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Abstract

The blow-up formula for Chow groups of smooth varieties is known; for smooth projec-
tive varieties there is a similar formula for motives. We generalize these and prove blow-up
formulas for higher Chow groups and for mixed motives of smooth quasi-projective vari-
eties.

Introduction. In the theory of ordinary Chow groups, there are the projective bundle
formula, the self-intersection formula, and the blow-up formula. The first proof of the self-
intersection formula and the blow-up formula for the integral Chow group is due to A.T. Lascu,
D. Mumford and D.B. Scott [LMS]; the argument is reproduced in [SGA]. A key idea is the
use of the deformation to the normal cone. For a modern treatment see [Fu, Chap. 6]; the
self-intersection and the blow-up formulas are part of the properties of the refined Gysin maps.

In §1 we consider these formulas for higher Chow groups CHr(X,n). The statements are
parallel to those for ordinary Chow groups (the case n = 0). The projective bundle formula is
known to hold. In (1.1) and (1.2), we consider the self-intersection formula and the blow-up
formula; for the proof we almost follow that in [SGA], using now the localization sequence
for higher Chow groups. From the blow-up formula one can derive the contravariant descent
property for higher Chow groups, Theorem (1.5). This is used in [Ha 2] where we show the
contravariant descent property for cubical hyperresolutions of a variety.

In the rest of this paper, where §1 is not be used except for the case n = 0, we will:
(A) Formulate and prove the analogues of (1.1) and (1.2) for relative motives, and derive

the original (1.1) and (1.2) from them;
(B) Derive from (A) the analogues of (1.1) and (1.2) for mixed motives.
In §2, we briefly recall the definition of D(k), the triangulated category of mixed motives

over a field k, and, assuming the characteristic of k is zero, the construction of the functor
h from the category of smooth quasi-projective varieties to D(k). To each smooth variety X
there corresponds an object h(X) (also denoted L(X) ) of D(k), and to each map f : X → Y
there is a corresponding morphism f ∗ : h(Y )→ h(X).

Further, we show X 7→ h(X) is a “functor” on an appropriate correspondence category of
smooth quasi-projective varieties: For a cycle u on X × Y , which is proper over Y , there is
an induced morphism L(u) : h(X)(r)[2r]→ h(Y )(s)[2s], if codim u = dimX + s− r. Here (r)
denotes the Tate twist, and [2r] is the shift in the triangulated category.

For example if α ∈ CHr(X) there corresponds a morphism C(α) : h(X) → h(X)(r)[2r]. A
proper map f : X → Y induces a morphism f∗ : h(X)(dimX)[2 dimX]→ h(Y )(dimY )[2 dimY ].
There is partial functoriality for morphisms L(u) in the following sense. If Z is another smooth
variety, v a cycle on Y ×Z proper over Z, and if the composition v ◦ u is defined as a cycle on
X × Z, then one has L(v ◦ u) = L(v)L(u).
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We record some formulas involving f ∗, f∗ and C(α), recall the localization sequence from [Ha
2], and prove the projective bundle formula. All these are refinements of the known formulas
for Chow groups. For example if f : X → Y is a map of smooth quasi-projective varieties and
α ∈ CHr(Y ), we have f ∗ ◦C(α) = C(f ∗α)◦f ∗ as morphisms h(Y )→ h(X)(r)[2r]. This reflects
the identity f ∗(α · y) = f ∗(α) · f ∗(y) for y ∈ CH∗(Y ).

In §3, after recalling the definition of the additive category of relative pure motives CHM(S),
where S is a variety, we show the projective bundle, the self-intersection and the blow-up
formulas in the relative setting. A typical object of CHM(S) is of the form h(X/S)(r), where
X is a smooth quasi-projective variety equipped with a projective map to S, and r ∈ Z. For the
prototype of these results, see [Ma] where the blow-up of smooth projective varieties is studied.
Our results and proofs in this section are analogous to those in [Ma]; the identity principle and
the split exact sequence principle play fundamental roles.

We also show that the association h(X/S)(r) 7→ CHr+p(X,n) is a partial functor. Using
this we show the formulas (1.1) and (1.2) for higher Chow groups follow from the formulas for
relative motives.

We naturally expect analogous self-intersection and blow-up formulas to hold for mixed
motives. In § §4 and 5 we prove them. In §4 we show the functor X 7→ h(X) explained in
§2 can be extended to a “partial” functor L from CHM(S) to D(k). Thus to each object M
of CHM(S) there corresponds an object L(M) of D(k); if M = h(X/S)(r), then L(M) =
h(X)(r)[2r]. In addition, if (M,N) is a pair of objects satisfying the condition of admissibility,
and u ∈ HomCHM(S)(M,N), there is an induced map L(u) : L(M)→ L(N).

As explained in §5, if we take, say, the blow-up formula for relative motives, and apply the
partial functor L, we obtain the blow-up formula for mixed motives.

At the end of §5 we indicate an alternative proof of the formulas for mixed motives. It
proceeds by repeating the proof of [SGA], with Chow groups CHr(X) replaced with motives
h(X)(r). One must use the formulas proven in §2. Since the argument is lengthy and not along
the main line of this paper, we only write it down for the self-intersection formula.

We would like to thank the referee who carefully read the manuscript, gave us useful sug-
gestions, and asked for clarification in (3.6).

§1. The blow-up formula for higher Chow groups.

In this paper we consider schemes over a field k.
We refer to [Bl 1] and [Bl 2] for the details of the theory of higher Chow groups. The

following is a list of their properties we will use in this paper.

(1) Let □1 = P1
k − {1} and □n = (□1)n with coordinates (x1, · · · , xn). Faces of □n are

intersections of codimension one faces, and the latter are divisors of the form □n−1
i,a = {xi = a}

where a = 0 or ∞. A face of dimension m is canonically isomorphic to □m.
Let X be an equi-dimensional variety (or a scheme). Let Zr(X × □n) be the free abelian

group on the set of codimension r irreducible subvarieties of X × □n meeting each X × face
properly. An element of Zr(X×□n) is called an admissible cycle. The inclusions of codimension
one faces δi,a : □n−1

i,a ↪→ □n induce the map

∂ =
∑

(−1)i(δ∗i,0 − δ∗i,∞) : Zr(X ×□n)→ Zr(X ×□n−1) .

One has ∂ ◦ ∂ = 0. Let πi : X × □n → X × □n−1, i = 1, · · · , n be the projections, and
π∗
i : Zr(X×□n−1)→ Zr(X×□n) be the pull-backs. Let Zr(X,n) be the quotient of Zr(X×□n)
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by the sum of the images of π∗
i . Thus an element of Zr(X,n) is represented uniquely by a cycle

whose irreducible components are non-degenerate (not a pull-back by πi). The map ∂ induces
a map ∂ : Zr(X,n) → Zr(X,n − 1), and ∂ ◦ ∂ = 0. The complex Zr(X, ·) thus defined is the
cycle complex of X in codimension r. The higher Chow groups are the homology groups of this
complex:

CHr(X,n) = HnZ
r(X, ·) .

Note CHr(X, 0) = CHr(X), the Chow group of X. In this paper we would rather use the
indexing by dimensions: for s ∈ Z, Zs(X, ·) = ZdimX−r(X, ·), and CHs(X,n) is the homology
group.

(2) For a proper map f : X → Y of k-schemes, the push-forward f∗ : Zs(X, ·) → Zs(Y, ·),
hence also f∗ : CHs(X,n)→ CHs(Y, n) is defined.

(3) For a flat map f : X → Y of (relative) equi-dimension d, the pull-backs f ∗ : Zs(Y, ·)→
Zs+d(X, ·) and f ∗ : CHs(Y, n)→ CHs+d(X,n) are defined. If f : X → Y be a map where Y is
smooth and X equi-dimensional, there is a map f ∗ : CHr(Y, n)→ CHr(X,n). In fact there is a
quasi-isomorphic subcomplex Zr(Y, ·)′ of Zr(Y, ·) on which f ∗ : Zr(Y, ·)′ → Zr(X, ·) is defined.

(4) If X is smooth quasi-projective and equi-dimensional, one has the intersection product
CHs(X,n)⊗ CHt(X,m)→ CHs+t−dimX(X,n+m).

(5) Projection formula.
(6) Projective bundle formula.
(7) Localization sequence. If X is a quasi-projective variety and U is an open set, letting

Z = X − U , one has an exact sequence of complexes 0 → Zs(Z, ·) → Zs(X, ·) → Zs(U, ·).
The localization theorem [Bl-2] asserts that the induced map Zs(X, ·)/Zs(Z, ·) → Zs(U, ·) is a
quasi-isomorphism.

For the basic notions of intersection theory, see [Fu]. For a locally free sheaf of O-modules
of finite rank E on a scheme X, let g : P(E) = Proj Sym(E∨)→ X be the associated projective
bundle. So there is a canonical surjection g∗E∨ → O(1).

We will show the self-intersection formula (1.1) and the blow-up formula (1.2) for higher
Chow groups. For ordinary Chow groups, these are in [SGA] or [Fu, §6.7].

More precisely, for ordinary Chow groups, [SGA, 9.1-9.8] proves Theorem (1.1) and (a) of
Theorem (1.2), and [loc. cit. 9.9] proves Theorem (1.2), (b), (c), (e) and (f). For higher Chow
groups, reading CH∗(X,n) for CH∗(X) and changing nothing otherwise in [loc. cit. 9.1-9.8],
one obtains the proof of Theorem (1.1) and Theorem (1.2), (a). (The argument is based only
on the projection formula and the projective bundle formula.) The proof of the rest of Theorem
(1.2) for n ≥ 0, given below, is not the same as [loc. cit. 9.9], and one needs to show (1.2), (d)
using the localization theorem.

(1.1) Theorem (Self-intersection formula). Let X be a smooth quasi-projective variety and
Y ⊂ X a smooth closed subvariety of codimension d, i : Y → X the closed immersion, and
N = NYX the normal bundle. Then

i∗i∗(y) = cd(N) · y

for y ∈ CHk(Y, n). (In [SGA], N denotes the conormal sheaf, which is dual to the normal
bundle.)
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(1.2)Theorem. Let Y be a smooth quasi-projective variety, X ⊂ Y a closed smooth subvariety
of codimension d. Let f : Ỹ → Y be the blow-up of Y along X, X̃ = f−1(X) the exceptional
divisor, g : X̃ → X the induced map, and i : X → Y and j : X̃ → Ỹ the closed immersions.

X̃
j−−−→ Ỹyg yf

X
i−−−→ Y

Let N = NXY denote the normal bundle of X in Y , and E := g∗N/ON(−1) the excess bundle.
Then

(a) For x ∈ CHk(X,n), f
∗i∗x = j∗(cd−1(E) · g∗x).

(b) For y ∈ CHk(Y, n), f∗f
∗y = y.

(c) If x̃ ∈ CHk(X̃, n), g∗(x̃) = j∗j∗(x̃) = 0, then x̃ = 0.
(d) There is an exact sequence

0→ CHk(X̃, n)
a−−−→CHk(X,n)⊕ CHk(Ỹ , n)

b−−−→CHk(Y, n)→ 0

where
a(x̃) = (g∗x̃,−j∗x̃) ,

b(x, ỹ) = i∗(x̃) + f∗(ỹ) .

(e) If ỹ ∈ CHk(Ỹ , n) satisfies f∗ỹ = j∗ỹ = 0, then ỹ = 0.
(f) There is an exact sequence

0→ CHk(X,n)
α−−−→CHk(X̃, n)⊕ CHk(Y, n)

β−−−→CHk(Ỹ , n)→ 0

where
α(x) = (cd−1(E) · g∗x,−i∗(x)) ,

β(x̃, y) = j∗(x̃) + f ∗y .

A left inverse of α is given by γ(x̃, y) = g∗x̃.

Proof. (b) Obvious from the definition.
(c) By the projective bundle formula

x̃ =
d−1∑
i=0

c1(ON(1))
i · g∗xi

with xi ∈ CHk−d+1+i(X,n). Since g∗(c1(ON(1))
i) = 0 for i < d− 1 and = [X] for i = d− 1 (see

[Fu, Proposition (3.1)]) one has
0 = g∗(x̃) = xd−1 .

Using this and the self-intersection formula for j,

0 = j∗j∗(x̃) =
d−2∑
i=0

c1(ON(1))
i+1 · g∗xi .

So xi = 0 for all i, thus x̃ = 0.
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(d) From the localization sequences of i : X → Y and j : X̃ → Ỹ , one deduces the long
exact sequence

→ CHk(X̃, n)
a→ CHk(X,n)⊕ CHk(Ỹ , n)

b→ CHk(X̃, n)→ · · · .

By (c), the map a is injective. So the map b is surjective.
(e) Since f∗(ỹ) = 0, by (d), there exists x̃ such that ỹ = j∗(x̃) and g∗(x̃) = 0. Then

j∗j∗(x̃) = j∗(ỹ) = 0. By (c) x̃ = 0; hence ỹ = 0.
(f) For an arbitrary element ỹ ∈ CHk(Ỹ , n), z := ỹ − f ∗f∗(ỹ) satisfies f∗(z) = 0. As in (e),

there is x̃ such that z = j∗(x̃). So ỹ = f ∗f∗(ỹ) + j∗(x̃); hence the surjectivity of the map β.
(a) implies β ◦ α = 0. There remains the exactness in the middle. Suppose

j∗(x̃) + f ∗(y) = 0 .

Then y = −f∗j∗(x̃) = −i∗g∗(x̃). Let

x̃′ := x̃− cd−1(E) · g∗g∗x̃ ;

then g∗(x̃
′) = 0 since g∗(cd−1(E) · g∗g∗x̃) = g∗(x̃), [Fu, Example 3.3.3]. We have

j∗(x̃
′) = j∗(x̃)− f ∗i∗(g∗x̃) = j∗(x̃) + f∗y = 0 .

By (c), x̃′ = 0, so x̃ = cd−1(E) · g∗g∗x̃, thus (x̃, y) = α(g∗x̃).

(1.3) Corollary. The map

β : Ker[CHk(X̃, n)
g∗−−−→CHk(X,n)]⊕ CHk(Y, n)→ CHk(Ỹ , n)

is an isomorphism.

(1.4) Corollary. Let Zr(X) be the cycle complex of codimension r. The maps

Zr−1(X̃)⊕ Zr(Y )→ Zr−d(X)⊕ Zr(Ỹ ),

(x̃, y) 7→ (g∗x̃, j∗x̃+ f ∗y)

and

Ker[Zr−1(X̃)
g∗−−−→Zr−d(X)]⊕ Zr(Y )→ Zr(Ỹ ),

(x̃, y) 7→ j∗x̃+ f ∗y

are quasi-isomorphisms.

In the above, more precisely one has to replace Zr(Y ) by a quasi-isomorphic subcomplex
in order for f ∗ to be defined. The same remark applies to the following statement, which is
an important case where contravariant descent property for cycle complex holds. For further
development, see [Ha 2].

(1.5) Theorem. Under the same hypothesis the map

(f ∗, g∗) : Cone[Zr(Y )
i∗−−−→Zr(X)]→ Cone[Zr(Ỹ )

j∗−−−→Zr(X̃)]

is a quasi-isomorphism.
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Proof. By the next lemma, the statement is equivalent to the map

(i∗, j∗) : Cone f ∗ → Cone g∗

being an quasi-isomorphism. Since f ∗ : CHr(Y, n) → CHr(Ỹ , n) and g∗ : CHr(X,n) →
CHr(X̃, n) are injective, one has to show the map

(i∗, j∗) : Cok[f ∗ : CHr(Y, n)→ CHr(Ỹ , n)]→ Cok[g∗ : CHr(X,n)→ CHr(X̃, n)]

is an isomorphism.
The following square is commutative:

Ker[CHr−1(X̃, n)
g∗→ CHr−d(X,n)]⊕ CHr(Y, n)

(j∗,f∗)−−−→ CHr(Ỹ , n)yid⊕i∗

yj∗

Ker[CHr−1(X̃, n)
g∗→ CHr−d(X,n)]⊕ CHr(X,n)

(j∗j∗,g∗)−−−−→ CHr(X̃, n) .

The upper horizontal arrow is an isomorphism. So is the lower horizontal arrow by the self-
intersection formula and the projective bundle formula. Hence the assertion follows.

(1.6) Lemma. Let
X

v−−−→ Yyu yu′

Z
v′−−−→ W

be a commutative diagram of complexes of abelian groups. Then (v, v′) : Cone u→ Coneu′ is a
quasi-isomorphism if and only if (u, u′) : Cone v → Cone v′ is a quasi-isomorphism.

Proof. Easy and left to the reader.

§2. The motives of smooth varieties.

We review the notion of a distinguished subcomplex of the cycle complex. See [Ha 1, Part
II, §1] for the case of smooth projective varieties. The generalization to smooth quasi-projective
varieties was communicated to us by M. Levine, and included in [Ha 1, Part I, §1].

Let X be a smooth quasi-projective variety. Let Y be another smooth quasi-projective
variety and W = {Wi} a finite set where Wi is an irreducible closed set of X×Y ×□ℓi meeting
faces properly. Let Zr

W (X, ·) be the subcomplex of Zr(X, ·) generated by irreducible cycles z in
Zr(X,n) satisfying the following condition: For each face F ⊂ □n,

z × Y ×□ℓi and Wi × F meet properly in X × Y ×□n+ℓi .

The inclusion of the subcomplex ZW (X, ·) ↪→ Z(X, ·) is a quasi-isomorphism. A subcomplex
of this form is called a distinguished subcomplex; it is simply written Zr(X, ·)′ when it is not
necessary to specify W .

For X, Y smooth quasi-projective, let Zr
pr(X,Y, ·) be the subcomplex of Zr(X × Y, ·) gener-

ated by irreducible subvarieties z whose support |z| is proper over Y . As a consequence of the
moving lemma, one has:

(1) For f ∈ Zs
pr(X,Y, ℓ), there is a distinguished subcomplex Zr(X, ·)′ such that the map of

graded abelian groups
f∗ : Z

r(X, ·)′ → Zr+s−dimY (Y, ·+ ℓ) ,
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f∗(z) = pY ∗[(f×□n)·(z×Y ×□ℓ)], is defined. More generally for any T smooth quasi-projective,
there is a distinguished subcomplex Zr(T ×X, ·)′ such that the map

f∗ : Z
r(T ×X, ·)′ → Zr+s−dimY (T × Y, ·+ ℓ) ,

is defined. One has
(∂f)∗(z) = ∂(f∗(z))− (−1)ℓf∗(∂z) .

For ℓ = 0, f∗ is a map of complexes. If f1, f2 ∈ Zs
pr(X,Y, 0) and f1 − f2 = ∂F for an element

F ∈ Zs
pr(X,Y, 1), then (f1)∗ and (f2)∗ are homotopy equivalent.

(2) Let f ∈ Zs
pr(X, Y, ℓ), g ∈ Zt

pr(Y, Z,m) be elements such that {f ×Z, X × g} is properly
intersecting inX×Y×Z; then g◦f ∈ Zs+t−dimY

pr (X,Z, ℓ+m) is defined. Let T be another smooth
quasi-projective variety. We then have distinguished subcomplexes Z(T × X, ·)′, Z(T × Y, ·)′
such that the maps

f∗ : Z(T ×X, ·)′ → Z(T × Y, ·+ ℓ)′ ,

g∗ : Z(T × Y, ·)′ → Z(T × Z, ·+m) ,

(g ◦ f)∗ : Z(T ×X, ·)′ → Z(T × Z, ·+ ℓ+m) ,

are all defined and (g ◦ f)∗ = g∗f∗. This can be generalized to the case of a finite sequence of
composable correspondences.

Let α ∈ CHr(X). Take a representative α̃ ∈ Zr(X, 0) of α, and consider

δ∗(α̃) ∈ Zr+dimX(X ×X, 0)

where δ : X → X × X is the diagonal embedding. Note δ∗(α̃) ∈ Zr+dimX
pr (X,X, 0). We have

the induced map
(δ∗(α̃))∗ : Z

s(X, ·)′ → Zs+r(X, ·) ;
its homotopy class is independent of the choice of a representative.

Let φ : X → Y be a map of smooth quasi-projective varieties. Its graph Γφ ⊂ Y ×X is an
element of ZdimY

pr (Y,X, 0), and induces the map

φ∗ = (Γφ)∗ : Z
r(Y )′ → Zr(X) .

If φ is proper, taking the transpose one has a correspondence tΓφ ⊂ X × Y ∈ ZdimY
pr (X,Y, 0).

It induces the map
φ∗ = (tΓφ)∗ : Z

r(X)→ Zr−dimX+dimY (Y ) .

We refer to [Ha 1] or [Ha 2, §4] for the details about the triangulated category of mixed
motives D(k). In [Ha 1] we took the rational cycle complex and considered a Q-linear category,
but if we take the integral cycle complex as in §1, we obtain a Z-linear category. (In this case,
however, we do not have duals or internal Hom’s.) For the purposes of this paper, we recall
some definitions.

(1) A finite symbol K over k is a finite formal sum
⊕

α(Xα, rα), where Xα is a smooth
projective variety and rα an integer. One has the direct sum and the tensor product for finite
symbols: (X, r) ⊗ (X ′, r′) = (X ×X ′, r + r′). For finite symbols K, K ′, one has a complex of
abelian groups Hom(K,K ′)•. If K = (X, r) and K ′ = (Y, s), then

Hom((X, r), (Y, s) )• = ZdimX+s−r(X × Y,−•) .
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For finite symbols K,K ′ and K ′′, there is a partially defined, associative composition map

Hom(K,K ′)• ⊗ Hom(K ′, K ′′)• −− → Hom(K,K ′′)• .

(2) The category D(k) is a pseudo-abelian triangulated category with tensor product. It
is the pseudo-abelianization of a slightly smaller triangulated tensor category Dfinite(k) which
we now describe. An object of Dfinite(k) is of the form K = (Km; fm,n) where Km are finite
symbols indexed by m ∈ Z, almost all of which being zero, and fm,n ∈ Hom(Km, Kn)−n+m+1,
m < n, are elements satisfying the condition

(−1)n∂fm,n +
∑

m<ℓ<n

f ℓ,n ◦ fm,ℓ = 0 .

For objects K,L in Dfinite(k), one has a complex of abelian groups Hom(K,L)•, general-
izing Hom(K,L)• for finite symbols. For three objects K,L,M , there is a partially defined
composition map

Hom(K,L)• ⊗ Hom(L,N)• −− → Hom(K,L)•

defined on a quasi-isomorphic subcomplex. The homomorphism group in Dfinite(k) is defined
by

HomDfinite(k)(K,L) = H0 Hom(K,L)• ,

and the composition of morphisms induced from the above composition map by taking the 0-th
cohomology.

It is a theorem thatDfinite(k) thus defined has the structure of a tensor triangulated category
(see [Ha 1, II, §4] ).

We have the Tate object Z(r) defined as (pt, r) placed in degree 2r. Thus for K in Dfinite(k),
the Tate twist K(r) = K⊗Z(r) is defined. Specifically, K⊗Z(r) is the object (L; gm,n), where

Lm = Km−2r ⊗ (pt, r) ,

gm,n = fm−2r,n−2r ∈ Hom(Lm, Ln)• = Hom(Km−2r, Kn−2r)• .

So K(r)[2r] is the object (Km ⊗ (pt, r); fm,n).
In this paper we work in Dfinite(k), so write it simply D(k).
(4) There is a natural functor from the category of smooth projective varieties

h : (Smooth Proj /k)opp → D(k) ,

which takes X to (X, 0) placed in degree 0. There is a functor

CHr(−, n) = HomD(k)(Z(0), (−)(r)[2r − n]) : D(k)→ (Ab) ,

so that for X smooth projective CHr(h(X), n) = CHr(X,n).

We recall the definition of the functor of cohomological motives for smooth quasi- projective
varieties. This is mostly taken from [Ha 2, §5]. For the rest of this paper we assume the char-
acteristic of k is zero. Let (Smooth Q-Proj /k) denote the category of smooth quasi-projective
varieties over k.

For a smooth projective variety T , t ∈ Z, X in (Smooth Q-Proj /k) and r ∈ Z define a
complex

H((T, t), (X, r) )• := ZdimX−r+t(T ×X,−•)
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(“correspondences” from (T, t) to (X, r)). For an object K ∈ D(k) define

H(K, (X, r))• = Tot (Km, (X, r))• ,

where the right hand side is the total complex of a collection of complexes, defined in [Ha 2,
§4]. Set H(K, (X, r)) = H0H(K, (X, r))•, the 0-th cohomology. When r = 0, we also write
H(K,X) for H(K, (X, 0) ). We have a partially defined map (K ′ another object of ObD(k))

Hom(K ′, K)• ⊗H(K, (X, r))• −− → H(K ′, (X, r))•

v ⊗ α 7→ α ◦ v .

It can be shown this map is defined on quasi-isomorphic subcomplexes by an argument similar
to [Ha 2, II, §1]. Passing to cohomology one has

HomDfinite(k)(K
′, K)⊗H(K, (X, r))→ H(K ′, (X, r)) .

We have the following functoriality in v, both at the chain level and on cohomology: α◦(v◦v′) =
(α ◦ v) ◦ v′.

For X, Y smooth quasi-projective, let

Hom((X, r), (Y, s) )• = ZdimX+s−r
pr (X, Y,−•) .

For T smooth projective and f ∈ Hom((X, r), (Y, s) )ℓ, one has the map

f∗ : H((T, t), (X, r) )• → H((T, t), (Y, s) )•+ℓ ;

here we take an appropriate distinguished subcomplex of H((T, t), (X, r) )• denoted by the same
notation. Thus for an object K ∈ D(k) we have

f∗ : H(K, (X, r) )• → H(K, (Y, s) )•+ℓ .

One has (∂f)∗ = ∂ ◦ f∗ − (−1)ℓf∗ ◦ ∂. If g ∈ Hom((Y, s), (Z, t) )m and g ◦ f is defined, then the
maps g∗, (g ◦ f)∗ are also defined and one has the identity g∗f∗ = (g ◦ f)∗. Here one must take
appropriate quasi-isomorphic subcomplexes of H(K, (X, r) )• and H(K, (Y, s) )•. The same for
a composable sequence of correspondences.

If f ∈ Hom((X, r), (Y, s) )0, then f∗ is a map of complexes, so there is an induced map on
cohomology, denoted by the same f∗ : H(K, (X, r) ) → H(K, (Y, s) ). It depends only on the
class [f ] ∈ H0 Hom((X, r), (Y, s) )•. The following associativity holds, both at the chain level
and on cohomology:

α ◦ (v ◦ v′) = (α ◦ v) ◦ v′ if v and v′ are compolable,

(f∗α) ◦ v = f∗(α ◦ v) .

(2.1)Definition. LetX ∈ Ob (Smooth Q-Proj /k)) and r ∈ Z. A pair (L, α) where L ∈ D(k),
α ∈ H(L, (X, r)) is a left resolution of (X, r) if for any K ∈ D(k) the map

α ◦ (−) : HomD(k)(K,L)→ H(K, (X, r))
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is an isomorphism. A left resolution is unique up to unique isomorphism.

(2.2) Theorem. (1) For any object X of (Smooth Q-Proj /k) and r ∈ Z, its left resolution
L((X, r)) exists. When r = 0, we write L(X) or h(X) for L((X, 0)). One has L((X, r)) =
L(X)(r)[2r].

(2) For u ∈ H0 Hom((X, r), (Y, s) ), there is a unique morphism L(u) : L((X, r))→ L((Y, s))
such that the diagram

HomD(k)(K,L((X, r))
∼→ H(K, (X, r) )yL(u)

yu∗

HomD(k)(K,L((Y, s))
∼→ H(K, (Y, s) )

commutes. If elements u ∈ Hom((X, r), (Y, s) )0 and v ∈ Hom((Y, s), (Z, t) )0 are composable,
then L(v ◦ u) = L(v)L(u).

(3) For α ∈ CHr(X) there is the associated map Cα : h(X) → h(X)(r)[2r]. For a proper
map f : X → Y of smooth quasi-projective equi-dimensional varieties, there is the associated
map f∗ : h(X)(dimX)[2 dimX]→ h(Y )(dimY )[2 dimY ]. The association X 7→ L(X) uniquely
extends to a functor

h : (Smooth Q-Proj /k)opp → D(k)

such that the isomorphism
HomD(k)(K,L(X))→ H(K,X)

is contravariantly functorial in X. Similarly X 7→ L(X)(dimX)[2 dimX] extends to a functor

h′ : (Smooth Q-Proj /k; proper)→ D(k)

such that the isomorphism

HomD(k)(K,L(X)(dimX)[2 dimX])→ H(K, (X, dimX) )

is covariantly functorial for proper maps in X.

Remark. We call h(X) = L(X) the cohomological motive of X.
For f : X → Y , f ∗ = h(f) : h(Y ) → h(X) induces the pull-back f ∗ : CHr(Y, n) →

CHr(X,n) under the functor CHr(−, n). The Cα in (2) induces the multiplication by α:
CHp(X,n) → CHr+p(X,n). The f∗ induces the push-forward f∗ : CHs(X,n) → CHs(Y, n).

Proof. (1) Let X ∈ (Smooth Q-Proj /k), irreducible, and take its smooth compactifica-
tion, namely an open immersion j : X → X̄ where X̄ is smooth projective and D = X̄ −X is
a divisor with normal crossings. Let D(i) be the i-fold intersection of the components of D so
one has a strict simplicial variety augmented to X̄

· · · →→
→
D(1)

d0
⇒
d1

D(0) → X̄ .

Taking its associated diagram (take the alternating sum of the transposes of the graphs of the
face maps) one obtains an object of D(k)

(X̄&D) := [· · · → (D(1),−2)→ (D(0),−1)→ (X̄, 0)]
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where X̄ in degree 0. It follows from the localization theorem that for any T smooth projective
and any s, the restriction

j∗ : Zs(T × (X̄&D))−−−→Zs(T ×X)

is a quasi-isomorphism. So if we define α = [Γj] (the graph of j) then ((X̄&D), α) is a left
resolution of X.

Since H(K, (X, r) )• = H(K(−r)[−2r], (X, 0) )•, if L(X) and α ∈ H(L(X), (X, 0) ) is a left
resolution of X, then L(X)(r)[2r] and α ∈ H(L(X)(r)[2r], (X, r) ) is a left resolution of (X, r).

(2) is obvious from the definitions and the Yoneda lemma.
(3) follows from (2) applied to δ∗(α), Γf , and

tΓf .

We often write h(X)((r)) instead of h(X)(r)[2r]. The morphism Cα is also denoted by
C(α), or just α.

(2.3) Proposition. (1) For α ∈ CHr(X) and β ∈ CHs(X),

C(β) ◦ C(α) = C(α · β) : h(X)→ h(X)((r + s)) . (2.3.1)

(2) For a proper map f : X → Y and α ∈ CHr(X), one has

f∗ ◦ C(α) ◦ f ∗ = C(f∗α) : h(Y )→ h(X)((r − dimX + dimY )) . (2.3.2)

Here f∗α ∈ CHr−dimX+dimY (Y ).
(3) For a proper map f : X → Y and α ∈ CHr(Y ),

f∗ ◦ C(f ∗α) = C(α) ◦ f∗ : h(X)→ h(Y )((r − dimY + dimX)) . (2.3.3)

(4) For a map f : X → Y and α ∈ CHr(Y ),

f ∗ ◦ C(α) = C(f ∗α) ◦ f ∗ : h(Y )→ h(X)((r)) . (2.3.4)

(5) Let
X

f−−−→ Yxg′ xg

X ′ f ′
−−−→ Y ′

be a Cartesian diagram of equi-dimensional smooth quasi-projective varieties such that g, g′ are
closed immersions with the same codimension d. Then

f ∗ ◦ g∗ = g′∗ ◦ f ′∗ : h(Y ′)→ h(X)((d)) . (2.3.5)

(6) Let
X

f−−−→ Yxg′ xg

X ′ f ′
−−−→ Y ′

be a Cartesian diagram of equi-dimensional smooth quasi-projective varieties such that f , f ′

are proper and g, g′ are open immersions. Then

f∗ ◦ g′∗ = g∗ ◦ f∗ . (2.3.6)
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Proof. In each case the proof is reduced to the equality of the cycles representing the two
sides of the identity. We show (1) and (2) to illustrate the method.

For (1), take representatives α̃ ∈ Zr(X, 0) and β̃ ∈ Zs(X, 0) for α, β, which meet properly
in X. Then δ∗(α̃)×X and X×δ∗(β̃) meet properly in X×X×X, and δ∗(β̃)◦δ∗(α̃) = δ∗(α̃ · β̃).
This shows (1).

For (2), let α̃ ∈ Zr(Y, 0) be a representative of α such that f ∗α̃ ∈ Zr(X, 0) is defined. Then
δX∗(f

∗α̃) ∈ Hom((X, 0), (X, r) )0 represents C(f ∗α). Recall tΓf ∈ Hom((X, dimX), (Y, dimY ) )0

represents f∗. The composition

tΓf ◦ δX∗(f
∗α̃) ∈ H((X, 0), (Y, r − dimX + dimY ) )0

is defined and equal to (tγf )∗(f
∗α̃). Here tγf : X ↪→ X×Y is (the transpose of) the graph of f .

So f∗ ◦ C(f ∗α) is represented by (tγf )∗(f
∗α̃). On the other hand the composition δY ∗(α̃) ◦ tΓf

is also defined, and also equal to (tγf )∗(f
∗α̃).

(2.4) Proposition. Let X be a smooth quasi-projective variety, i : Z ↪→ X a smooth closed
subvariety of codimension d, and j : U = X − Z → X the open immersion of the complement.
Then there is a distinguished triangle of the form

h(Z)((−d)) i∗−−−→h(X)
j∗−−−→h(U) [1]−−−→ .

This follows from [Ha 2, Theorem (2.9)].

(2.5) Proposition. Let X be a smooth quasi-projective variety. For E a locally free sheaf of
rank r + 1, one has p : P = P(E) → X the associated projective bundle, and ξ = c1(O(1)) ∈
CH1(X). Then the morphism∑

0≤i≤r

C(ξi) ◦ p∗ :
r⊕

i=0

h(X)((−i))→ h(P )

is an isomorphism.

Proof. We show
∑

0≤i≤r C(ξ
i) ◦ p∗ is an isomorphism, its inverse being given by (p∗ ◦

C(ξr−i))i=0,··· ,r. That it gives a left inverse follows from:

p∗ ◦ C(ξi) ◦ p∗ = C(p∗ξ
i) =

{
[X] if i = r ,

0 if i ̸= r .

To show
∑

0≤i≤r C(ξ
i) ◦ p∗ is an isomorphism we proceed by induction on dimX; using the

preceding proposition reduce to the case of the trivial bundle P = X×Pr. Then one can verify

r∑
i=0

C(ξi) ◦ p∗ ◦ p∗ ◦ C(ξr−i) = idh(P ) (2.5.1)

as follows. If H i ⊂ Pr is a codimension r subspace, ξi is represented by X ×H i ⊂ X ×Pr = P .
The composition

δ∗(X ×H i) ◦ Γp ◦ tΓp ◦ δ∗(X ×Hr−i)
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equals X × Hr−i × H i, so (2.5.1) is represented by
∑
X × H i × Hr−i on P ×X P ⊂ P × P .

Since
∑
Hr−i ×H i ∼ ∆Pr (rational equivalence on Pr × Pr), one has∑

X ×Hr−i ×H i ∼ ∆P

in Zpr(P, P, 0), hence follows (2.5.1).

§3. The blow-up formula for relative motives.

We will state and prove the projective bundle formula and the blow-up formula in the
relative setting. It is then shown the association (X/S, r) 7→ CHp+r(X,n) is a partial functor.
From this we derive the projective bundle formula and the blow-up formula for higher Chow
groups, reproving the results in §1.

Let S be a quasi-projective variety over k. There is the theory of Chow motives over S,
generalizing Chow motives over Spec k as in [Ma]. For the details see [CH]. In this section we
consider ordinary (integral) Chow groups as in [Fu].

The category of Chow motives over S is denoted by CHM(S). It is a pseudo-abelian category.
A typical object is of the form (X/S, r) where X is a smooth variety with a projective map to
S and r is an integer. Morphisms between such objects are

Hom((X/S, r), (Y/S, s)) =
⊕
j

CHdimYj−s+r(X ×S Yj)

where Yj are the components of Y . Composition of morphisms can be adequately defined,
which we will not recall here. One must add images of projectors of objects as above to arrive
at a pseudo-abelian category. We let h(X/S)(r) = (X/S, r).

For convenience write (Smooth Q-Proj ; proj/S) for the category of smooth quasi-projective
varieties equipped with projective maps to S. If X and Y are in (Smooth Q-Proj ; proj/S) and
f : X → Y is an S-morphism, there is an induced morphism

f ∗ : h(Y/S)→ h(X/S)

and if moreover X and Y are equi-dimensional there is a morphism

f∗ : h(X/S)(dimX)→ h(Y/S)(dimY ) .

For α ∈ CHr(X) let Cα = δ∗(α) ∈ CHdimX−r(X ×S X) where δ : X → X ×S X is the diagonal;
it gives a map Cα, or just α, from h(X/S) to h(X/S)(r).

One states an identity principle (the proof is obvious).

(3.1) Proposition. Let
u : (X/S, r)→ (Y/S, s)

be a morphism in CHM(S). It is zero if and only if the induced map under Hom((Z/S, i),−),
for each (Z/S, i)

u∗ : CHdimX+i−r(Z ×S X)→ CHdimY+i−s(Z ×S Y )

is zero.

The following fact (3.2) is [Ma, Proposition in §5].
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(3.2) Proposition. Let D be a pseudo-abelian category,

Y
a
→←
c
X

b→ Z (3.2.1)

be objects and morphisms in D such that ca = idY and for any object T the sequence

0→ HomD(T, Y )
a◦(−)−−−→HomD(T,X)

b◦(−)−−−→HomD(T, Z)→ 0

is exact. Then the sequence (3.2.1) is split exact, i.e. isomorphic to

Y
(idY ,0)−−−→Y ⊕ Z p2−−−→Z .

(3.3) Theorem. Let X be a smooth quasi-projective variety with a projective map to S, E a
locally free sheaf of rank r + 1 on X, and P(E) the associated projective bundle. Then there is
a canonical isomorphism in CHM(S)

h(P(E)/S) = h(X/S)⊕ h(X/S)(−1)⊕ · · · ⊕ h(X/S)(−r) .

Proof. Let P = P(E), π : P → X the projection, and h = c1(O(1)) ∈ CH1(P ). Let, for
j = 0, · · · , r,

φj = Chj ◦ π∗ : h(X/S)(−j)→ h(P/S) , and

ψj : π∗ ◦ Chr−j : h(P/S)→ h(X/S)(−j) .

One has the identities
ψj ◦ φj = id and

∑
j

φj ◦ ψj = id .

To verify this, by the identity principle, one reduces to the projective bundle formula for Chow
groups for the projective bundle P ×S Z → Z. Thus φ = φ0 + · · · + φr and ψ = (ψ0, · · · , ψr)
give mutually inverse isomorphisms between h(X/S)⊕ · · · ⊕ h(X/S)(−r) and h(P/S).

To state the blow-up sequence, in the situation of Theorem (1.2), we further assume Y is
equipped with a projective map to a quasi-projective variety S. Then the varieties Y , X, Ỹ
and X̃ may be viewed as relative motives h(Y/S), etc.

(3.4) Theorem. There is a split exact sequence in CHM(S)

h(X/S)(−d) α−−−→h(X̃/S)(−1)⊕ h(Y/S) β−−−→h(Ỹ /S)

where
α = (cd−1(E) ◦ g∗,−i∗), β = j∗ + f ∗ .

A left inverse of α is given by γ = g∗.
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Proof. If f : X → Y is a map over S and f ∗ : h(Y/S)→ h(X/S), then the map it induces
CHdimY+i(Z ×S Y ) → CHdimX+i(Z ×S X) coincides with the refined Gysin map f ! (see [Fu,
§6]). We leave the proof of this fact to the reader.

In order to prove the theorem, we have to note that the blow-up formula for ordinary Chow
groups holds universally in the following sense. Let Y ′ → Y be a map from a not necessarily
smooth variety Y ′. By base change one obtains a Cartesian square

X̃ ′ j′−−−→ Ỹ ′yg′ yf ′

X ′ i′−−−→ Y ′

Then all the statements in Theorem (1.2) holds for the ordinary Chow groups (n = 0) if one
replaces f, g, i, j by f ′, g′, i′, j′ respectively, E by its pull-back E ′ to X ′, g∗ by g′∗, and f ∗ by f !

(the refined Gysin map). In particular one has an exact sequence

0→ CHk(X
′)

α−−−→CHk(X̃
′)⊕ CHk(Y

′)
β−−−→CHk(Ỹ

′)→ 0

where
α(x) = (cd−1(E

′) · g′∗x,−i′∗(x)), β(x̃, y) = j′∗(x̃) + f !y ,

with left inverse of α given by γ(x̃, y) = g′∗x̃. The proof is the same as in [Fu, §6].
Thus for each (Z/S, i) in CHM(S), the induced sequence

0→ Hom((Z/S, i), h(X/S)(−d))→ Hom((Z/S, i), h(X̃/S)(−1)⊕ h(Y/S))
→ Hom((Z/S, i), h(Ỹ /S))→ 0

is exact. The identity γ ◦α = id also is verified using the identity principle and reducing to the
corresponding identity for Chow groups.

(3.5) Corollary. There is a canonical isomorphism in CHM(S)

h(Ỹ /S) = h(Y/S)⊕
d−1⊕
i=1

h(X/S)(−i) .

This follows from (3.3) and (3.4).
We also have the self-intersection formula in the relative setting; this is related to (1.1) for

ordinary Chow groups.
To state the self-intersection formula, in the situation of (1.1) assume X is equipped with a

projective map to S. The we have:

(3.6) Theorem. We have the identity

i∗ ◦ i∗ = C(cd(N)) : h(Y/S)→ h(Y/S)(d) . (3.6.1)

15



Proof. The proof of this is similar to that of (3.4), using that (1.1) for ordinary Chow
groups holds universally, in the sense we specify below.

We apply the functor Hom((Z/S, i),−) and verify the two induced maps coincide. The
outline is as follows.

For an element α ∈ CHr(Y ), let C(α) : h(Y/S) → h(Y/S)(r) be the corresponding map.
For each (Z/S, i) in CHM(S), the induced map

C(α) ◦ (−) : CHdimY+i(Z ×S Y )→ CHdimY−r+i(Z ×S Y )

coincides with g∗(α)(−). Here g : Z ×S Y → Y is the projection and g∗(α) ∈ Ar(Z ×S Y ) (the
latter is Chow cohomology, [Fu, §17.3]). Concretely g∗(α) is the collection of maps

g∗(α)(−) : CH∗(Z ×S Y )→ CH∗−r(Z ×S Y )

given by g∗(α)(u) = γ∗(u× α), where γ : Z ×S Y → (Z ×S Y )× Y is the graph of g (since γ is
a regular embedding the pull-back γ∗ is defined). The proof is straightforward. If α = cr(E),
the Chern class of a vector bundle, then g∗(α) = cr(g

∗E).
On the other hand consider any fiber square

Y ′ i′−−−→ X ′yg yf

Y
i−−−→ X

over i. For y′ ∈ CH∗(Y
′) we have i!i′∗(y

′) = cd(g
∗N) ∩ y′. This variant of the self-intersection

formula follows from [Fu, Corollary (6.3)], by an argument analogous to the one following [Fu,
Corollary (6.3)].

In particular for the fiber square

Z ×S Y
i′−−−→ Z ×S Xyg y

Y
i−−−→ X

and u ∈ CH∗(Z ×S Y ), one has i!i′∗(u) = cd(g
∗N) ∩ u

Since the map i∗ ◦ i∗ induces the map i!i′∗ on Chow groups upon applying the functor
Hom((Z/S, i),−), we obtain the assertion.

(3.7) Let (X/S, r), (Y/S, s) be a pair of objects in CHM(S). We say the pair is admissible if
X ×S Y is smooth over k (the projections to X, Y need not be smooth). For such a pair we
define a map, for each p, n,

HomCHM(S)((X/S, r), (Y/S, s))→ Hom(CHp(X,n),CHp+s−r(Y, n)), u 7→ u∗ ,

where u∗ is the composition

CHp(X,n)
pr∗X−−−→CHp(X ×S Y, n)

u−−−→⊕j CHdimYj−s+r−p(X ×S Yj, n)
prY ∗−−−→⊕j CHdimYj−s+r−p(Yj, n) = CHp+s−r(Y, n) .

The map u 7→ u∗ is additive.
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A triple (X/S, r), (Y/S, s), (Z/S, t) of objects is said to be admissible if the productsX×SY ,
Y ×SZ, X×SZ, and X×S Y ×SZ are all smooth. Then for u ∈ HomCHM(S)((X/S, r), (Y/S, s) )
and v ∈ HomCHM(S)((Y/S, s), (Z/S, t) ), the composition

v ◦ u ∈ HomCHM(S)((X/S, r), (Z/S, t) )

is defined by the usual formula v ◦u = p13∗(p
∗
12u ·p∗23v), where for example p12 : X×S Y ×S Z →

X ×S Y is the projection. It is easy to verify (v ◦ u)∗ = v∗ ◦ u∗.
This can be generalized to the case of more than three objects (X1/S, r1), · · · , (Xn/S, rn)

and ui ∈ HomCHM(S)((Xi, ri), (Xi+1, ri+1) ), i = 1, · · · , n − 1. One can further extend this by
linearity to a sequence of objects M1, · · · ,Mn of CHM(S).

(3.8) We give an alternative proof of Theorem (1.2), (a) and (f). We take S = Y in (3.4), and
get a split exact sequence in CHM(Y )

h(X/Y )(−d) α−−−→h(X̃/Y )(−1)⊕ h(Y/Y )
β−−−→h(Ỹ /Y )

where α = (cd−1(E) ◦ g∗,−i∗), β = j∗ + f ∗ , and γ = g∗ satisfies γ ◦ α = id.
Note the pairs (X, X̃), (X,Y ), (X̃, Ỹ ), and (Y, Ỹ ) are all admissible over Y ; in addition the

triples (X, X̃,X), (X,Y,X), (X, X̃, Ỹ ), and (X,Y, Ỹ ), which are relevant for the compositions
γ ◦ α and β ◦ α, are all admissible. Thus one can apply (3.6) and obtains maps α∗, β∗, and γ∗
between the higher Chow groups, with the relation γ∗α∗ = id, β∗α∗ = 0.

(3.9) For an alternative proof of Theorem (1.1), we take the self-intersection formula in (3.6.1),
with S = X. The triple (X,Y,X) is admissible. Thus (3.6.1) implies the corresponding equality
for maps between higher Chow groups. (Recall Theorem (1.2), (b)-(e) follows from (1.1) and
(1.2)(a), (f).)

§4. Left resolutions of relative motives.

We show the left resolution X 7→ L(X) can be extended to relative motives. Indeed we will
construct a partial functor L : CHM(S)→ D(k). First note that the definition of the complex
H(K,X)• and the notion of left resolution can be extended in an obvious way to the case of
objects in CHM(S). For a smooth projective variety T , t ∈ Z and (X/S, r) in CHM(S), define

H((T, t), (X/S, r))• := ZdimX−r+t(T ×X,−•) .

It is no different from H((T, t), (X, r))• defined in §2. By linearity one has the function
complex H((T, t),M)• for M ∈ CHM(S). For an object K ∈ D(k) define

H(K,M)• = Tot (Km,M)•

and H(K,M) := H0H(K,M)•.
Define a complex of abelian groups

HomS((X/S, r), (Y/S, s))
• =

⊕
j

ZdimYj−s+r(X ×S Yj,−•) ,

and extend it by linearity to define HomS(M,N)• for M,N in CHM(S). Note that

H0 HomS(M,N)• = HomCHM(S)(M,N) .
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Recall a pair (X, Y ) is said to be admissible if X×SY is smooth. The notion of admissibility
obviously extends to pairs of objects in CHM(S). Similarly for three or more varieties in
(Smooth Q-Proj ; proj/S) (or objects of CHM(S)) we have the notion of admissibility.

Assume now (M,N,L) is an admissible triple in CHM(S). There is a partially defined map
(defined on a quasi-isomorphic subcomplex)

HomS(M,N)• ⊗ HomS(N,L)
• −− → HomS(M,L)• .

On 0-th cohomology this induces the composition map in CHM(S).

There are compositions with H(K,M)• from right and left. One has partially defined maps

Hom(K ′, K)• ⊗H(K,M)• −− → H(K ′,M)•, v ⊗ α 7→ α ◦ v,

H(K,M)• ⊗ HomS(M,M ′)• −− → H(K,M ′)•, α⊗ u 7→ u ◦ α .

Both are defined on quasi-isomorphic subcomplexes. We have associativity as follows at chain
level and on 0-th cohomology:

(u ◦ α) ◦ v = u ◦ (α ◦ v) ,

(u ◦ u′) ◦ α = u ◦ (u′ ◦ α), α ◦ (v ◦ v′) = (α ◦ v) ◦ v′ .

(4.1) Definition. Let M ∈ ObCHM(S). A pair (L, α) where L ∈ D(k), α ∈ H(L,M) is a
left resolution of M if for any K ∈ D(k) the map

α ◦ (−) : HomD(k)(K,L)→ H(K,M)

is an isomorphism. A left resolution is unique up to unique isomorphism.

The proof of the following theorem is parallel to that of (2.2).

(4.2) Theorem. (1) Each object M of CHM(S) has a left resolution L(M). If (M,N) is
an admissible pair of objects of CHM(S) and u ∈ HomCHM(S)(M,N), there exists a unique
morphism L(u) : L(M)→ L(N) such that the following square commutes.

HomD(k)(K,L(M)) −−−→ H(K,M)yL(u)

yu◦(−)

HomD(k)(K,L(N)) −−−→ H(K,N) .

If (M,N,L) is an admissible triple, u ∈ Hom(M,N) and v ∈ Hom(N,L), then L(v ◦ u) =
L(v)L(u).

(2) For X ∈ (Smooth Q-Proj ; proj/S) , one has

L((X/S, r)) = L((X, r)) = h(X)(r)[2r]

where L((X, r)) is the left resolution of (X, r) defined in §2.
(3) If f : X → Y is a map of objects in (Smooth Q-Proj ; proj/S) , and f ∗ : h(Y/S) →

h(X/S) the corresponding morphism in CHM(S), then the induced morphism L(f ∗) : h(Y ) →
h(X) coincides with f ∗ in §2. For a proper map f : X → Y of such varieties over S, and the
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morphism f∗ : h(X/S)(dimX)→ h(Y/S)(dimY ), the induced L(f∗) : h(X)(dimX)[2 dimX]→
h(Y )(dimY )[2 dimY ] coincides with the f∗ in §2.

For α ∈ CHr(X) and the corresponding morphism Cα : h(X/S) → h(X/S)(r), the induced
morphism L(Cα) : h(X)→ h(X)(r)[2r] coincides with the Cα in §2.

§5. The blow-up formula for mixed motives.

We give analogues of the results in §2 in the category D(k).

(5.1) Theorem. Let X be a smooth quasi-projective variety, E a locally free sheaf of rank
r+ 1 on X, and P(E) the associated projective bundle. Then there is a canonical isomorphism
in D(k)

h(P(E)) = h(X)⊕ h(X)(−1)[−2]⊕ · · · ⊕ h(X)(−r)[−2r] .

Proof. Consider the projective bundle formula (3.3) for the projective bundle P = P(E)
over X, viewed as relative motives over X:

h(P(E)/X) = h(X/X)⊕ h(X/X)(−1)⊕ · · · ⊕ h(X/X)(−r) .

Recall the isomorphism is given by φ and ψ. Apply the left resolution L of §4 to the two sides.
Since the pairs (P(E), X) and (X,P(E)) are admissible over X, one has the induced morphisms
L(φ), L(ψ) between h(P(E)) and h(X) ⊕ h(X)(−1)[−2] ⊕ · · · ⊕ h(X)(−r)[−2r]. The triples
(P(E), X,P(E) ) and (X,P(E), X) are admissible, so the identities ψ ◦φ = id, φ◦ψ = id imply
the corresponding identities for L(φ) and L(ψ).

(5.2) Theorem. Let i : Y → X be as in (1.1). Then we have i∗ ◦ i∗ = C(cd(N)) : h(Y ) →
h(Y )(d)[2d] .

(5.3) Theorem. Under the same assumptions as in (1.2), there is a split exact sequence in
D(k)

h(X)(−d)[−2d] α−−−→h(X̃)(−1)[−2]⊕ h(Y )
β−−−→h(Ỹ )

where α = (cd−1(E) ◦ g∗,−i∗), β = j∗ + f ∗. A left inverse of α is given by γ = g∗.

(5.4) Corollary. There is a canonical isomorphism in D(k)

h(Ỹ ) = h(Y )⊕
d−1⊕
i=1

h(X)(−i)[−2i] .

(5.5) Remark. In [Ma] analogous results are proved for smooth projective varieties and their
motives (they are objects in the category of Chow motives – motives with respect to Chow
groups). The category of Chow motives CHM(k) is a full subcategory of D(k), and the natural
functor h : (Smooth Proj /k)opp → CHM(k) that exists by construction is compatible with
h : (Smooth Proj /k)opp → D(k). The Lefschetz object L in [Ma] is Z(−1)[−2] in D(k). Thus
the above results are compatible with those in [Ma].

See also [FV] and [Le] for the blow-up sequences similar to (5.3).
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There is an alternative proof of (5.2) and (5.3), which is obtained by modifying the proof
in [SGA] as follows: change the Chow groups to motives, and maps f ∗, f∗, α · (−) between
Chow groups by morphisms f ∗, f∗, C(α) between motives. We include only the proof of the
self-intersection formula.

To avoid confusion, in the rest of this section P(E) denotes Proj Sym(E), as in [SGA]. But
we keep writing N for NXY .

(5.6)Proposition. Let S be a smooth quasi-projective variety. For E a locally free sheaf
of rank r + 1, one has p : P = P(E) → S the associated projective bundle, and the canonical
invertible sheaf OP (1). Let F be the locally free sheaf of rank r determined by the exact sequence

0→ F → p∗E → OP (1)→ 0 .

Write ξ = c1(OP (1)) ∈ CH1(P ).
(1) One has

p∗ ◦ cr(F∨) ◦ p∗ = id : h(S)→ h(S) . (5.6.1)

(2) Assume E = N⊕OS, where N is locally free of rank r. Then P(E) is a compactification
of the vector bundle V(N). Let s : S → P(E) be the zero section. One has:

s∗ = cr(F
∨) ◦ p∗ = C(

∑
0≤i≤r

p∗(ci(N
∨)) · ξr−i) ◦ p∗ : h(S)→ h(P )((r)) , (5.6.2)

s∗ ◦ s∗ = cr(N
∨) : h(S)→ h(S)((r)) , (5.6.3)

s∗ = p∗ ◦ cr(F∨) : h(P )→ h(S) . (5.6.4)

Proof. (1) One has p∗(cr(F
∨)) = 1, the fundamental class of S, [Fu, Example (3.3.1)].

Use (2.3.2).
(2) We have

s∗ = s∗ ◦ s∗ ◦ p∗
= C(s∗(1)) ◦ p∗ by (2.3.2).

One has the following identity; the first equality holds by [Gro, Lemma 3], and the second
equality by the Whitney formula.

s∗(1) =
r∑

i=o

p∗(ci(N
∨)) · ξr−i = cr(F

∨) .

Next composing (5.6.2) with s∗ gives

s∗ ◦ s∗ = s∗ ◦ C(
r∑

i=0

p∗(ci(N
∨)) · ξr−i) ◦ p∗ .

In view of (2.3.4), we have only to show s∗(ξ) = 0. This follows from OP (1)|V(N) = OP .
Now we show (5.6.4). It suffices to show the morphisms s∗ and p ◦ cr(F∨) are equal after

composing with ξi ◦ p∗ : h(S)((−i))→ h(P ), for i = 0, · · · , r. On the one hand, using (2.3.4)

s∗ ◦ ξi ◦ p∗ = C(s∗(ξi)) ◦ s∗ ◦ p∗ = C(s∗ξi) =

{
0 i > 0,

1 i = 0.
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On the other hand, by (2.3.2) and ξ · cr(F∨) = cr+1(p
∗(N∨)

⊕
O) = 0,

p∗ ◦ cr(F∨) ◦ ξi ◦ p∗ = C(p∗(cr(F
∨) · ξi) ) =

{
0 i > 0,

1 i = 0.

For an alternative proof of the self-intersection formula (3.6.1) we need some preliminary
constructions. Let u : X → Z = X × P1 be the closed immersion t 7→ (t, 0), and i1 := u ◦ i :
Y

i−−−→X u−−−→Z. Let N̂ = P(N∨⊕OY ), and f1 : Z
′ → Z be the blow-up along Y ; one has a

Cartesian diagram
N̂

j1−−−→ Z ′yg1 yf1

Y
i1−−−→ Z .

One has an immersion α = i× id : W = Y × P1 → X × P1. Let W ′ be the strict transform of
W under f1; the map f1 restricts to an isomorphism f2 : W

′ → W , and the intersection N̂ ∩W ′

is isomorphic to Y . Let β : W ′ → Z ′ be the immersion, γ : Y → Y × P1 the restriction of u,
and δ : Y → W ′ the induced immersion.

Y
δ−−−→ W ′ β−−−→ Z ′yid yf2 yf1

Y
γ−−−→ Y × P1 α−−−→ Z

LetX ′ be the strict transform ofX, and f : X ′ → X be the induced morphism. The intersection
N̂ ∩X ′ is Y ′ = P(N∨). One has a commutative diagram

Y ′ j−−−→ X ′ v−−−→ Z ′yg yf yf1

Y
i−−−→ X

u−−−→ Z .

Label the map as indicated; also let k : Y ′ → N̂ be the immersion. Let E be defined by the
exact sequence

0→ E → g∗1(N
∨ ⊕OY )→ ON̂(1)→ 0

and ξ̄ := c1(ON̂(1)). The following is easy to verify (see [SGA, (9.3)] ).

(5.7)Proposition. We have the following identities in Chow groups:

j∗1β∗(1) = cd(E
∨) , (5.7.1)

j∗1v∗(1) = ξ̄ , (5.7.2)

and
f ∗
1u∗(1) = j1∗(1) + v∗(1). (5.7.1)

(5.8)Proposition. The composition

cd(E
∨) ◦ j∗1 ◦ j1∗ : h(N̂)→ h(N̂)((d+ 1))

is zero.
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Proof. We show the composition of the map with the isomorphism
⊕d

i=0 h(Y )((−i)) →
h(N̂) is zero. Namely we are to show the compositions

h(Y )((−i))
ξ̄i◦g∗1−−−→h(N̂)

cd(E
∨)◦j∗1◦j1∗−−−−−−−−→h(N̂)((d+ 1))

are zero. For i > 0, they are zero by the following calculation and ξ · cd(E∨) = 0.

j∗1 ◦ j1∗ ◦ ξ̄i ◦ g∗1 = j∗1 ◦ j1∗ ◦ C ( (j∗1v∗(1))
i ) ◦ g∗1 by ξ̄ = j∗1v∗(1)

= j∗1 ◦ C(v∗(1)i ) ◦ j1∗ ◦ g∗1 by (2.3.4)
= C (j∗1(v∗(1)

i )) ◦ j∗1 ◦ j1∗ ◦ g∗1 by (2.3.3)
= ξ̄i ◦ j∗1 ◦ j1∗ ◦ g∗1 .

Consider now the case i = 0. Let bi : h(Y ) → h(Y )((−i + 1)) be morphisms such that the
following square commutes:

h(Y )
j∗1◦j1∗◦g∗1−−−−→ h(N̂)((1))yid y∼=

h(Y )
(b0,··· ,bd)−−−−→

⊕d
i=0 h(Y )((−i+ 1)) .

One must show b0 : h(Y )→ h(Y )((1)) is zero. Write

j∗1 ◦ j1∗ ◦ g∗1 = g∗1 ◦ b0 + C(ξ̄) ◦ z

with a morphism z : h(Y )→ h(N̂). Applying j1∗◦ to both sides yields

C(j1∗(1) ) ◦ j1∗ ◦ g∗1 = j1∗ ◦ g∗1 ◦ b0 + C(v∗(1)) ◦ j1∗ ◦ z .

Substituting f ∗
1u∗(1) = j1∗(1) + v∗(1) one has

j1∗ ◦ g∗1 ◦ b0 = C(f ∗
1u∗(1)) ◦ j1∗ ◦ g∗1 − C(v∗(1)) ◦ [j1∗ ◦ g∗1 + j1∗ ◦ z] .

We have C(f ∗
1u∗(1) ) ◦ j1∗ = j1∗ ◦ C(j∗1f ∗

1u∗(1) ) by (2.3.3), and j∗1f
∗
1u∗(1) = 0, as can be

seen by “moving” a cycle from X × {0} to X × {1}. Thus

j1∗ ◦ g∗1 ◦ b0 = −C(v∗(1) ) ◦ [j1∗ ◦ g∗1 + j1∗ ◦ z] .

By β∗v∗(1) = 0, one has β∗◦C(v∗(1)) = 0, so β∗◦j1∗◦g∗1◦b0 = 0. By (2.3.5), β∗◦j1∗ = δ∗◦s∗ = 0,
hence

δ∗ ◦ s∗ ◦ g∗1 ◦ b0 = δ∗ ◦ b0 = 0

thus γ∗ ◦ b0 = 0. Since γ∗ : h(Y )→ h(Y × P1)((1)) is a split monomorphism, b0 = 0.

(5.9) We now show the self-intersection formula. Let p : X × P1 → X and p′ : W ′ → Y be
the projections. We claim there is a morphism w : h(Y )→ h(N̂)((d− 1)) such that

f ∗
1 ◦ p∗ ◦ i∗ = β∗ ◦ p′∗ + j1∗ ◦ w : h(Y )→ h(Z ′)((d)) .

Indeed if m : Z ′ − N̄ → Z ′ is the open immersion, one has m∗ ◦ (f ∗
1 ◦ p∗ ◦ i∗ − β∗ ◦ p′

∗) = 0, so
the claim follows from the localization sequence. We show i∗ ◦ i∗ = s∗ ◦ s∗ : h(Y )→ h(Y )((d)).
Indeed

i∗ ◦ i∗ = g1∗ ◦ cd(E∨) ◦ g∗1 ◦ i∗ ◦ i∗ by (5.6.1)
= g1∗ ◦ cd(E∨) ◦ j∗1 ◦ f ∗

1 ◦ p∗ ◦ i∗
= g1∗ ◦ cd(E∨) ◦ j∗1 ◦ (β∗ ◦ p′

∗ + j1∗ ◦ g∗1)
= g1∗ ◦ cd(E∨) ◦ j∗1 ◦ β∗ ◦ p′

∗ by (5.8)
= s∗ ◦ j∗1 ◦ β∗ ◦ p′

∗ by (5.6.4)
= s∗ ◦ s∗ .
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The last equality follows from j∗1 ◦ β∗ ◦ p′
∗ = s∗ ◦ δ∗ ◦ p′∗ = s∗ (note j

∗
1 ◦ β∗ = s∗ ◦ δ∗ by (2.3.5)).

We conclude by (5.6.3).
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