θ

ãÑ ΓpU, S˚q , p1q

S˚pUq
Θ

ãÑ ΓcpU, S˚q , p1qc

S˚pUq ãÑ DS˚pUq
Θ1

↞ ΓpU,DpS˚qq , p2q

Š˚pUq ãÑ }DS˚pUq
Θ1

↞ ΓcpU,DpS˚qq , p2qc

DpŠ˚pUqq ↞ ČDDS˚pUq
Θ2

ãÑ ΓpU,DDpS˚qq . p3q
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Remark. The statement is made for any open set U of X to clarify the relevance of sheaf
theory; one could have stated it only for U “ X without losing generality.

Proof. As already noted, we have a map

Θ : S̃˚pUq ãÑ ΓpU, SU,˚q “ ΓpU, SX,˚q

which is a quasi-isomorphism, verifying (1). We argue similarly for p1qc.
From p1qc, we have induced maps

S˚pUq ãÑ DS˚pUq
Θ1

↞ DΓcpU, S˚q “ ΓpU,DpS˚qq

with both arrows quasi-isomorphisms (note that S˚pUq is free, so the first map is a quasi-
isomorphism); this is (2).

For K P CptpUq, the quasi-isomorphism

Θ : S˚pU,U ´ Kq ãÑ ΓcpU, S˚q{ΓcpU ´ K, S˚q

induces quasi-isomorphisms

S˚pU,U ´ Kq ãÑ DS˚pU,U ´ Kq
Θ1

↞ DpΓcpU, S˚q{ΓcpU ´ K, S˚qq “ ΓKpU,DpS˚qq

and by taking direct limit, we obtain quasi-isomorphisms

Š˚pUq ãÑ }DS˚pUq
Θ1

↞ ΓcpU,DpS˚qq ,

giving p2qc.

(3) follows from p2qc by taking dual, since ΓpU,DDpS˚qq “ DΓcpU,DpS˚qq andDp}DS˚pUqq “
ČDDS˚pUq.

To relate the map (1) to the diagram (3) in Proposition (3.9), we introduce a few maps
related to duality.

1. For a complex of abelian groups K, let d : K Ñ DDpKq be the map of complexes which
sends x P K to the element x̂ P DDpKq given by

xx̂, fy “ p´1q|x|¨|f |xf, xy, f P DpKq .

Here |x|, for example, denotes the degree of x.
In particular, applying this to the complex S˚pU,U´Kq one has the map d : S˚pU,U´Kq Ñ

DDS˚pU,U ´ Kq. Passing to the inverse limit for K P CptpUq, we obtain a map

d : S̃˚pUq Ñ ČDDS˚pUq

which takes α “ pαKq to dpαq “ p xαKq.

2. For L˚ a bounded below complex of c-soft sheaves, one has a canonical map

d : L˚ Ñ DDpL˚q
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defined as follows. Let x P ΓpU,Lpq, and we shall define its image x̂ P ΓpU,DDpLpqq “

DΓcpU,DpLpqq. Take an element f P ΓcpU,DpLpqq, which may be viewed as an element of
a larger group ΓpU,DpLpqq “ DΓcpU,Lpq. Let |f | “ K, choose x1 P ΓcpU,Lpq such that
x|K “ x1|K P ΓpK,Lpq, and set

xx̂, fy “ p´1q|f |¨|x|xf, x1y P I‚ .

This is well-defined independent of the choice of x1.
Remark. The map d does not appear as such in [Br], but it induces the map in [Br, p.285,

(1.13)] upon taking Γct´u.

We leave it as an exercise to verify that the composition of the maps d : S̃˚pUq Ñ ČDDS˚pUq

and ČDDS˚pUq Ñ DpŠ˚pUqq coincides with ξ.
These give us a diagram

S̃˚pUq
Θ

´́ Ñ́ ΓpU, S˚q
ξÖ

§

§

đ

d

§

§

đ

d

DpŠ˚pUqq Ð́ ´́ ČDDS˚pUq
Θ2

´́ Ñ́ ΓpU,DDpS˚qq

and the square on the right commutes as we now show.

We need an alternative description of the map Θ : S̃˚pUq ãÑ ΓpU, SX,˚q. In general, for
a c-soft sheaf L on X, and an open set U , consider the inverse system of abelian groups
ΓcpU,Lq{ΓcpU ´ K,Lq indexed by K P CptpUq. We claim that there is a natural map to this
inverse system

ΓpU,Lq Ñ tΓcpU,Lq{ΓcpU ´ K,LquK .

Indeed, for each s P ΓpU,Lq, there is a decomposition s “ s1 ` s2 where s1 P ΓcpU,Lq and
s2 P ΓpU,Lq with |s2| Ă U ´ K. (The restriction map ΓcpU,Lq Ñ ΓpK,L|Kq is surjective
since L|U is c-soft, so one can take s1 P ΓcpU,Lq such that s1|K “ s|K .) The desired map
ΓpU,Lq Ñ ΓcpU,Lq{ΓcpU ´ K,Lq is given by s ÞÑ s̄1.

(3.2) Proposition. The above map induces an isomorphism to the inverse limit

ΓpU,Lq
„
Ñ lim

ÐÝ
pΓcpU,Lq{ΓcpU ´ K,Lqq .

Proof. The injectivity is obvious. For surjectivity, let sK P ΓcpU,Lq{ΓcpU ´ K,Lq be a family
of elements, indexed by K, which is coherent: K 1 Ą K implies sK1 ´ sK P ΓcpU ´ K,Lq. Then
the family of elements, indexed by K,

sK |K̊ P ΓpK̊,Lq ,

satisfies the patching condition, so it gives a global section restricting to each sK .

Going back to our situation, the map of complexes S˚pUq Ñ ΓcpU, SX,˚q induces a map of
inverse systems of complexes S˚pU,U ´ Kq Ñ ΓcpU, SX,˚q{ΓcpU ´ K, SX,˚q, and taking inverse
limit we obtain a map S̃˚pUq ãÑ ΓpU, SX,˚q. The reader may verify that this coincides with the
map Θ given before.
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For K P CptpUq we have a commutative diagram

S˚pU,U ´ Kq
Θ

´́ Ñ́ ΓcpU, S˚q{ΓcpU ´ K, S˚q
§

§

đ

d

§

§

đ

d

DDpS˚pU,U ´ Kq q
Θ2

´́ Ñ́ DDpΓcpU, S˚q{ΓcpU ´ K, S˚qq .

Passing to the inverse limit, and using the second description of Θ, we obtain the commutativity
of the right square in the diagram in question.

In (3.9), under a further assumption on cohomological finite dimensionality on X, it will
be proven that the map d on the right is a quasi-isomorphism, and hence all the maps in the
diagram are quasi-isomorphisms. The proof is based on [Br, Chap. V], which takes the rest of
the section. The reader may choose to skip it, granting (3.9) as a fact.

We need theorems (3.6)-(3.8), essentially from [Br]. The corresponding statements in [Br]
are somewhat different, due partly to the emphasis on cosheaves (rather than c-soft sheaves)
and to the generality on assumptions. We shall therefore recall some notions and results from
[Br] (in terms of c-soft sheaves, when possible), and give comments on the statement and the
proof of (3.6).

For the definitions of precosheaves, cosheaves, and local isomorphism of precosheaves, see
[Br-V, §1 and §12]. We begin here with the definition of resolutions and coresolutions of the
constant sheaf Z on X.

(3.3) Definition.([Br-V-(12.5)]) Let L˚ be a bounded below complex of sheaves on X and
ϵ : Z Ñ H0pL˚q be a homomorphism of presheaves, where H0pL˚q is the presheaf U ÞÑ

H0pL˚pUqq. We say that pL˚, ϵq is a quasi-resolution of Z if HppL˚q “ 0 for p ‰ 0 and ϵ
induces an isomorphism of sheaves ϵ : Z Ñ H0pL˚q. Here HppL˚q denotes the sheafication of
the presheaf HppL˚q.

Let L˚ be bounded below complex of cosheaves and η : H0pL˚q Ñ Z be a homomorphism
of precosheaves, where H0pL˚q is the precosheaf U ÞÑ H0pL˚pUqq. Then pL˚, ηq is said to be a
quasi-coresolution of Z if HppL˚q “ 0 for p ă 0, HppL˚q “ 0 is locally zero for p ą 0, and η is a
local isomorphism of precosheaves.

The main example of a quasi-coresolution arises from the complex S˚, see (3.8).
Indeed in [Br] more general notions of quasi-n-resolution of Z and quasi-n-coresolution of

Z are introduced; we have restricted ourselves to the case n “ 8. We cite below some results
from [Br-V]; these theorems are formulated for quasi-n-resolutions and quasi-n-coresolutions,
but we again take n “ 8.

Recall the notation ΓctLu for the cosheaf associated with a c-soft sheaf L. According to
the next two facts, the dual of a coresolution is a resolution, and the dual of a resolution is a
coresolution.

(3.4) Theorem.([Br-V-(12.7)]) Let L˚ be a bounded below complex of c-soft sheaves such that
ΓctL˚u is a quasi-coresolution of Z. Then X is clc8

Z and DpL˚q is a quasi-resolution of Z by
flabby sheaves.

(3.5) Theorem.([Br-V-(12.9)]) Suppose that X is clc8
Z . If L˚ is a c-soft quasi-resolution of

Z, then the complex of cosheaves ΓctDpL˚qu is a quasi-coresolution of Z.
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For the notion of cohomological local connectivity clc8
Z , see [Br-II, §17] (although its knowl-

edge is not needed for what follows). The proof of the following uses (3.4) and (3.5).

(3.6) Theorem. If L˚ is a bounded below complex of c-soft sheaves such that ΓctL˚u is a
quasi-coresolution of Z, then the canonical map

d : L˚ Ñ DDpL˚q

induces a quasi-isomorphism

ΓcpU,L˚q Ñ ΓcpU,DDpL˚qq

for each open set U of X.

Proof. This is essentially due to [Br-V-(12.11)] particularly its proof. By (3.4), X is clc8
Z and

DpL˚q is a quasi-resolution of Z by flabby sheaves. Then by (3.5), ΓctDDpL˚qu is a quasi-
coresolution of Z. The map d : L˚ Ñ DDpL˚q is compatible with the coaugmentation maps
η. Under these circumstances it is proven in [Br-V-(12.11)] that the induced map ΓcpU,L˚q Ñ

ΓcpU,DDpL˚qq is a quasi-isomorphism.

In the following theorem we use the notion of cohomological dimension dimZX as given in
[Br-II, §16].

(3.7) Theorem.([Br-V-(12.19)]) Let h : A˚ Ñ B˚ be a map of complexes of c-soft sheaves on
X, and assume it induces a quasi-isomorphism

h : ΓcpU,A˚q Ñ ΓcpU,B˚q

for each open U . If Φ paracompactifying and dimZX ă 8, then for each U the induced map

h : ΓΦpU,A˚q Ñ ΓΦpU,B˚q

is a quasi-isomorphism.

The next theorem tells us that a quasi-resolution arises from the complex S˚.

(3.8) Theorem.([Br-V-(12.14)]) If X is locally contractible, then S˚ “ ΓctS˚u is a quasi-
coresolution of Z.

The proof is straightforward from the definitions. Note that our space X is locally con-
tractible by assumption, therefore ΓctS˚u is a quasi-coresolution of Z by (3.8).

(3.9) Proposition. The following diagram commutes:

S̃˚pUq
Θ

´́ Ñ́ ΓpU, S˚q
ξÖ

§

§

đ

d

§

§

đ

d

DpŠ˚pUqq Ð́ ´́ ČDDS˚pUq
Θ2

´́ Ñ́ ΓpU,DDpS˚qq .

If we further assume dimZX ă 8, the maps in the above commutative diagram are all quasi-
isomorphisms.
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Proof. We already know the commutativity of the diagram. We also know from (3.1), that the

maps Θ, Θ2 and ČDDS˚ Ñ DpŠ˚q are are quasi-isomorphisms. By (3.6), the map S˚ Ñ DDpS˚q

induces a quasi-isomorphism on ΓcpU,´q for each open set U . Thus by (3.7), the map

d : ΓpU, S˚q Ñ ΓpU,DDpS˚qq

is a quasi-isomorphism for each U . Since the diagram commutes it follows that the d in the
middle, and consequently ξ also, are quasi-isomorphisms.

§4. Comparison of the cap product in sheaf and singular theories

We shall compare the sheaf theoretic cap product and the singular cap product (in case
Z “ X). The latter is defined as follows. Let

X : S̃˚pXq b S˚pXq Ñ S̃˚pXq

be the map which sends α b u P S̃mpXq b SppXq with α “
ř

aσσ P S̃mpXq, u P SppXq to

α X u “
ÿ

aσpσ X uq

(here σ X u is as defined in §1). For a closed element u P SppXq, we obtain a map of complexes

p´q X u : S̃˚pXq Ñ S̃˚´ppXq .

Here S̃˚´ppXq denotes the complex S̃˚pXqrps, obtained from S̃˚pXq by applying the shifting
operation rps. Recall that by convention the shift Kr1s of a complex has differential ´dK . Thus
the complex S̃˚´ppXq has the group S̃m´ppXq in homological degree m, and has differential
p´1qpB.

The induced map on homology

H lf
m pXq Ñ H lf

m´ppXq

depends only on the cohomology class rus P HppXq, and is denoted by p´q X rus.

Via the map θ in §2, we have an element θpuq P ΓpX, Spq, thus the cap product map
DpS˚q b S˚ Ñ DpS˚q induces a map of complexes Xθpuq : DpS˚q Ñ DpS˚´pq. Here DpS˚´pq :“
pDpS˚qq rps. Our problem is to compare the singular cap product Xu and the sheaf-theoretic
cap product Xθpuq.

Let Sp
cptpXq Ă SppXq be the subgroup of cochains u such that θpuq P ΓpX, Spq has compact

support (equivalently, such that there exists a compact set K of U and an open covering tUαu

of X ´ K such that u|Uα “ 0 for each α). By [Br-I-(6.2)], there exists an exact sequence

0 Ñ Sp
0pXq Ñ Sp

cptpXq
θ

´́ Ñ́ΓcpX, Spq Ñ 0 ,

with Sp
0pXq the group as in §2. Since S˚

0 pXq is acyclic, θ : S˚
cptpXq Ñ ΓcpX, S˚q is a quasi-

isomorphism. Obviously one has ŠppXq Ă Sp
cptpXq.

(4.1) Proposition. The inclusion Š˚pXq ãÑ S˚
cptpXq is a quasi-isomorphism.
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Proof. Letting Šp
0pXq “ Sp

0pXq X Sp
cptpXq, we have a commutative square of inclusions of

complexes
S˚
0 pXq ãÑ S˚

cptpXq
İ

§

§

İ

§

§

Š˚
0 pXq ãÑ Š˚pXq .

One has S˚
cptpXq “ S˚

0 pXq ` Š˚pXq. Indeed, for u P Sp
cptpXq, let K “ |θpuq|, and take

a compact neighborhood K 1 of K. Let u1 P ŠppXq be the element given by u1pσq “ upσq if

|σ| Ă
˝

K 1, and u1pσq “ 0 otherwise. Then u ´ u1 P Sp
0pXq, since pu ´ u1qpσq “ 0 if |σ| Ă

˝

K 1.
Consequently, S˚

0 pXq{Š˚
0 pXq – S˚

cptpXq{Š˚pXq. As we already know that S˚
0 pXq is acyclic,

it is enough to show that Š˚
0 pXq is also acyclic.

The proof of acyclicity of Š˚
0 pXq is similar to that for S˚

0 pXq. For any open covering U of X,
the inclusion of the U-based singular chains SU

˚ pXq in S˚pXq is a quasi-isomorphism (excision
theorem); thus its dual S˚pXq ↠ S˚

UpXq is also a quasi-isomorphism, so its kernel K˚
U is an

acyclic complex. It follows that S˚
0 pXq “ lim

ÝÑU
K˚

U is also acyclic.

To generalize this, for A a subset of X, let SU
˚ pX,Aq “ SU

˚ pXq{pSU
˚ pXq X S˚pAqq. Since

SU
˚ pXq X S˚pAq “ SAXU

˚ pAq is quasi-isomorphic to S˚pAq, the inclusion SU
˚ pX,Aq ãÑ S˚pX,Aq

is a quasi-isomorphism, so its dual S˚pX,Aq ↠ S˚
UpX,Aq is also a quasi-isomorphism. Thus its

kernel, which equals K˚
UpXq X S˚pX,Aq, is acyclic. Passing to the limit over U, it follows that

S˚
0 pXq X S˚pX,Aq is also acyclic.
Taking A “ X ´ K with K P CptpXq and then taking the limit over K, we conclude that

S˚
0 pXq X Š˚pXq is acyclic.

Writing θ for the composition of the maps Š˚pXq ãÑ S˚
cptpXq

θ
´́ Ñ́ΓcpX, S˚q, we have thus:

(4.2) Proposition. The map θ : Š˚pXq Ñ ΓcpX, S˚q is a quasi-isomorphism; it induces an
isomorphism HppŠ˚pXqq – HpΓcpX, S˚q, which is identified with the cohomology with compact
support Hp

c pX;Zq.
The dual of θ1,

θ1 : ΓpX,DpS˚qq “ DΓcpX, S˚q Ñ DpŠ˚pXqq

is also a quasi-isomorphism.

With (3.9), we have:

(4.3) Theorem. One has quasi-isomorphisms

ΓpX,DpS˚qq
θ1

´́ Ñ́DŠ˚pXq
ξ

Ð́ ´́ S̃˚pXq .

They give an isomorphism in the derived category ΓpX,DpS˚qq
„
Ñ S̃˚pXq; they induce isomor-

phisms on homology,
HmpXq

θ1

´́ Ñ́HmpDŠ˚pXqq
ξ

Ð́ ´́ H lf
m pXq .

The isomorphism thus obtained, cano : HmpXq Ñ H lf
m pXq is referred to as the canonical

isomorphism. It can be shown to coincide with the isomorphism given in [Br-V], see (4.6).
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Each of the complexes ΓpX,DpS˚qq, DŠ˚pXq, and S̃˚pXq appearing in the statement of
(4.3) is covariantly functorial in X for proper maps. It is immediate to verify that the maps θ1

and ξ are natural transformations between the functors.
We examine compatibility of these maps with cap product on both ends. For this we

introduce cap product for the middle term. The cup product for S˚pXq gives by restriction the
map Y : S˚pXq b Š˚pXq Ñ Š˚pXq; this in turn induces a map

X : DŠ˚pXq b S˚pXq Ñ DŠ˚pXq

defined as follows. For f P DŠ˚pXq of degree m and and u P ŠppXq, v P S˚pXq, let

xf X u, vy “ p´1qmpxf, u Y vy .

Since this is parallel to the definition in §2, we have again the identity dpf X uq “ p´1qpdf X

u ` f X du.
For u P SppXq closed, we have a map of complexes

p´q X u : DŠ˚pXq Ñ DŠ˚´ppXq ,

where DŠ˚´ppXq is short for the complex
`

DŠ˚pXq
˘

rps. The induced map on homology

depends only on the class rus, and thus written p´q X rus : HmpDŠ˚pXqq Ñ Hm´ppDŠ˚pXqq.

Remark. Although it will not be used in the sequel, it is useful to note that one may
view the map p´q Xu : DŠ˚pXq Ñ pDŠ˚pXqqrps as the dual of the map of complexes uY p´q :
Š˚pXqr´ps Ñ Š˚pXq. For this, if K is a complex of abelian groups, p an integer, verify that
there is an isomorphism of complexes DpKr´psq Ñ DpKqrps, which is given by multiplication
by p´1qnp on the degree n part DpKr´psqn “ HompK, I‚q “ pDpKqrpsqn. Applying the functor
D to u Y p´q and composing with this isomorphism gives the map p´q X u.

The map ξ is also compatible with cap product:

(4.4) Proposition. We have
ξpαq X u “ ξpα X uq ,

namely the following square commutes:

DŠ˚pXq b S˚pXq
X

´́ Ñ́ DŠ˚pXq
İ

§

§

ξb1

İ

§

§

ξ

S̃˚pXq b S˚pXq
X

´́ Ñ́ S̃˚pXq .

Proof. Let α P S̃mpXq, u P SppXq and v P Šm´ppXq. According to the definition of ξ in §3, if
v P Sm´ppX,X ´ Kq, let α “ α1 ` α2 with α1 P SmpXq and α2 P S̃mpX ´ Kq. Then

xξpα X uq, vy “ p´1qm´pxv, α1 X uy “ p´1qm´pp´1qpm´pqpxu Y v, α1y

by the definition of ξ in §3 and by the identity xv, α1 Xuy “ p´1qpm´pqpxuYv, α1y from §1. Also,

xξpαq X u, vy “ p´1qmpxξpαq, u Y vy “ p´1qmpp´1qmxu Y v, α1y .

Thus ξpα X uq “ ξpαq X u.
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(4.4.1) Corollary. If u P SppXq is closed, we have a commutative diagram of complexes

DŠ˚pXq
Xu

´́ Ñ́ DŠ˚´ppXq
İ

§

§

ξ

İ

§

§

ξ

S̃˚pXq
Xu

´́ Ñ́ S̃˚´ppXq .

The ξ on the right stands for the map ξrps : S̃˚pXqrps Ñ
`

DŠ˚pXq
˘

rps.

We have thus shown:

(4.5) Theorem. For a closed element u P SppXq, there is a commutative diagram of com-
plexes,

ΓpX,DpS˚qq
Xθpuq

´́ Ñ́ ΓpX,DpS˚´pqq
§

§

đ
θ1

§

§

đ
θ1

DŠ˚pXq
Xu

´́ Ñ́ DŠ˚´ppXq
İ

§

§

ξ

İ

§

§

ξ

S̃˚pXq
Xu

´́ Ñ́ S̃˚´ppXq .

Hence the induced diagram on homology commutes:

HmpXq
Xrθpuqs
´́ Ñ́ Hm´ppXq

§

§

đ

cano

§

§

đ

cano

H lf
m pXq

Xrus
´́ Ñ́ H lf

m´ppXq .

(4.6) We indicate how to prove that the canonical isomorphism in (4.3) coincides with the
one in [Br-V]. This fact will not used in the sequel of the paper, so the reader may skip this
paragraph.

For this we take another look at Proposition (3.1), and now treat the complex DS˚pUq

as something similar to the complex S˚pUq. To elucidate the similarities, we introduce the
notation T ˚pUq “ DS˚pUq, so U ÞÑ T ˚pUq is a complex of presheaves. There is an injective

quasi-isomorphism S˚pUq ãÑ T ˚pUq. Also let Ť ˚pUq “ }DS˚pUq. Note then we have

DŤ ˚pUq “ ČDDS˚pUq .

1. By the same arguments as for S˚pUq (see §2), we show the following. Let T˚ be the
sheaf associated with the presheaf T ˚. The presheaf is conjunctive, and the canonical map
θ : T ˚pUq Ñ T˚pUq is surjective; if T ˚

0 pUq is defined to be the kernel of the map, it is acyclic,
hence θ is a quasi-isomorphism.

The map of complexes of presheaves S˚ Ñ T ˚ induces a quasi-isomorphism of complexes
of sheaves S˚ Ñ T˚. The complex of sheaves T˚ is a quasi-resolution of Z, and it consists of
flabby sheaves.

2. Also we can repeat (4.1) for T ˚pUq. We define the subcomplex T ˚
cptpUq of T ˚pUq so that

there is an exact sequence

0 Ñ T p
0 pUq Ñ T p

cptpUq
θ

´́ Ñ́ΓcpU,T
pq Ñ 0 .
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Thus θ is a quasi-isomorphism. We have inclusion Ť ˚pUq Ă T ˚
cptpUq, which is verified to be a

quasi-isomorphism.
The map θ : Ť ˚pUq Ñ ΓcpU,T

˚q induces a quasi-isomorphism

θ1 : ΓpU,DpT˚qq Ñ DpŤ ˚pUqq ,

and the following diagram commutes.

DpŤ ˚pUqq ´́ Ñ́ DpŠ˚pUqq
İ

§

§
θ1

İ

§

§
θ1

ΓpU,DpT˚qq ´́ Ñ́ ΓpU,DpS˚qq .

3. We give a map of complexes of sheaves α : DpS˚q Ñ T˚. Recall from §2 that the
map Θ : S˚pUq Ñ ΓcpU, S˚q induces a map Θ1 : ΓpU,DpS˚qq Ñ T ˚pUq. Composing with the
canonical map θ : T ˚pUq Ñ T˚pUq, we obtain αpUq. So we have quasi-isomorphisms

S˚ Ñ T˚ Ð DpS˚q

which are maps of quasi-resolutions.
The composition of the maps

ΓpU,DpT˚qq
θ1

´́ Ñ́DŤ ˚pUq
Θ2

´́ Ñ́ΓpU,DDpS˚qq

coincides with the map ΓpU,Dpαqq. The verification is immediate and left to the reader.

4. From these we obtain a commutative diagram (enlarging the one before (3.2))

S̃˚pXq
Θ

´́ Ñ́ ΓpX, S˚q
ξÖ

§

§

đ

d

§

§

đ

d

DpŠ˚pXqq Ð́ ´́ ČDDS˚pXq
Θ2

´́ Ñ́ ΓpX,DDpS˚qq
İ

§

§
θ1

İ

§

§
θ1 Õ

Dpαq

ΓpX,DpS˚qq Ð́ ´́ ΓpX,DpT˚qq .

5. Let L˚ is a complex of flabby sheaves such that ΓctL˚u is a quasi-coresolution of Z, and
assume dimZ X ă 8. Then by [Br-V, (12.20)] there is an isomorphism

HppXq – HpΓpX,L˚q

obtained as follows.
The complex DpL˚q is a quasi-resolution of Z by (3.4); if I˚ is an injective resolution of

Z, there exists a map of quasi-resolutions DpL˚q Ñ I˚. Recall from §2 that there is a map
d : L˚ Ñ DDpL˚q. We have thus maps of complexes L˚ Ñ DDpL˚q Ð DpI˚q. It is proven
that the induced maps on global sections

ΓpX,L˚q Ñ ΓpX,DDpL˚qq Ð ΓpX,DpI˚qq

are quasi-isomorphisms, inducing the stated isomorphism on homology.
In our situation, taking L˚ “ S˚, one has the map of quasi-resolutions α : DpS˚q Ñ T˚, thus

in the above we may replace I˚ by T˚. So the quasi-isomorphisms ΓpX, S˚q Ñ ΓpX,DDpS˚qq Ð

ΓpX,DpT˚qq give rise to the isomorphism of [Br]. From the commutative diagram in item 4,
we see that it coincides with our canonical isomorphism.
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§5. Comparison of the supported cap product in sheaf and singular theories

The complexes Š˚pUqX and Š˚
ZpXq. Unlike the complex ΓcpX, S˚q, the complex Š˚pXq

is not covariantly functorial for inclusions of open sets; but there is functoriality in the derived
category.

For an open set U of X, let CptpUq denote the set of compact sets K Ă U , and let

ŠppUqX “ lim
ÝÑ

KPCptpUq

SppX,X ´ Kq Ă ŠppXq ,

so one has a subcomplex Š˚pUqX Ă Š˚pXq. For each K, the surjection S˚pX,X ´ Kq Ñ

S˚pU,U ´ Kq is a quasi-isomorphism by the excision theorem, so the induced surjection
Š˚pUqX Ñ Š˚pUq is also a quasi-isomorphism.

For a smaller open set V Ă U , one has Š˚pV qX Ă Š˚pUqX . The quasi-isomorphism
Š˚pV qX Ñ Š˚pV q factors as Š˚pV qX Ñ Š˚pV qU Ñ Š˚pV q, where the first map is the quasi-
isomorphism obtained from the quasi-isomorphisms S˚pX,X ´ Kq Ñ S˚pU,U ´ Kq for K P

CptpV q by taking direct limit. We have a commutative diagram of complexes

Š˚pV q

Š˚pV qU

OO

// Š˚pUq

Š˚pV qX //

OO

Š˚pUqX

OO

// Š˚pXq

Hence follows the transitivity of the maps Š˚pUq Ñ Š˚pXq in the derived category.

Let Z be a locally contractible closed subset of X. Set U “ X ´ Z. We define the
complex Š˚

ZpXq to be Š˚pXq{Š˚pUqX . The restriction map Š˚pXq Ñ Š˚pZq induces a map
Š˚
ZpXq Ñ Š˚pZq.
We show that the complexes we just introduced compare well with the sheaf theoretic

counterparts:

(5.1) Proposition. The map Š˚
ZpXq Ñ Š˚pZq is a quasi-isomorphism. We also have a com-

mutative square of complexes

Š˚
ZpXq ´́ Ñ́ Š˚pZq
§

§

đ
θ

§

§

đ
θ

ΓcpX, S˚q{ΓcpU, S
˚q ´́ Ñ́ ΓcpZ, S

˚
Zq

with S˚
Z be the singular cochain sheaf on Z, where all maps are quasi-isomorphisms.

Proof. We first note that the diagram of complexes

ΓcpU, S
˚q

j!
ÝÝÝÝÝÑ ΓcpX, S˚q

İ

§

§
θ

İ

§

§
θ

Š˚pUq Ð Š˚pUqX ãÑ Š˚pXq

18



commutes, where j! is extension by zero associated with inclusion j : U Ñ X. It is enough to
show that for K P CptpUq the square

ΓcpU, S
˚q

j!
´́ Ñ́ ΓcpX, S˚q

İ

§

§
θ

İ

§

§
θ

S˚pU,U ´ Kq Ð́ ´́ S˚pX,X ´ Kq

commutes, namely for u P SppX,X ´ Kq, one has j!pθpu|Uqq “ θpuq. The element θpu|Uq, thus
j!pθpu|Uqq also, has support contained in K; the element θpuq also has support in K. It is thus
enough to show that the restrictions to U coincide, namely θpu|Uq “ θpuq|U , but this is obvious.

Therefore the left square in the diagram below commutes. The second row is exact since S˚

is flabby, hence c-soft. Therefore there is a unique map θ : Š˚
ZpXq Ñ ΓcpZ, S

˚|Zq making the
right square commute; it is also a quasi-isomorphism.

0 Ñ Š˚pUqX ´́ Ñ́ Š˚pXq ´́ Ñ́ Š˚
ZpXq Ñ 0

§

§

đ
θ

§

§

đ
θ

§

§

đ
θ

0 Ñ ΓcpU, S
˚q ´́ Ñ́ ΓcpX, S˚q ´́ Ñ́ ΓcpZ, S

˚|Zq Ñ 0 .

We consider the commutative diagram of complexes

Š˚
ZpXq ´́ Ñ́ Š˚pZq
§

§

đ
θ

§

§

đ
θ

ΓcpZ, S
˚|Zq ´́ Ñ́ ΓcpZ, S

˚
Zq

The vertical maps θ are quasi-isomorphisms. The lower map is a quasi-isomorphism, since it is
induced from the map S˚|Z Ñ S˚

Z , which is a map of c-soft resolutions of Z on Z. The assertion
hence follows.

We wish to generalize the results in the previous section to the case of supported cap
product. For this we shall show that the cup product S˚pXq b Š˚pXq Ñ Š˚pXq induce a map
S˚pX,Uqb Š˚pZq Ñ Š˚pXq in the derived category. By the above proposition, one may replace
Š˚pZq with Š˚

ZpXq. We will also replace the complex Š˚pXq up to quasi-isomorphism:

(5.2) Definition. Let
Š˚pXq6 :“ Š˚pXq{Š˚

0 pXq

where Š˚
0 pXq “ S˚

0 pXqX Š˚pXq as in the proof of (4.1). Since the subcomplex Š˚
0 pXq is acyclic,

the map Š˚pXq Ñ Š˚pXq6 is a quasi-isomorphism. Its dual DpŠ˚pXq6q Ñ DpŠ˚pXqq is also a
quasi-isomorphism.

Consider now the restriction of the cup product S˚pX,Uq b Š˚pXq Ñ Š˚pXq.

(5.3) Proposition. This map induces a map of complexes

S˚pX,Uq b Š˚
ZpXq Ñ Š˚pXq6 .
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Proof. Take any elements u P S˚pX,Uq and v P Š˚pUqX . Then v P S˚pX,X´Kq for a compact
set K Ă U ; thus uY v is zero on X ´K and on U , and tX ´K,Uu covers X, so uY v P Š˚

0 pXq.
The assertion hence follows. Note this proof shows that u Y v need not be zero in Š˚pXq.

Following the pattern in §4, we can define the cap product

X : DpŠ˚pXq6q b S˚pX,Uq Ñ DpŠ˚
ZpXq q

by the same formula, including the sign. If u be an element of SppX,Uq with du “ 0, then we
obtain a map of complexes

p´q X u : DpŠ˚pXq6q Ñ DpŠ˚´p
Z pXqq .

One has the induced map on homology, which depends only on the class rus, p´q X rus :
HmpDŠ˚pXqq Ñ Hm´p

`

DŠ˚
ZpXq

˘

.
We now proceed to define the supported cap product for singular homology.

Supported cap product for locally finite singular homology
For an element u P SppX,Uq with du “ 0, we obtain a diagram of complexes

p‹q

DpŠ˚pXqq Ð DpŠ˚pXq6q
Xu

´́ Ñ́ DpŠ˚´p
Z pXqq Ð DpŠ˚´ppZqq

İ

§

§

ξ

İ

§

§

ξ

S̃˚pXq S̃˚´ppZq .

All the maps except Xu are quasi-isomorphisms. Inverting some of the quasi-isomorphisms, we
obtain maps in the derived category DpŠ˚pXqq Ñ DpŠ˚´ppZqq and S̃˚pXq Ñ S̃˚´ppZq, both of
which are still written Xu, making the following diagram commute

DpŠ˚pXqq
Xu

´́ Ñ́ DpŠ˚´ppZqq
İ

§

§

ξ

İ

§

§

ξ

S̃˚pXq
Xu

´́ Ñ́ S̃˚´ppZq .

Note that the map Xu : S̃˚pXq Ñ S̃˚´ppZq is obtained only through the map Xu : DpŠ˚pXqq Ñ

DpŠ˚´ppZqq, and only in the derived category.
So we have the induced map Xrus : H lf

m pXq Ñ H lf
m´ppZq, and a commutative diagram

Hm

`

DŠ˚pXq
˘ Xrus

´́ Ñ́ Hm´p

`

DŠ˚pZq
˘

İ

§

§

ξ

İ

§

§

ξ

H lf
m pXq

Xrus
´́ Ñ́ H lf

m´ppZq .

This is the supported cap product for locally finite singular homology.

The construction has compatibility with inclusions of closed sets Z. Let Z 1 be a closed subset
of X containing Z, and let U 1 “ X ´ Z 1. There is a natural injection S˚pX,Uq Ñ S˚pX,U 1q

and a natural surjection Š˚
Z1pXq Ñ Š˚

ZpXq. The cup products S˚pX,Uq b Š˚
ZpXq Ñ Š˚pXq6

and S˚pX,U 1q b Š˚
Z1pXq Ñ Š˚pXq6 are compatible via these maps, namely the diagram

S˚pX,Uq b Š˚
ZpXq ´́ Ñ́ Š˚pXq6

§

§

đ

İ

§

§
}

S˚pX,U 1q b Š˚
Z1pXq ´́ Ñ́ Š˚pXq6
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“commutes” in the following sense: for u P S˚pX,Uq and v1 P Š˚
Z1pXq, if u1 P S˚pX,U 1q is the

image of u and v P Š˚
ZpXq is the image of v1, then u Y v “ u1 Y v1.

It follows that the cap product X : DpŠ˚pXq6qbS˚pX,Uq Ñ DŠ˚
ZpXq and X : DpŠ˚pXq6qb

S˚pX,U 1q Ñ DŠ˚
Z1pXq are are also compatible.

From this we deduce that, if u P SppX,Uq is a closed element, which may be viewed as a
closed element of SppX,U 1q, the digram p‹q for U and the digram p‹q for U 1 are compatible,
and consequently, we have a commutative diagram in the derived category

S̃˚pXq
Xu

´́ Ñ́ S̃˚´ppZq

}

§

§

đ

S̃˚pXq
Xu

´́ Ñ́ S̃˚´ppZ 1q .

In particular it induces a commutative diagram on homology

H lf
m pXq

Xrus
´́ Ñ́ H lf

m´ppZq

}

§

§

đ

H lf
m pXq

Xrus
´́ Ñ́ H lf

m´ppZ 1q

(5.4) We now relate the upper sequence of maps in the diagram p‹q to the sheaf theoretic cap
product.

1. The map θ : Š˚pXq Ñ ΓcpX, S˚q induces an isomorphism θ : Š˚pXq6 Ñ ΓcpX, S˚q.

2. One has a quasi-isomorphism θ : Š˚
ZpXq Ñ ΓcpX, S˚q{ΓcpU, S

˚q. The map θpuqY :
ΓcpX, S˚´pq Ñ ΓcpX, S˚q factors through the quotient ΓcpX, S˚´pq{ΓcpU, S

˚´pq. Thus we have
a commutative diagram

ΓcpX, S˚q
θpuqY

Ð́ ´́ ΓcpX, S˚´pq{ΓcpU, S
˚´pq

θÕ

İ

§

§
θ

İ

§

§
θ

Š˚pXq Ñ Š˚pXq6 uY
Ð́ ´́ Š˚´p

Z pXq .

The dual of ΓcpX, S˚´pq{ΓcpU, S
˚´pq obviously equals ΓZpX,DpS˚´pqq; the dual of θ : Š˚

ZpXq Ñ

ΓcpX, S˚q{ΓcpU, S
˚q is a quasi-isomorphism θ1 : ΓZpX,DpS˚qq Ñ DpŠ˚

ZpXqq. Thus the above
diagram gives us a commutative diagram

ΓpX,DpS˚qq
Xθpuq

´́ Ñ́ ΓZpX,DpS˚´pqq
θ1

Ö

§

§

đ
θ1

§

§

đ
θ1

DpŠ˚pXqq Ð́ ´́ DpŠ˚pXq6q
Xu

´́ Ñ́ DpŠ˚´p
Z pXqq .

3. From (5.1), we have a commutative square

ΓcpX, S˚q{ΓcpU, S
˚q ´́ Ñ́ ΓcpZ, S

˚
Zq

İ

§

§
θ

İ

§

§
θ

Š˚
ZpXq ´́ Ñ́ Š˚pZq

hence also another commutative square

ΓZpX,DpS˚´pqq Ð́ ´́ ΓpZ,DpS
˚´p
Z qq

§

§

đ
θ1

§

§

đ
θ1

DpŠ˚´p
Z pXqq Ð́ ´́ DpŠ˚´ppZqq
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with all maps quasi-isomorphisms. We have established the following theorem.

(5.5) Theorem. There is a commutative diagram of complexes

p‹‹qX

ΓpX,DpS˚qq
Xθpuq

´́ Ñ́ ΓZpX,DpS˚´pqq Ð́ ´́ ΓpZ,DpS
˚´p
Z qq

θ1

Ö

§

§

đ
θ1

§

§

đ
θ1

§

§

đ
θ1

DpŠ˚pXqq Ð DpŠ˚pXq6q
Xu

´́ Ñ́ DpŠ˚´p
Z pXqq Ð́ ´́ DpŠ˚´ppZqq

İ

§

§

ξ

İ

§

§

ξ

S̃˚pXq S̃˚´ppZq ,

in which all the arrows, except the two horizontal maps Xu, are quasi-isomorphisms. Hence we
have a commutative diagram in the derived category,

ΓpX,DpS˚qq
Xθpuq

´́ Ñ́ ΓpZ,DpS
˚´p
Z qq

§

§

đ
θ1

§

§

đ
θ1

DpŠ˚pXqq
Xu

´́ Ñ́ DpŠ˚´ppZqq
İ

§

§

ξ

İ

§

§

ξ

S̃˚pXq
Xu

´́ Ñ́ S̃˚´ppZq .

It induces a commutative diagram on homology

HmpXq
Xrθpuqs
´́ Ñ́ Hm´ppZq

§

§

đ

cano

§

§

đ

cano

H lf
m pXq

Xrus
´́ Ñ́ H lf

m´ppZq .

with vertical maps the canonical isomorphisms.

Thus the sheaf theoretic supported cap product coincides with the supported cap product
for singular homology.

§6. Simplicial supported cap product; comparison to the singular cap product

Let X be an abstract simplicial complex which is assumed to be locally finite, countable,
and of finite dimension. The geometric realization |X| will be also written X; it satisfies the
assumption (**) in §3.

(6.1) By C˚pXq we denote the complex of ordered simplicial chains, and C˚pXq its dual
(see [Mu, p. 76], [Sp. p.170]). Recall that CmpXq is the free abelian group generated by
pv0, ¨ ¨ ¨ , vmq, where v0, ¨ ¨ ¨ , vm are vertices of X (repetition allowed) spanning a simplex of
dimension ď m. Let C̃˚pXq be the complex of (locally finite) infinite ordered simplicial chains.
We let Č˚pXq Ă C˚pXq denote the subcomplex of cochains u satisfying the following condition:
there exists a finite subcomplex outside which u vanishes.

The homology of the complex C˚pXq (resp. C̃˚pXq) is the simplicial homology (resp. locally
finite simplicial homology) of X. When convenient, we write Hsimp

m pXq for HmpC̃˚pXqq.

1. There are natural maps of complexes, which are known to be quasi-isomorphisms,
C˚pXq Ñ S˚pXq, C̃˚pXq Ñ S̃˚pXq and S˚pXq Ñ C˚pXq, Š˚pXq Ñ Č˚pXq.
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2. For Y a subcomplex of X, one has relative chain and cochain complexes C˚pX,Y q,
C̃˚pX,Y q and C˚pX,Y q, Č˚pX,Y q. There are natural quasi-isomorphisms between relative
complexes, e.g., C˚pX,Y q Ñ S˚pX,Y q and C̃˚pX,Y q Ñ S̃˚pX,Y q.

3. One has cup and cap product on the simplicial chain and cochain complexes.
‚ Cup product Y : C˚pXq b C˚pXq Ñ C˚pXq, which is compatible with the singular

cup product via the map S˚pXq Ñ C˚pXq. This restricts to C˚pXq b Č˚pXq Ñ Č˚pXq, to be
used later.

‚ Cap product X : C˚pXq b C˚pXq Ñ C˚pXq, which is compatible with singular cap
product. This extends to C̃˚pXq b C˚pXq Ñ C̃˚pXq.

Thus a cocycle u P CppXq induces maps of complexes Xu : C̃˚pXq Ñ C̃˚´ppXq , and uY :
Č˚´ppXq Ñ Č˚pXq.

(6.2) Supported cap and cup product for simplicial homology

Let Z be a subcomplex of X, and U “ X ´ Z be its complement. Let N “ NpZq be
the closed star of Z, namely the subcomplex consisting of simplices meeting Z; let N c be the
subcomplex consisting of simplices disjoint from Z. We assume that the inclusion Z Ă N is a
proper deformation retract. (This can be so arranged by taking barycentric subdivision of X
twice – see [Mu, Lemma 70.1] for an argument of this kind.)

1. One has cap product C̃˚pXq b C˚pX,N cq Ñ C̃˚pNq.

Proof. For u P CppX,N cq and an m-simplex σ, one has by definition σ X u “ upσ1qσ2. If the
front face σ1 is a simplex of N c, then upσ1q “ 0. Otherwise σ1 meets Z, so σ is a simplex of N .
In particular σ2 is a simplex of N . Thus upσ1qσ2 is a chain in N .

Therefore, a cocycle u P CppX,N cq induces a map of complexes

Xu : C̃˚pXq Ñ C̃˚´ppNq .

The induced map on homology

Xu : HmpC̃˚pXqq Ñ Hm´ppC̃˚´ppNqq ,

which depends only on the class rus, is the supported cap product on simplicial homology. The
inclusion Z Ñ N , being a proper deformation retract, induces an isomorphism Hm´ppC̃˚pZqq Ñ

Hm´ppC̃˚pNqq; the composition HmpC̃˚pXqq
Xrus

´́ Ñ́Hm´ppC̃˚pNqq
–

Ð́ ´́ Hm´ppC̃˚pZqq will be also
called the supported cap product, and written Xrus.

In order to compare this with the singular cap product, as preliminaries we develop some
parallels of §5 for the simplicial theory.

2. One has cup product C˚pX,N cq b Č˚pNq Ñ Č˚pXq.

Proof. There is an exact sequence of complexes 0 Ñ Č˚pX,Nq Ñ Č˚pXq Ñ Č˚pNq Ñ 0. If
u P CppX,N cq, v P Čm´ppX,Nq and σ is an m-simplex, then pu Y vqpσq “ ˘upσ1qvpσ2q, which
is zero since σ1 Ă N c or σ2 Ă N .

Therefore, if u P CppX,N cq is a cocycle, one has a map of complexes

uY : Č˚´ppNq Ñ Č˚pXq .
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3. The cup product in item 2 induces a map

X : DpČ˚pXqq b C˚pX,N cq Ñ DpČ˚pNqq ,

as in §4 (and §5). Hence, for a cocycle u P CppX,N cq we have the map Xu : DpČ˚pXqq Ñ

DpČ˚´ppNqq.

4. We define a map ξ : C̃˚pXq Ñ HompČ˚pXq,Zq Ă DpČ˚pXqq, analogous to the map ξ in
§3 for S̃˚pXq.

For α P C̃mpXq and u P ČmpXq, let Y be a finite subcomplex outside which u vanishes.
Take a finite subcomplex Z containing the star of Y . We can take a decomposition α “ α1 `α2,
where α1 P CmpZq, and α2 “

ř

bσσ P C̃mpXq satisfy the condition that if bσ ‰ 0, then σ is
disjoint from Y . For example, for α “

ř

aσσ, one may take

α1 “
ÿ

σĂZ

aσσ, α2 “
ÿ

σĆZ

aσσ .

Let ξpαq P HompČmpXq,Zq be the element given by

xξpαq, uy “ p´1qmxu, α1y .

One verifies easily that this is independent of the choice of Z and of the decomposition of α;
also ξ is a map of complexes.

As we did for the map ξ for S̃˚pXq (see (4.4) and its corollary), one shows:

(6.3) Proposition. For a cocycle u P CppX,N cq, the following square commutes:

DpČ˚pXqq
Xu

´́ Ñ́ DpČ˚´ppNqq
İ

§

§

ξ

İ

§

§

ξ

C̃˚pXq
Xu

´́ Ñ́ C̃˚´ppNq .

We also have, obviously from the definitions of the maps ξ,

(6.4) Proposition. The following square commutes, in which the horizontal maps are the
natural ones.

DpČ˚pXqq ´́ Ñ́ DpŠ˚pXqq
İ

§

§

ξ

İ

§

§

ξ

C̃˚pXq ´́ Ñ́ S̃˚pXq .

With these preparations, we have come to the main part of this section. For the rest
of this section, we assume given a cocycle u P SppX,X ´ Zq. Note it induces a cocycle
ρpuq P CppX,N cq; we often just write u for ρpuq.
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The cocycle u gives a map uY : Š˚´p
N pXq Ñ Š˚pXq6, and ρpuq gives ρpuqY : Č˚´ppNq Ñ

Č˚pXq. So we have a diagram of complexes

Š˚pXq Ñ Š˚pXq6 uY
Ð́ ´́ Š˚´p

N pXq Ñ Š˚´ppNq
§

§

đ

ρ

§

§

đ

ρ

Č˚pXq
ρpuqY

ÐÝÝÝÝÝÝÝÝÝ Č˚´ppNq

in which ρ are the natural maps, and all the maps except the two maps uY are quasi-
isomorphisms.

(6.5) Proposition. The above diagram induces a commutative diagram on homology.

Before the proof we need to note how the map ρ is affected by subdivision. Denote by K the
given triangulation of the space X, and K 1 its subdivision. The corresponding simplicial chain
groups will be written C˚pKq and C˚pK 1q. There is the subdivision map λ : C˚pKq Ñ C˚pK 1q.
If g : K 1 Ñ K is a simplicial approximation of the identity map ([Mu], §14), one has the induced
map g˚ : C˚pK 1q Ñ C˚pKq, and g˚ ˝ λ “ 1, and λ ˝ g˚ » 1 (homotopic to the identity).

Dually, there is the subdivision map λ : C˚pK 1q Ñ C˚pKq, the map g˚ : C˚pKq Ñ C˚pK 1q,
and one has λ ˝ g˚ “ 1 and g˚ ˝ λ » 1. Further, the same holds for their restrictions to
subcomplexes λ : Č˚pK 1q Ñ Č˚pKq and g˚ : Č˚pKq Ñ Č˚pK 1q (see [Mu], p.269, Exercise 5).
Since the map ρ : Š˚pXq Ñ Č˚pKq obviously commutes with g˚, it follows that the diagram

Č˚pK 1q
λ // Č˚pKq

Š˚pXq
ρ

hhQQQQQQ ρ

66nnnnnn

induces a commutative diagram on cohomology. As a consequence, since the assertion of (6.5)
concerns cohomology, one may take a subdivision of the triangulation of X and replace the
map ρ accordingly.

Proof of (6.5). We now show the Let now v P Šm´p
N pXq be a cocycle, dv “ 0. Then one has

ruYvs P HmpŠ˚pXq6q. Since Š˚pXq Ñ Š˚pXq6 is a quasi-isomorphism, there exists x P ŠmpXq,
dx “ 0, such that rxs P HmpŠ˚pXqq maps to ru Y vs. Then there exist elements α P Šm

0 pXq

and β P Šm´1pXq such that
x ´ u Y v “ α ` dβ .

We may take a subdivision of the given triangulation, and the subdivision may be taken so
that ρpαq “ 0. This requires a well-known argument involving the Lebesgue number (cf. [Mu,
p. 178, Theorem 31.3]) which can be applied to those finite number of simplices on which α
takes non-zero values.

Then one has
ρpxq ´ ρpu Y vq “ dρpβq ,

hence rρpxqs “ rρpu Y vqs, proving the assertion.

For a complex K and its dual DpKq, there is a natural short exact sequence

0 Ñ Ext1pH´p`1pKq,Zq Ñ HppDpKqq Ñ HompH´ppKq,Zq Ñ 0
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(see [Br, V-(2.3)]). Thus:

(6.5.1) Corollary. The dual of the above diagram

DpŠ˚pXqq Ð DpŠ˚pXq6q
Xu

´́ Ñ́ DpŠ˚´p
N pXq q Ð DpŠ˚´ppNqq

İ

§

§

ρ1

İ

§

§

ρ1

DpČ˚pXqq
Xu

ÝÝÝÝÝÝÝÑ DpČ˚´ppNqq

commutes on homology.

We give the main result of this section:

(6.6) Theorem. For a cocycle u P SppX,X´Zq, the following diagram in the derived category

S̃˚pXq
Xu

´́ Ñ́ S̃˚´ppNq
İ

§

§

ρ

İ

§

§

ρ

C̃˚pXq
Xu

´́ Ñ́ C̃˚´ppNq

induces on homology a commutative square

H lf
m pXq

Xrus
´́ Ñ́ H lf

m´ppNq
İ

§

§

ρ

İ

§

§

ρ

Hsimp
m pXq

Xrus
´́ Ñ́ Hsimp

m´ppNq .

Thus the singular supported cap product coincides with the simplicial supported cap product via
the isomorphism H lf

m pXq “ Hsimp
m pXq.

Proof. Consider the following diagram in the derived category.

DŠ˚pXq
Xu // DpŠ˚´ppNqq

S̃˚pXq
Xu //

66nnnnn
S̃˚´ppNq

55jjjjjjj

DC˚pXq
Xu //

OO

DpČ˚´ppNqq

OO

C̃˚pXq
Xu //

66nnnnn

OO

C̃˚´ppNq .

55jjjjjj

OO

The squares on both sides commute on chain level by (6.4). The top square commutes in the
derived category by our definition of Xu in §5. The bottom square commutes on chain level by
(6.3). The back square induces a commutative diagram on homology, by (6.5). It now follows
that the front square induces a commutative diagram on homology.

(6.6.1) Corollary. The following square commutes:

H lf
m pXq

Xrus
´́ Ñ́ H lf

m´ppZq
İ

§

§

ρ

İ

§

§

ρ

Hsimp
m pXq

Xrus
´́ Ñ́ Hsimp

m´ppZq .
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Proof. The given cocycle u P SppX,X ´ Zq gives a cocycle in SppX,X ´ Nq, and by the
compatibility of cap product with inclusions of Z (see §5) the diagram

H lf
m pXq

Xrus
´́ Ñ́ H lf

m´ppZq

}

§

§

đ

H lf
m pXq

Xrus
´́ Ñ́ H lf

m´ppNq

commutes. The right arrow is an isomorphism, since Z Ă N is a proper deformation retract.
There is an analogous commutative square

Hsimp
m pXq

Xrus
´́ Ñ́ Hsimp

m´ppZq

}

§

§

đ

Hsimp
m pXq

Xrus
´́ Ñ́ Hsimp

m´ppNq

by the definition of Xrus we gave in this section. Our assertion follows from these facts and the
theorem.

In particular, the simplicial supported cap product is independent of the choice of a trian-
gulation of the locally compact Hausdorff space X satisfying (**) in §3, as long as X has a
triangulation satisfying the required conditions.

§7. Borel-Moore homology of pairs of spaces

Let X be a locally compact Hausdorff space satisfying (**) in §3. Let Y be a locally
contractible closed set of X, and i : Y Ñ X be the inclusion; we will consider the homology of
such a pair pX,Y q.

As discussed in the proof of (5.1), there is a canonical surjective map of S˚|Y “ i˚S˚ Ñ S˚
Y ;

we examine this more closely.

(7.1) Lemma. The surjection S˚ Ñ i˚S
˚
Y has a canonical section. (The section is not a map

of complexes.)

Proof. For an open set U of X, the restriction map SppUq Ñ SppU X Y q is surjective, and
there is a section s of this map given by extension by zero: For u P SppU X Y q, its extension
spuq P SppUq is given by spuqpσq “ upσq if σ P SppU X Y q and zero otherwise.

Assume in general that P , Q are presheaves on X and Y , respectively; assume that h : P Ñ

i˚Q is a map of presheaves and s : i˚Q Ñ P is a section of it, namely hs “ id holds. Letting
P̃ (resp. Q̃) denote the associated sheaf of P (resp. Q), one has induced maps of sheaves
P̃

h
´́ Ñ́i˚Q̃

s
´́ Ñ́P̃ with hs “ id, thus also has maps

i˚P̃
h

´́ Ñ́Q̃
s

´́ Ñ́i˚P̃

with hs “ id.
We apply this to the presheaves on X and Y , P “ Sp and Q “ Sp

Y , and obtain the
assertion.
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By the lemma, any additive covariant functor applied to S˚ Ñ i˚S
˚
Y gives a surjective map

with a section. In particular the induced map ΓcpX, S˚q Ñ ΓcpY, S
˚
Y q is also surjective with a

section, hence its dual
ΓpY,DpS˚

Y qq Ñ ΓpX,DpS˚qq

is an injection. By definition the Borel-Moore homology of the pair pX,Y q is the homology of
the quotient complex:

HmpX,Y ;Zq “ HmpX,Y q :“ Hm pΓpX,DpS˚qq{ΓpY,DpS˚
Y qq q .

The reader can show that this coincides with the definition using the injective resolution in [Br,
V, §5]. One has, of course, the long exact sequence of the groups

Ñ HmpY q Ñ HmpXq Ñ HmpX,Y q Ñ Hm´1pY q Ñ ¨ ¨ ¨ .

Let Z be another locally contractible closed set of X such that Z X Y is also locally con-
tractible. Generalizing the construction in §2, we shall produce the supported cap product
map

HmpX,Y q b Hp
ZpXq Ñ Hm´ppZ,Z X Y q .

As a preliminary, let L˚ be a differential sheaf, and assume given a map of sheaves Y :
L˚bL˚ Ñ L˚ (cup product), which is associative and satisfies the identity dpxYyq “ p´1qpdxY

y ` x Y dy if y is a section of Lp. Then just as we described for S˚ in §2, one has cap product
DpL˚q b L˚ Ñ DpL˚q.

LetM˚ be another differential sheaf with cup product, and assume given a map of differential
sheaves h : L˚ Ñ M˚ that is compatible with product. Then we have an induced map h˚ :
DpM˚q Ñ DpL˚q by functoriality. For sections f of DpM˚q and s of L˚, one verifies the identity
(“projection formula”)

h˚pfq X s “ h˚pf X hpsqq .

Applying this to the map S˚ Ñ i˚S
˚
Y , by (7.1) we get an injective map

h˚ : Dpi˚S
˚
Y q “ i˚DpS˚

Y q Ñ DpS˚q

and a diagram
DpS˚q b S˚ X

´́ Ñ́ DpS˚q
İ

§

§

h˚

§

§

đ
h

İ

§

§

h˚

i˚DpS˚
Y q b i˚S

˚
Y

X
´́ Ñ́ i˚DpS˚

Y q ,

which “commutes” in the sense that the projection formula holds. From this we obtain a
“commutative” diagram

ΓpX,DpS˚qq b ΓZpX, S˚q
X

´́ Ñ́ ΓZpX,DpS˚qq
İ

§

§

h˚

§

§

đ
h

İ

§

§

h˚

ΓpY,DpS˚
Y qq b ΓZXY pY, S˚

Y q
X

´́ Ñ́ ΓZXY pY,DpS˚
Y qq ,

in which the two vertical maps h˚ are injections by (7.1). So the the cap product map X :
ΓpX,DpS˚qqbΓZpX, S˚q Ñ ΓZpX,DpS˚qq sends ΓpY,DpS˚

Y qqbΓZpX, S˚q into ΓZXY pY,DpS˚
Y qq,

inducing a map

X :
ΓpX,DpS˚qq

ΓpY,DpS˚
Y qq

b ΓZpX, S˚q Ñ
ΓZpX,DpS˚qq

ΓZXY pY,DpS˚
Y qq

.
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For the target, we have maps

ΓZpX,DpS˚qq

ΓZXY pY,DpS˚
Y qq

“
ΓpZ,DpS˚|Zqq

ΓpZ X Y,DpS˚
Y |ZXY qq

Ð
ΓpZ,DpS˚

Zqq

ΓpZ X Y,DpS˚
ZXY qq

.

The first equality follows from (2.3). The second map is a quasi-isomorphism, obtained as
follows. As noted in the proof of (5.1), the map S˚|Z Ñ S˚

Z induces a quasi-isomorphism
ΓcpZ, S

˚|Zq Ñ ΓcpZ, S
˚
Zq, which induces a quasi-isomorphism ΓpZ,DpS˚

Zqq Ñ ΓpZ,DpS˚|Zqq;
similarly one has a quasi-isomorphism ΓpZ X Y,DpS˚

ZXY qq Ñ ΓpZ,DpS˚
Y |Y XZqq.

Therefore, upon taking cohomology we have the mapHmpX,Y qbHp
ZpXq Ñ Hm´ppZ,ZXY q

as desired.

(7.2) Before discussing supported cap product for singular homology, we introduce the relative
versions of the complexes Š˚pUqX and Š˚

ZpXq.

1. The map Š˚pXq Ñ Š˚pY q is surjective. Similarly, for each open set U of X, the
restriction map Š˚pUqX Ñ Š˚pU X Y qY is surjective.

Proof. Let u P SppY q be any element; for a set L P CptpY q, u P SppY, Y ´ Lq. If u1 P SppXq is
its extension by zero to X, then one shows u1 P SppX,X ´ Lq. Thus the first assertion holds.
The proof of the second statement is similar.

Define Š˚pX,Y q to be the kernel of the map Š˚pXq Ñ Š˚pY q; similarly define Š˚pU,UXY qX
to be the kernel of the map Š˚pUqX Ñ Š˚pU X Y qY .

2. It follows from item 1 that the map Š˚
ZpXq Ñ Š˚

ZXY pY q is also surjective. Let Š˚
ZpX,Y q

be the kernel of this map. We then deduce, using the 9-lemma, a short exact sequence

0 Ñ Š˚pU,U X Y qX Ñ Š˚pX,Y q Ñ Š˚
ZpX,Y q Ñ 0 .

3. There is a natural surjective quasi-isomorphism Š˚
ZpX,Y q Ñ Š˚pZ,Z X Y q .

Proof. We have an induced map Š˚
ZpX,Y q Ñ Š˚pZ,Z X Y q, making a commutative diagram

of complexes with exact rows

0 Ñ Š˚
ZpX,Y q ´́ Ñ́ Š˚

ZpXq ´́ Ñ́ Š˚
ZpZ X Y q Ñ 0

§

§

đ

§

§

đ

§

§

đ

0 Ñ Š˚pZ,Z X Y q ´́ Ñ́ Š˚
ZpZq ´́ Ñ́ Š˚pZ X Y q Ñ 0 ,

where the second and third vertical maps are quasi-isomorphism; so the first vertical map is
also a quasi-isomorphism.

4. The restriction map Š˚pXq Ñ Š˚pY q obviously induces a surjective map Š˚pXq6 Ñ

Š˚pY q6. Let Š˚pX,Y q6 be its kernel. Then the natural map Š˚pX,Y q Ñ Š˚pX,Y q6 is a quasi-
isomorphism.

5. Since the cup product maps S˚pX,UqbŠ˚
ZpXq Ñ Š˚pXq6 and S˚pY, Y XUqbŠ˚

ZXY pXq Ñ

Š˚pY q6 are compatible via the respective restriction maps, there is an induced map

Y : S˚pX,Uq b Š˚
ZpX,Y q Ñ Š˚pX,Y q6 .
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This induces a cap product

X : DpŠ˚pX,Y q6 q b S˚pX,Uq Ñ DpŠ˚
ZpX,Y qq .

In particular, for u P SppX,Uq closed, one has a map of complexes

Xu : DpŠ˚pX,Y q6 q Ñ DpŠ˚´p
Z pX,Y qq .

6. One has a map of complexes ξ : S̃˚pX,Y q Ñ DpŠ˚pX,Y qq which fits in a commutative
diagram with exact rows

0 Ñ DpŠ˚pY qq Ñ DpŠ˚pXqq Ñ DpŠ˚pX,Y qq Ñ 0
İ

§

§

ξ

İ

§

§

ξ

İ

§

§

ξ

0 Ñ S̃˚pY q Ñ S̃˚pXq Ñ S̃˚pX,Y q Ñ 0 ;

thus the induced map ξ is also a quasi-isomorphism.

Singular homology of pairs and supported cap product

In §5 we have defined the supported cap product on the locally finite singular homology,
which we now generalize to the case of locally finite singular homology of the pair pX,Y q. In
that section we considered the diagram p‹q for X with respect to Z – which we name p‹qX ; we
have also diagram p‹qY for Y with respect to Z X Y . Similarly we have a diagram

p‹qX,Y

DpŠ˚pX,Y qq Ð DpŠ˚pX,Y q6q
Xu

´́ Ñ́ DpŠ˚´p
Z pX,Y qq Ð DpŠ˚´ppZ,Z X Y qq

İ

§

§

ξ

İ

§

§

ξ

S̃˚pX,Y q S̃˚´ppZ,Z X Y q .

We have already explained the maps involved, which are quasi-isomorphisms except Xu. There
is a sequence of diagrams

0 Ñ p‹qY Ñ p‹qX Ñ p‹qX,Y Ñ 0

which is termwise exact.
From p‹qX,Y we get a commutative square in the derived category

DpŠ˚pX,Y qq
Xu

´́ Ñ́ DpŠ˚´ppZ,Z X Y qq
İ

§

§

ξ

İ

§

§

ξ

S̃˚pX,Y q
Xu

´́ Ñ́ S̃˚´ppZ,Z X Y q .

On cohomology we have the map Xrus : H lf
m pX,Y q Ñ H lf

m´ppZ,Z X Y q, as wanted. This and

the cap products H lf
m pXq Ñ H lf

m´ppZq, H lf
m pY q Ñ H lf

m´ppZ X Y q fit in the long exact sequences
for pX,Y q and pZ,Z X Y q.

Comparison of relative Borel-Moore homologies and supported cap products

Given the preparations thus far, the statements and the proofs of the following two results
for pX,Y q are parallel to the corresponding theorems for X. The first one generalizes (4.3).
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(7.3) Theorem. One has quasi-isomorphisms

ΓpX,DpS˚qq{ΓpY,DpS˚
Y qq

θ1

´́ Ñ́DŠ˚pX,Y q
ξ

Ð́ ´́ S̃˚pX,Y q .

They induce isomorphisms on homology,

cano : HmpX,Y q Ñ HmpDŠ˚pX,Y qq Ð H lf
m pX,Y q .

Proof. By (4.2) we have quasi-isomorphisms θ1 : ΓpX,DpS˚qq Ñ DpŠ˚pXqq and θ1 : ΓpY,DpS˚
Y qq Ñ

DpŠ˚pY qq, whence the quasi-isomorphism θ1 on the left between the quotients. The quasi-
isomorphism ξ on the right was given in (7.2).

The second result generalizes (5.5), and the argument proceeds as follows.

1. In (5.4) we have explained the quasi-isomorphism θ1 : ΓZpX,DpS˚qq Ñ DpŠ˚
ZpXqq; a

quasi-isomorphism θ1 : ΓZXY pY,DpS˚
Y qq Ñ DpŠ˚

ZXY pY qq is similarly obtained. The second row
of the following diagram is exact, as the dual of the exact sequence defining Š˚

ZpX,Y q. It follows
that there is a map θ1 : ΓZpX,DpS˚qq{ΓZXY pY,DpS˚

Y qq Ñ DpŠ˚
ZpX,Y qq which makes the whole

diagram commute and which is a quasi-isomorphism.

0 Ñ ΓZXY pY,DpS˚
Y qq ´́ Ñ́ ΓZpX,DpS˚qq ´́ Ñ́ ΓZpX,DpS˚

Y qq{ΓZXY pY,DpS˚
Y qq Ñ 0

§

§

đ

§

§

đ

§

§

đ
θ1

0 Ñ DpŠ˚
ZXY pY qq ´́ Ñ́ DpŠ˚

ZpXqq ´́ Ñ́ DpŠ˚
ZpX,Y qq Ñ 0 .

2. One has from (5.4) a commutative square

ΓpX,DpS˚qq
Xθpuq

´́ Ñ́ ΓZpY,DpS˚´pqq
§

§

đ
θ1

§

§

đ
θ1

DpŠ˚pXq6q
Xu

´́ Ñ́ DpŠ˚´p
Z pXqq ,

another similar commutative square

ΓpY,DpS˚
Y qq

Xθpuq
´́ Ñ́ ΓZXY pY,DpS

˚´p
Y qq

§

§

đ
θ1

§

§

đ
θ1

DpŠ˚pY q6q
Xu

´́ Ñ́ DpŠ˚´p
ZXY pY qq ,

and a termwise injection from the second to the first by (7.1). Passing to the quotient, and
taking item 1 into account, we get a commutative diagram

ΓpX,DpS˚qq{ΓpY,DpS˚
Y qq

Xθpuq
´́ Ñ́ ΓZpY,DpS˚´pqq{ΓZXY pY,DpS

˚´p
Y qq

§

§

đ
θ1

§

§

đ
θ1

DpŠ˚pX,Y q6q
Xu

´́ Ñ́ DpŠ˚´p
Z pX,Y qq .
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3. One has also a commutative square

ΓZpX,DpS˚
Y qq{ΓZXY pY,DpS˚

Y qq Ð́ ´́ ΓpZ,DpS˚
Zqq{ΓpZ X Y,DpS˚

ZXY qq
§

§

đ

§

§

đ

DpŠ˚
ZpX,Y qq Ð́ ´́ DpŠ˚pZ,Z X Y qq

with all maps quasi-isomorphism; this is induced from the commutative square in (5.4), item
3. The second row is the dual of the quasi-isomorphism in item 3 of (7.2).

4. The digram below contains diagram p‹qX,Y we already have, and is the relative analogue
of the diagram p‹‹qX in (5.5):

p‹‹qX,Y

ΓpX,DpS˚qq

ΓpY,DpS˚
Y qq

Xθpuq
´́ Ñ́

ΓZpX,DpS˚´pqq

ΓZXY pY,DpS
˚´p
Y qq

Ð
ΓpZ,DpS

˚´p
Z qq

ΓpZXY,DpS˚
ZXY qq

θ1

Ö

§

§

đ
θ1

§

§

đ
θ1

§

§

đ
θ1

DpŠ˚pX,Y qq Ð DpŠ˚pX,Y q6q
Xu

´́ Ñ́ DpŠ˚´p
Z pX,Y qq Ð DpŠ˚´ppZ,ZXY qq

İ

§

§

ξ

İ

§

§

ξ

S̃˚pX,Y q S̃˚´ppZ,ZXY q .

The preceding argument confirms it commutes.

(7.4) Theorem. We have the analogue of Theorem (5.5) for a pair of spaces pX,Y q. In
particular, one has for u P SppX,X ´ Zq, du “ 0, a commutative diagram on homology

HmpX,Y q
Xrθpuqs
´́ Ñ́ Hm´ppZ,Z X Y q

§

§

đ

§

§

đ

H lf
m pX,Y q

Xrus
´́ Ñ́ H lf

m´ppZ,Z X Y q .

with vertical maps canonical isomorphisms.

We also generalize (6.6). Suppose X is a simplicial complex satisfying the condition men-
tioned at the beginning of §6. Let Z be a subcomplex of Z, N be its closed star; then N XY is
the closed star of Z X Y in Y . Assume that the inclusion pZ,Z X Y q Ă pN,N X Y q is a proper
deformation retract.

For a cocycle u P CppX,N cq recall that we have the map Xu : C̃˚pXq Ñ C̃˚´ppNq. For the
restriction u P CppY,N c X Y q we have the map Xu : C̃˚pY q Ñ C̃˚´ppN X Y q. Therefore there
is an induced map

Xu : C̃˚pX,Y q Ñ C̃˚´ppN,N X Y q .

It induces a map on homology

Xrus : Hsimp
m pX,Y q Ñ Hsimp

m´ppN,N X Y q .

Composing with the isomorphism Hsimp
m´ppZ,Z X Y q Ñ Hsimp

m´ppN,N X Y q we obtain a map

Xrus : Hsimp
m pX,Y q Ñ Hsimp

m´ppZ,Z X Y q .

The proof of the next result is parallel to that of (6.6).
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(7.5) Theorem. For an element u P SppX,X ´ Zq with du “ 0, the diagram in the derived
category

S̃˚pX,Y q
Xu

´́ Ñ́ S̃˚´ppN,N X Y q
İ

§

§

ρ

İ

§

§

ρ

C̃˚pX,Y q
Xu

´́ Ñ́ C̃˚´ppN,N X Y q

induces a commutative diagram on homology

H lf
m pX,Y q

Xrus
´́ Ñ́ H lf

m´ppN,N X Y q
„
Ð H lf

m´ppZ,Z X Y q
İ

§

§

ρ

İ

§

§

ρ

İ

§

§

ρ

Hsimp
m pX,Y q

Xrus
´́ Ñ́ Hsimp

m´ppN,N X Y q
„
Ð Hsimp

m´ppZ,Z X Y q .

Localization isomorphisms for Borel-Moore homologies

In the rest of this section, we study the canonical isomorphism, called the localization
isomorphism H˚pX,Y q – H˚pX ´ Y q (for both the Borel-Moore and locally finite homology)
and its compatibility with cap product. For the sheaf theoretic Borel-Moore homology, the
existence of such an isomorphism is a special case of [Br-V, (5.10)]; below we will give a direct
proof.

For the locally finite homology, the existence of the localization isomorphism requires a few
steps.

Unlike the complex ΓpX,DpS˚qq, the complex S̃˚pXq is not contravariantly functorial for
inclusions of open sets, but there is such functoriality in the derived category. For an open set
U of X, we produce maps of complexes

S̃˚pXq Ñ S̃˚pUqX Ð S̃˚pUq ,

the latter map being an isomorphism. By definition,

S̃˚pUqX “ lim
ÐÝ

KPCptpUq

S˚pX,X ´ Kq,

the inverse limit of the complexes S˚pX,X ´Kq for K P CptpUq. The natural maps S˚pU,U ´

Kq Ñ S˚pX,X ´ Kq induce a map S̃˚pUq Ñ S̃˚pUqX , which will be shown to be a quasi-
isomorphism. Also there is obviously a natural map S̃˚pXq Ñ S̃˚pUqX . If V is an open set
contained in U , there is a natural map S̃˚pUqX Ñ S̃˚pV qX .

(7.6) Proposition. The map S̃˚pUq Ñ S̃˚pUqX is a quasi-isomorphism.

Proof. Each map S˚pU,U´Kq Ñ S˚pX,X´Kq is a quasi-isomorphism by the excision theorem.
There is an increasing sequence of compact sets of U

K1 Ă K2 Ă ¨ ¨ ¨

such that Kn Ă IntpKn`1q and YKn “ U . (For example see [Br 2], Theorem 12.11 and its

proof.) Then tC
pnq
˚ “ S˚pX,X ´ Knquně1 is an inverse system of complexes with surjective

transition maps. One thus has an exact sequence

0 Ñ lim
ÐÝ
n

1Hm`1pC
pnq
˚ q Ñ Hmplim

ÐÝ
n

Cpnq
˚ q Ñ lim

ÐÝ
n

HmpCpnq
˚ q Ñ 0 .

33



The same holds for the inverse system of complexes tS˚pU,U ´ Knquně1, so there results an-

other short exact sequence. The groups HmpC
pnq
˚ q are isomorphic for the two inverse systems.

Comparing the two short exact sequences we obtain the assertion.

Thus the maps S̃˚pXq Ñ S̃˚pUqX Ð S̃˚pUq give a map S̃˚pXq Ñ S̃˚pUq in the derived
category, and induces on homology a map H lf

m pXq Ñ H lf
m pUq.

The complex S̃˚pXq is contravariantly functorial for inclusions of open sets. Let V Ă

U Ă X be open sets. The quasi-isomorphism S̃˚pV q Ñ S̃˚pV qX factors as the composition
of quasi-isomorphisms S̃˚pV q Ñ S̃˚pV qU Ñ S̃˚pV qX , the latter the inverse limit of the maps
S˚pU,U ´ Kq Ñ S˚pX,X ´ Kq for K P CptpV q. One has a commutative diagram

S̃˚pXq / / S̃˚pUqX // S̃˚pV qX

S̃˚pUq

OO

// S̃˚pV qU

OO

S̃˚pV q

OO

from which the contravariant functoriality follows.

(7.7) Localization isomorphisms

1. The localization map for singular homology is defined as follows. Let Y be closed, locally
contractible subspace of X, and U “ X ´ Y . Recall by definition S̃˚pX,Y q “ S̃˚pXq{S̃˚pY q.
The composition of the maps S̃˚pY q Ñ S̃˚pXq Ñ S̃˚pUqX is zero, which follows from the map
S˚pY q Ñ S˚pX,X ´ Kq being zero for K P CptpUq. So there is an induced map of complexes
S̃˚pX,Y q Ñ S̃˚pUqX ; this induces on homology a map H lf

m pX,Y q Ñ H lf
m pUq; we will show

below that this is an isomorphism, and call it the localization isomorphism for the singular
homology.

2. Likewise, the composition Š˚pUqX Ñ Š˚pXq Ñ Š˚pY q is zero, since the composition of
maps S˚pX,X´Kq Ñ S˚pXq Ñ S˚pY q is zero. So we get a commutative diagram of complexes
with exact rows

0 Ñ Š˚pX,Y q ´́ Ñ́ Š˚pXq ´́ Ñ́ Š˚pY q Ñ 0
İ

§

§
}

İ

§

§

0 Ñ Š˚pUqX ´́ Ñ́ Š˚pXq ´́ Ñ́ Š˚
Y pXq Ñ 0 .

paq

The vertical arrows are quasi-isomorphisms. The dual of the quasi-isomorphism Š˚pUqX Ñ

Š˚pX,Y q is also a quasi-isomorphism.

3. We give a variant of the map ξ : S̃˚pXq Ñ DpŠ˚pXqq as follows. For K P CptpUq, we
have a map ξ : S˚pX,X ´ Kq Ñ DpS˚pX,X ´ Kqq; passing to the inverse limit we get a map
ξ : S̃˚pUqX Ñ DpŠ˚pUqXq. There is a commutative diagram of complexes

DŠ˚pXq ´́ Ñ́ DpŠ˚pUqXq Ð DpŠ˚pUqXq
İ

§

§

ξ

İ

§

§

ξ

İ

§

§

ξ

S̃˚pXq ´́ Ñ́ S̃˚pUqX Ð S̃˚pUq

34



where the map DpŠ˚pUqXq Ñ DpŠ˚pUqXq is a quasi-isomorphism. The map ξ on the right is
a quasi-isomorphism by §3. Therefore ξ : S̃˚pUqX Ñ DpŠ˚pUqXq is also a quasi-isomorphism.
Deduced from the left square is another commutative diagram of complexes

DŠ˚pX,Y q ´́ Ñ́ DpŠ˚pUqXq
İ

§

§

İ

§

§

S̃˚pX,Y q ´́ Ñ́ S̃˚pUqX .

The map ξ on left is a quasi-isomorphism by (7.2), item 6, so the map S̃˚pX,Y q Ñ S̃˚pUqX is
also a quasi-isomorphism.

4. Let α : ΓcpX, S˚q Ñ ΓcpX, S˚
Y q be the canonical surjection. We have a commutative

diagram of complexes with exact rows, with vertical arrows quasi-isomorphisms.

0 Ñ Kerpαq ´́ Ñ́ ΓcpX, S˚q
α

´́ Ñ́ ΓcpX, S˚
Y q Ñ 0

İ

§

§
}

İ

§

§

0 Ñ ΓcpU, S
˚q ´́ Ñ́ ΓcpX, S˚q ´́ Ñ́ ΓcpX, S˚|Y q Ñ 0 .

pbq

Taking the dual we have a commutative diagram, with horizontal maps isomorphisms and
vertical maps quasi-isomorphisms,

ΓpX,DpS˚qq{ΓpY,DpS˚
Y qq

„
Ñ DpKerαq

§

§

đ

§

§

đ

ΓpX,DpS˚qq{DΓcpY, S
˚|Y q

„
Ñ ΓpU,DpS˚qq

pb1q

in particular a quasi-isomorphism ΓpX,DpS˚qq{ΓpY,DpS˚
Y qq Ñ ΓpU,DpS˚qq. This induces an

isomorphism on homology HmpX,Y q Ñ HmpUq, the localization isomorphism for the Borel-
Moore homology.

5. Both (a) and (b) are diagrams of the same type consisting of six terms. There is a map
of diagrams θ : paq Ñ pbq, given as follows. We have obtained before three quasi-isomorphisms
(denoted θ) Š˚pXq Ñ ΓcpX, S˚q, Š˚pY q Ñ ΓcpX, S˚

Y q, and Š˚
Y pXq Ñ ΓcpX, S˚|Y q; they give

maps from four terms of (a) to the corresponding four terms of (b). There are unique maps of
complexes θ : Š˚pX,Y q Ñ Kerpαq and θ : Š˚pUqX Ñ ΓcpU, S

˚q which, along the other maps,
form a map of diagrams from paq Ñ pbq. This map θ is termwise a quasi-isomorphism.

If we take the dual of the map θ : paq Ñ pbq, we get a commutative diagram,

DŠ˚pXq{DŠ˚pY q
„
Ñ DŠ˚pX,Y q

§

§

đ

§

§

đ

DŠ˚pXq{DŠ˚
Y pXq

„
Ñ DŠ˚pUqX

pa1q

with horizontal maps isomorphisms and vertical maps quasi-isomorphisms, another commuta-
tive diagram

ΓpX,DpS˚qq{ΓpY,DpS˚
Y qq

„
Ñ DpKerαq

§

§

đ

§

§

đ

ΓpX,DpS˚qq{DΓcpY, S
˚|Y q

„
Ñ DpŠ˚pUqXq

pb1q

35



also with horizontal maps isomorphisms and vertical maps quasi-isomorphisms, and a map
diagrams θ1 : pb1q Ñ pa1q which is termwise a quasi-isomorphism. In particular, we have a
commutative diagram of quasi-isomorphisms

ΓpX,DpS˚qq{ΓpY,DpS˚
Y qq Ñ ΓpU,DpS˚qq

§

§

đ
θ1

§

§

đ
θ1

DpŠ˚pX,Y qq Ñ DpŠ˚pUqXq .

6. We have obtained a commutative diagram

ΓpX,DpS˚qq{ΓpY,DpS˚
Y qq Ñ ΓpU,DpS˚qq

§

§

đ
θ1

§

§

đ
θ1

DpŠ˚pX,Y qq Ñ DpŠ˚pUqXq
İ

§

§

ξ

İ

§

§

ξ

S̃˚pX,Y q Ñ S̃˚pUqX .

Recall that the vertical quasi-isomorphisms give the canonical isomorphisms on homology. We
have proven the following theorem.

(7.8) Theorem. There are natural isomorphisms HmpX,Y q Ñ HmpUq and H lf
m pX,Y q Ñ

H lf
m pUq. These isomorphisms are compatible with the canonical isomorphisms HmpX,Y q –

H lf
m pX,Y q and HmpUq – H lf

m pUq from (7.3).

The localization isomorphisms are compatible with cap product:

(7.9) Theorem. Let u P Hp
ZpXq and u|U P HZXUpUq be its restriction. The cap product

Xu on HmpX,Y q and the cap product Xpu|Uq on HmpUq are compatible via the localization
isomorphism, namely the diagram

HmpX,Y q
„
Ñ HmpUq

§

§

đ

Xu

§

§

đ

Xu

Hm´ppZ,Z X Y q
„
Ñ Hm´ppZ X Uq

p7.9.1q

commutes. The same holds for the groups H lf
˚ pX,Y q and H lf

˚ pUq.

Proof. For u P ΓZpX, S˚q closed, the square

ΓpX,DpS˚qq{ΓpY,DpS˚
Y qq ´́ Ñ́ ΓpU,DpS˚qq

§

§

đ

Xu

§

§

đ

Xu

ΓZpY,DpS˚´pqq{ΓZXY pY,DpS
˚´p
Y qq ´́ Ñ́ ΓZXUpU,DpS˚qq

clearly commutes, and the first assertion follows.
Consider next the square

H lf
m pX,Y q

„
Ñ H lf

m pUq
§

§

đ

Xu

§

§

đ

Xu

H lf
m´ppZ,Z X Y q

„
Ñ H lf

m´ppZ X Uq .

p7.9.2q
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There is the canonical isomorphism from each term of square (7.9.1) to the corresponding term
in (7.9.2), so one obtains a cubical diagram. The face (7.9.1) commutes; two of the other faces
commute by the compatibility of cap product with canonical isomorphisms, (5.5) and (7.4);
two of the faces commute by the compatibility of localization isomorphisms and the canonical
isomorphisms, (7.8). From these follows the commutativity of face (7.9.2).

Remark. As the proof shows, the commutativity of the squares comes from the commu-
tativity of the corresponding squares of complexes in the derived category.
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