
Chow cohomology groups of algebraic surfaces

Masaki Hanamura

Abstract

For an algeraic surface with isolated singularities we consider its higher Chow group
and Chow cohomology (the latter defined by the author). We study the canonical map
from the Chow cohomology to the higher Chow group by relating it to the canonical
map from the higher Chow group to Chow cohomology of the exceptional divisor of a
desingularization of the surface.

Introduction. For a quasi-projective variety S over a field, S. Bloch defined its higher
Chow groups CHr(S, n) as the homology of a certain complex Zr(S, ·) called the cycle complex,
[Bl 1], [Bl 2], [Bl 3]. One may view this as a Borel-Moore homology theory; for example it
is covariantly functorial for proper maps, and contravariantly functorial for open immersions
(more generally for flat maps).

For a quasi-projective variety S over a field of characteristic zero, using resolution of singu-
larities and Bloch’s cycle complexes, we defined the Chow cohomology groups CHCr(S, n) (see
[Ha 2] for details). To briefly recall it, we take a cubical hyperresolution X• → S, which gives a
strict truncated simplicial scheme; it consists of smooth varieties Xa for 0 ≤ a ≤ N with some
N , and the face maps di : Xn → Xn−1, i = 0, . . . , n, satisfying the usual identities. (It differs
from a simplicial scheme in that there are only face maps and no degeneracies, and there are
only finite many terms.)

We then form the double complex

Zr(X0, ·)
d∗−−−→Zr(X1, ·)

d∗−−−→· · · d∗−−−→Zr(XN , ·)

where the a-th column is the cycle complex of Xa, and the horizontal differentials d∗ : Zr(Xa, ·)
→ Zr(Xa+1, ·) are the alternating sums of the pull-backs d∗i by the face maps. (Strictly speaking
one must take appropriate quasi-isomorphic subcomplexes for d∗ be defined, see §1.) The total
complex of this double complex is denoted Zr(X•, ·)∗, and called the cohomological cycle complex
of S. Then CHCr(S, n) is by definition the (−n)-th cohomology of Zr(X•, ·)∗.

It is proven in [Ha 2] that CHCr(S, n) is well-defined up to canonical isomorphism, in-
dependent of the choice of a hyperresolution, and that the association S 7→ CHCr(S, n) is
contravariantly functorial for all maps. The condition the characteristic being zero is unnec-
essary if dimS ≤ 2, since its desingularization (and thus its cubical hyperresolution) exist.
In that case we exhibit the cubical hyperresolution and the cohomological cycle complex of S
explicitly in §§1 and 2. (The relationship of our Chow cohomology to the motivic cohomology
of [FV] will be discussed in a separate paper.)
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If d = dimS, there is a canonical map CHCr(S, n) → CHd−r(S, n); it is an isomorphism if S
is smooth. This is analogous to the following situation in topology. For a good topological space
S, there is a canonical map from cohomology to Borel-Moore homology, H i(S) → HBM

2 dimS−i(S),
induced by the cap product by the fundamental class. The purpose of this paper is to study this
map (tensored with Q) for a surface S with isolated singularities. We take a desingularization
p : X → S so that the exceptional locus E is a divisor with normal crossings. We show in (3.3):

Theorem. Let S be a quasi-projective surface with isolated singularities over an algebraically
closed field of characteristic zero. Then the canonical map CHCr(S, n)Q → CH2−r(S, n)Q is an
isomorphism for all r, n if and only if E is a rational tree.

The paper is organized as follows. In §1, we give some calculations of the Chow cohomology
of curves, in particular of normal crossing divisors on a smooth surface. In §2, we describe
the Chow cohomology and homology of a surface S with isolated singularities in terms of the
Chow cohomology and homology of its desingularization X and the exceptional divisor E. We
prove the above theorem in §3; the canonical map from the Chow cohomology to homology of
S is studied by relating it to the canonical map from the Chow homology to cohomology of the
exceptional divisor.

We point out some prior work on the subject. A. Vistoli studied varieties for which the
operational Chow groups (as in [Fu]) are isomorphic to the Chow groups, [Vi]. Subsequently S.-
I. Kimura worked on operational Chow groups and hyper-envelopes, [Ki]. The main difference
from the present work is that they take the operational theory while we consider the Chow
cohomology. But the reader also observes similarities to our approach: we use desingularizations
and hyperresolutions instead of hyper-envelopes.

The author is very grateful to S.-I. Kimura, M. Tomari and K.-I. Watanabe for helpful
discussions.

1 Chow cohomology of curves

We consider quasi-projective varieties over a field k. We refer to [Bl 1], [Bl 2] and [Bl 3] for the
details of the theory of higher Chow groups. Here we recall the basic properties.

(1) Let □1 = P1
k − {1} and □n = (□1)n with coordinates (x1, · · · , xn). Faces of □n are

intersections of codimension one faces, and the latter are divisors of the form □n−1
i,a = {xi = a}

where a = 0 or ∞. A face of dimension m is canonically isomorphic to □m.
Let X be an equi-dimensional variety (or a scheme). Let Zr(X × □n) be the free abelian

group on the set of codimension r irreducible subvarieties of X × □n meeting each X × face
properly. An element of Zr(X×□n) is called an admissible cycle. The inclusions of codimension
one faces δi,a : □n−1

i,a ↪→ □n induce the map

∂ =
∑

(−1)i(δ∗i,0 − δ∗i,∞) : Zr(X ×□n) → Zr(X ×□n−1) .

One has ∂ ◦ ∂ = 0. Let πi : X × □n → X × □n−1, i = 1, · · · , n be the projections, and
π∗
i : Zr(X×□n−1) → Zr(X×□n) be the pull-backs. Let Zr(X,n) be the quotient of Zr(X×□n)

by the sum of the images of π∗
i . Thus an element of Zr(X,n) is represented uniquely by a cycle
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whose irreducible components are non-degenerate (not a pull-back by πi). The map ∂ induces
a map ∂ : Zr(X,n) → Zr(X,n − 1), and ∂ ◦ ∂ = 0. The complex Zr(X, ·) thus defined is the
cycle complex of X in codimension r. The higher Chow groups are the homology groups of this
complex:

CHr(X,n) = HnZ
r(X, ·) .

Note CHr(X, 0) = CHr(X), the Chow group of X. In this paper we would rather use the
indexing by dimensions: for s ∈ Z, Zs(X, ·) = ZdimX−r(X, ·), and CHs(X,n) is the homology
group.

(2) For a proper map f : X → Y of k-schemes, the push-forward f∗ : Zs(X, ·) → Zs(Y, ·),
hence also f∗ : CHs(X,n) → CHs(Y, n) is defined.

(3) For a flat map f : X → Y of relative equi-dimension d, the pull-backs f ∗ : Zs(Y, ·) →
Zs+d(X, ·) and f ∗ : CHs(Y, n) → CHs+d(X,n) are defined. If f : X → Y be a map where Y is
smooth and X equi-dimensional, there is a map f ∗ : CHr(Y, n) → CHr(X,n). In fact there is a
quasi-isomorphic subcomplex Zr(Y, ·)′ of Zr(Y, ·) on which f ∗ : Zr(Y, ·)′ → Zr(X, ·) is defined.

(4) If X is smooth quasi-projective and equi-dimensional, one has the intersection product
CHs(X,n)⊗ CHt(X,m) → CHs+t−dimX(X,n+m).

(5) Projection formula.
(6) Projective bundle formula.
(7) Localization sequence. If X is a quasi-projective variety and U is an open set, letting

Z = X − U , one has an exact sequence of complexes 0 → Zs(Z, ·) → Zs(X, ·) → Zs(U, ·).
The localization theorem [Bl 2] asserts that the induced map Zs(X, ·)/Zs(Z, ·) → Zs(U, ·) is a
quasi-isomorphism.

(8) The self-intersection formula [Ha 3, §1]. X be a smooth quasi-projective variety and
Y ⊂ X a smooth closed subvariety of codimension d, i : Y → X the closed immersion, and
N = NYX the normal bundle. Then

i∗i∗(y) = cd(N) · y

for y ∈ CHs(Y, n).
In this paper we need this only for X smooth projective; in that case this can also be

deduced from the formula i∗ ◦ i∗ = cd(N) in the correspondence ring CHdimY (Y × Y ) (see
[Ma]).

Recall the definition of Chow cohomology groups for curves. For a quasi-projective curve
over k, not necessarily irreducible, let p : C̃ → C be the normalization of C, Σ ⊂ C the singular
locus, and Σ̃ = p−1(Σ) (with reduced scheme structure). One has a commutative square

Σ̃
k−−−→ C̃yq yp

Σ
i−−−→ C

where i is the embedding and k, q are the induced maps. This gives a cubical hyperresolution
of C. Let

Zr(C, ·)∗ := Cone[Zr(C̃, ·)⊕ Zr(Σ, ·) k∗−q∗−−−→Zr(Σ̃, ·) ][−1] .

To be precise one must replace Zr(C̃, ·) with a quasi-isomorphic subcomplex so that the pull-
back k∗ : Zr(C̃, ·) → Zr(Σ̃, ·) is defined. The cycle complex is a homological complex, which

3



can be viewed as a cohomological complex in the usual manner. So Zr(C, ·)∗ is a cohomological
complex. We let

CHCr(C, n) = H−nZr(C, ·)∗ .

We also write CHCr(C) = CHCr(C, 0). There is a long exact sequence

→ CHCr(C, n) → CHr(C̃, n)⊕ CHr(Σ, n) → CHr(Σ̃, n)
→ CHCr(C, n− 1) → · · · .

For r = 1, the following can be shown using the fact that if X is smooth CH1(X,n) = 0 for
n ̸= 0, 1, and CH1(X, 1) = Γ(X,O∗

X) (see [Bl 1]).

(1.1) Proposition. Let C be a quasi-projective curve over k. Then CHC1(C, n) = 0 for
n ̸= 0, 1, and there is an exact sequence

0−−−→ CHC1(C, 1) −−−→ Γ(C̃,O∗
C)⊕ Γ(Σ,O∗

Σ) −−−→ Γ(Σ̃,O∗
Σ̃
)

−−−→ CHC1(C) −−−→ CH1(C̃) −−−→ 0 .

In the rest of this section we assume k is algebraically closed. Then for C projective and
irreducible, the result is much simpler:

(1.2) Proposition. Let C be an irreducible projective curve over an algebraically closed field
k. Then CHC1(C, n) = 0 for n ̸= 0, 1, CHC1(C, 1) = k∗, and there is an exact sequence

0 →
⊕
P∈Σ

(
⊕

Q7→P

k∗)/k∗ → CHC1(C) → CH1(C̃) → 0 .

(For each P in Σ, one takes the direct sum of copies of k∗, one for each Q ∈ C̃ over P , and
mod out by the subgroup k∗ embedded diagonally in the sum.)

Let S be a smooth quasi-projective surface on a field k, and E be a connected normal
crossing divisor, with each irreducible component projective, on S. Let {Ei}i=1,··· ,N be the
irreducible components of E, and Eij = Ei ∩ Ej for i < j be the points of intersection. Set
E(0) :=

⨿
Ei, E

(1) :=
⨿

i<j Eij. Let

δi : E
(1) → E(0) , i = 0, 1

be the maps which restrict to the inclusions Eij → Ej, Eij → Ei, respectively. There is a
natural map a : E(0) → E. The cohomological cycle complex of E is quasi-isomorphic to the
complex

Zr(E, ·)∗ = Cone[Zr(E(0), ·) δ∗−−−→Zr(E(1), ·)][−1]

where δ∗ = δ∗0 − δ∗1.
The dual graph Γ of E consists of the vertices corresponding to the components Ei, and the

edges corresponding to Eij. Since the vertices are ordered, the edges are oriented. Also, Γ is
connected since E is connected.

The chain complex of Γ is the two term homological complex

C•(Γ) = [C1(Γ)
∂−−−→C0(Γ)]
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where C0(Γ) (resp. C1(Γ)) is a free Z-module with basis {Ei} (resp. {Eij}), and ∂ sends Eij

to Ej −Ei. The homology of this complex is denoted by H∗(Γ). One has H0(Γ) = Z since Γ is
connected, and H1(Γ) is a finitely generated free abelian group.

The cochain complex C•(Γ) is the two term complex d : C0(Γ) → C1(Γ) where Ci(Γ) =
Hom(Ci(Γ),Z) and d is the dual of ∂ with minus sign. (The change of sign is made so that the
natural evaluation map is a map of complexes.) So C0(Γ) (resp. C1(Γ)) is the free Z-module
with basis {ei} dual to {Ei} (resp. with basis {eij} dual to {Eij}), and

d(ei) =
∑
i<j

eij −
∑
m<i

emi .

By definition H∗(Γ) is the cohomology of this complex. We have H0(Γ) = Z and H1(Γ) =
Hom(H1(Γ),Z) by the universal coefficient theorem.

We say E is a rational tree if each Ei is isomorphic to P1 and H1(Γ) = 0 (equivalently,
H1(Γ) = 0).

(1.3) Proposition. For a connected normal crossing divisor E as above, we have CHC1(E, n)
= 0 if n ̸= 0, 1, CHC1(E, 1) = k∗, and there is an exact sequence

0 → H1(Γ)⊗ k∗ → CHC1(E)
a∗→ CH1(E(0)) → 0 .

Proof. Recall CHC1(E, n) is the homology of the complex

Cone[Z1(E(0), ·) δ∗−−−→Z1(E(1), ·)][−1] .

One thus has CHC1(E, n) = 0 for n ̸= 0, 1, and an exact sequence

0 → CHC1(E, 1) → CH1(E(0), 1)
δ∗−−−→ CH1(E(1), 1)

→ CHC1(E, 0) → CH1(E(0), 0) −−−→ 0 .

We have CH1(E(0), 1) = C0(Γ) ⊗ k∗, CH1(E(1), 1) = C1(Γ) ⊗ k∗, and δ∗ is identified with
d⊗ id : C0(Γ)⊗ k∗ → C1(Γ)⊗ k∗. The result now follows.

The group CHCr(E, n) for ≥ 2 does not allow a simple description in general. But if E is
a normal crossing divisor consisting of rational curves, it can be calculated as follows. Before
stating it, we define the reduced Chow cohomology of E.

For a connected normal crossing divisor on a smooth surface, let π : E → pt = Spec k be
the structure map, and

Z̃r(E, ·)∗ = Cone[π∗ : Zr(pt, ·) → Zr(E, ·)∗] .

Its (−n)-th cohomology is denoted C̃HC
r
(E, n).

There is an exact sequence

−−−→ CHr(pt, n)
π∗

−−−→ CHCr(E, n) −−−→ C̃HC
r
(E, n)

−−−→ CHr(pt, n− 1) −−−→ · · ·

For any closed point x of E, π∗ splits by x∗, so the above long exact sequence splits to short
exact sequences.
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Let π̃ : E(0) →
⨿

N pt be the map to the disjoint union ofN copies of pt, which restricts to the
structure map on each component Ei. It induces the map π̃∗ : CH

r(E(0), n) → CHr−1(pt, n)⊕N .
Consider the map π∗ : Zr(pt, ·) → Zr(E(0), ·), and take its cone, and let its (−n)-th coho-

mology group be CHr(E(0) → pt, n). (A possible notation C̃H
r
(E(0), n) is avoided here, since

one may confuse it with ⊕C̃H
r
(Ei, n). Also see the remark below.) The commutative diagram

Zr(pt, ·) π∗
−−−→ Zr(E(0), ·)y yπ̃∗

0 −−−→ Zr−1(pt, ·)⊕N

defines a map π̃∗ : CHr(E(0) → pt, n) → CHr−1(pt, n)⊕N . From the definitions there is a
commutative square

CHCr(E, n)
a∗−−−→ CHr(E(0), n)y y

C̃HC r(E, n) −−−→ CHr(E(0) → pt, n) .

So by composition one defines a map, still called π̃∗, from any one of the four groups to
CHr−1(pt, n)⊕N .

Remark. For a not necessarily connected normal crossing divisor E, let Eλ be its connected

components, define Z̃r(E, ·)∗ = ⊕λZ̃
r(Eλ, ·)∗, and let C̃HC r(E, n) = ⊕C̃HC r(Eλ, n) be its

cohomology.

(1.4) Proposition. If E is a connected normal crossing divisor with each Ei
∼= P1, one has

an exact sequence (N is the number of irreducible components of E)

0 → H1(Γ)⊗ CHr(pt, n+ 1) → C̃HC r(E, n) → CHr−1(pt, n)⊕N → 0 .

where the surjection is the map π̃∗. In particular if E is a rational tree, C̃HC r(E, n) ∼=
CHr−1(pt, n)⊕N .

Proof. We have an exact sequence

−−−→ CHCr(E, n) −−−→ CHr(E(0), n)
δ∗−−−→ CHr(E(1), n)

−−−→ CHCr(E, n− 1) −−−→ · · ·

Since CHr(P1, n) = CHr(pt, n)⊕ CHr−1(pt, n), one has

CHr(E(0), n) = C0(Γ)⊗ (CHr(pt, n)⊕ CHr−1(pt, n) ) ,

CHr(E(1), n) = C1(Γ)⊗CHr(pt, n); δ∗ is zero on C0(Γ)⊗CHr−1(pt, n), and coincides with d⊗1
on C0(Γ)⊗ CHr(pt, n). So we have an exact sequence

0 → H1(Γ)⊗ CHr(pt, n+ 1) → CHCr(E, n) → CHr(pt, n)⊕ CHr−1(pt, n)⊕N → 0 ,

proving the proposition.

We will state a result parallel to (1.4) for Chow groups. First we discuss the reduced Chow
group. Let

Z̃s(E, ·) = Cone[π∗ : Zs(E, ·) → Zs(pt, ·)][−1]
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and C̃Hs(E, n) be its cohomology. If E is not connected, let Eλ be its connected components
and set

Z̃s(E, ·) = ⊕λZ̃s(Eλ, ·) .

There is a long exact sequence

−−−→ C̃Hs(E, n) −−−→ CHs(E, n)
π∗−−−→ CHs(pt, n)

−−−→ C̃Hs(E, n− 1) −−−→ · · ·

For any closed point x of E, π∗ splits by x∗, so the above long exact sequence splits to short
exact sequences.

Consider the map π∗ : Zs(E
(0), ·) → Zs(pt, ·); take its cone, shift by −1, and denote its (−n)-

th cohomology by CHs(E
(0) → pt, n). (One should distinguish it from CH1−s(E(0) → pt, n)

defined earlier.) The commutative diagram

Zs(E
(0), ·) π∗−−−→ Zs(pt, ·)xπ̃∗

x
Zs−1(pt, ·)⊕N −−−→ 0

induces a map π̃∗ : CHs−1(pt, n)
⊕N → CHs(E

(0) → pt, n). There is a commutative square

CHs(E
(0), n)

a∗−−−→ CHs(E, n)x x
CHs(E

(0) → pt, n) −−−→ C̃Hs(E, n) .

One thus has a map, still denoted π̃∗, from CHs−1(pt, n)
⊕N to any one of the four groups. The

proof of the following is similar to that of (1.4).

(1.5) Proposition. Let E be a connected normal crossing divisor with each Ei
∼= P1. One

has an exact sequence

0 → CHs−1(pt, n)
⊕N → C̃Hs(E, n) → CHs(pt, n− 1)⊗H1(Γ) → 0

where the injection is the map π̃∗. If E is a rational tree, C̃Hs(E, n) ∼= CHs−1(pt, n)
⊕N .

2 Chow cohomology and homology of surfaces

Let now S be an irreducible quasi-projective surface over a field k with at most isolated sin-
gularities; so the singular locus Σ consists of finite number of points. Let p : X → S be a
desingularization such that the inverse image (with reduced scheme structure) E = p−1(Σ) is
a normal crossing divisor. We have a Cartesian diagram

E
k−−−→Xyq yp

Σ
i−−−→S
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with i, k the inclusions and q the induced map. This is the first step of a cubical hyperresolution
of S.

Let
Zr(S, ·)∗ := Cone[k∗ − q∗ : Zr(X, ·)⊕ Zr(Σ, ·) → Z(E, ·)∗][−1]

with Zr(E, ·)∗ defined before. By definition CHCr(S, n) is the (−n)-th cohomology of this
complex. In [Ha 2] we showed it is independent of the choice of a desingularization, and
contravariantly functorial for all maps. Note CHCr(S, n) = 0 for n ≤ −2, but CHCr(S,−1)
may not be zero.

There is a canonical map CHCr(S, n) → CH2−r(S, n) defined as the composition of the
maps

CHCr(S, n)
p∗−−−→CHr(X,n) = CH2−r(X,n)

p∗−−−→CH2−r(S, n) .

One easily shows it is independent of the choice of p : X → S.
In the rest of this section k is algebraically closed.

(2.1) Proposition. We have a long exact sequence

−−−→ CHCr(S, n)
p∗−−−→ CHr(X,n)

k∗−−−→ C̃HC r(E, n)
−−−→ CHCr(S, n− 1) −−−→ · · · .

For r = 1, one has CHC1(S, n) = 0 for n ̸= −1, 0, 1, CHC1(S, 1) = k∗, and there is an exact
sequence

0 → CHC1(S)
p∗−−−→CH1(X)

k∗−−−→CHC1(E) → CHC1(S,−1) → 0 .

Proof. The complex Zr(S, ·)∗ is quasi-isomorphic to

Cone[Zr(X, ·) k∗−−−→Zr(E, ·)∗

Zr(Σ, ·))
][−1] .

The long exact sequence hence follows. If r = 1, from (1.2) one has additional information on

C̃HC 1(E, n): C̃HC 1(E, n) = 0 if n ̸= 0 and C̃HC 1(E) = CHC1(E). The assertion follows from
this.

One can study the Chow homology of S using the resolution in a similar manner. As
observed in [Ha 2, §2], from the localization theorem [Bl 3] it follows that if X• → S is a
cubical hyperresolution, then the complex Zs(X•, ·)∗ defined as the total complex of the double
complex

Zs(XN , ·)
d∗−−−→· · · d∗−−−→Zs(X1, ·)

d∗−−−→Zs(X0, ·)

is quasi-isomorphic to Zs(S, ·).
So in our case the complex Zs(S, ·) is quasi-isomorphic to

Cone[(k∗, q∗) : Zs(E, ·) → Zs(X, ·)⊕ Zs(Σ, ·)]

and thus also to
Cone[k∗ : Z̃s(E, ·) → Zs(X, ·)] ,

since Z̃s(E, ·) = Cone[q∗ : Zs(E, ·) → Zs(Σ, ·)][−1] according to the definition.
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(2.2) Proposition. We have a long exact sequence

−−−→ C̃Hs(E, n)
k∗−−−→ CHs(X,n)

p∗−−−→ CHs(S, n)

−−−→ C̃Hs(E, n− 1) −−−→ · · · .

If s = 1, one has CH1(S, n) = 0 if n ̸= 0, 1, CH1(S, 1) = k∗, and there is an exact sequence

0 → CH1(E)
k∗−−−→CH1(X)

p∗−−−→CH1(S) → 0 ,

where CH1(E) =
⊕

Z[Ei].

Proof. The exact sequence follows from the definition. If s = 1, we have C̃H1(E, n) = 0

for n ̸= 0 and C̃H1(E) = CH1(E), which is free with generators Ei. We have an exact sequence

−−−→ 0 −−−→ CH1(X, 1)
p∗−−−→ CH1(S, 1)

−−−→ CH1(E) −−−→ CH1(X) −−−→ CH1(S) → 0

where CH1(X, 1) = k∗. The map CH1(E) → CH1(X) is injective since the intersection matrix
(Ei · Ej) is negative definite, [Mu]. (In [Mu] normal surface singularities are considered, but
the same continues to hold for isolated surface singularities.) Indeed if

∑
aiEi = 0 in CH1(X),

then the intersection number (
∑

aiEi)
2 = 0, so all ai are zero. The assertion now follows.

3 The map CHCr(S, n) → CH2−r(S, n)

In this section assume k is algebraically closed (although one may take k to be an arbitrary
field until (3.3) ).

We will consider the higher Chow groups and Chow cohomology groups tensored with Q;
for simplicity we will write CHs(S, n) for CHs(S, n)Q, CHCs(S, n) for CHCs(S, n)Q, and so on.

Under the same assumption as in the previous section, we study the maps

CHs(E, n)
k∗−−−→CHs(X,n) = CH2−s(X,n)

k∗−−−→CHC2−s(E, n) .

For this goal, let X be a smooth quasi-projective surface and E, F be smooth projective
irreducible curves on X; we assume either E and F meet transversally in a point or E = F .
We have a Cartesian square

E ∩ F
i′−−−→ Fyj′ yj

E
i−−−→ X .

For each r, n one has the map i∗j∗ : CHr(F, n) → CHr+1(E, n). In case E ̸= F this map
is induced by the element δ∗(E ∩ F ) ∈ CH2(F × E); here δ : E ∩ F → F × E is the natural
inclusion. Indeed for α ∈ CHr(F ), we have

(δ∗(E ∩ F ))∗α = p1∗[(E × α) · δ∗(E ∩ F )]

= p1∗δ∗δ
∗(E × α)

= j′∗i
′∗α
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which coincides with i∗j∗α. (The first equality holds by definition, the second by the projection
formula and the third by p1δ = j′ and p2δ = i′.)

If E = F ,
i∗i∗α = α · c1(OE(E))

by the self-intersection formula for higher Chow groups, as recalled in §1. So i∗i∗ : CHr(E, n) →
CHr+1(E, n) is induced by δ∗(c1(OE(E)) ).

Consider the composition of maps (πF and πE are the structure maps)

CHr(pt, n)
π∗
F−−−→CHr(F, n)

i∗j∗−−−→CHr+1(E, n)
(πE)∗−−−→CHr(pt, n) .

It is the multiplication by the integer (E · F ). Indeed it is induced by the correspondence

(πF × πE)∗δ∗(E ∩ F ) = (E · F ) ∈ CH0(pt) = Z

in case E ̸= F and by (πF × πE)∗δ∗(c1(OE(E))) = (E · E) in case E = F . (If E ̸= F , the
number (E · F ) = 1 since k is algebraically closed. But as we mentioned at the beginning of
this section, one may assume k arbitrary, in which case (E · F ) is a positive integer. )

We go back to the assumption of §2. For the normal crossing divisor E, we studied its
Chow cohomology and homology in §1. Let a : E(0) → E be the canonical map, and k̃ = k ◦ a :
E(0) → X. From the above argument we have:

(3.1) Lemma. The following square commutes:

CHr(E(0), n)
k̃∗k̃∗−−−→ CHr+1(E(0), n)xπ̃∗

yπ̃∗

CHr(pt, n)⊕N −−−→ CHr(pt, n)⊕N .

Here the lower horizontal map is given by the matrix (Ei · Ej), which is a Q-isomorphism.

It follows the commutativity of the square

CH1−r(E, n)
k∗k∗−−−→ CHCr+1(E, n)xπ̃∗

yπ̃∗

CHr(pt, n)⊕N −−−→ CHr(pt, n)⊕N .

One still has a commutative square if one replaces CH1−r(E, n) with C̃H1−r(E, n), and

CHCr+1(E, n) with C̃HC r+1(E, n).

(3.2) Lemma. Assume E is a rational tree. (1) The map k∗ : CHr(S, n) → C̃HC r(E, n) is
surjective. So the long exact sequence of (2.1) splits into short exact sequences.

(2) The map k∗ : C̃Hs(E, n) → CHs(X,n) is injective; the long exact sequence of (2.2) splits
into short exact sequences.

Proof. (1) Since π̃∗ : C̃HC r(E, n) → CHr−1(pt, n)⊕N is an isomorphism by (1.4), it is
enough to show that the composition π̃∗k

∗ : CHr(X,n) → CHCr(E, n) → CHr−1(pt, n)⊕N is
surjective. But that is a consequence of Lemma (3.1). The proof of (2) is similar.
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(3.3) Theorem. Assume k is an algebraically closed field of characteristic zero, and let S, X,
and E be as in §2. Then the following conditions are equivalent:

(1) The canonical map CHCr(S, n) → CH2−r(S, n) is a (Q-)isomorphism for any r, n.
(2) The canonical map CHC1(S, n) → CH1(S, n) is (Q-)isomorphism for any n.
(3) E is rational tree.

Proof. (1) clearly implies (2). We first show that (3) implies (1). If E is a rational tree,
by (3.2) there are exact sequences

0 → CHCr(S, n)
p∗−−−→CHr(X,n)

k∗−−−→C̃HC r(E, n) → 0

and
0 → C̃H2−r(E, n)

k∗−−−→CH2−r(X,n)
p∗−−−→CH2−r(S, n) → 0

where the middle terms are equal.
In the commutative diagram of (3.1),

C̃Hs(E, n)
k∗k∗−−−→ C̃HC 2−s(E, n)xπ̃∗

yπ̃∗

CHs−1(pt, n)
⊕N −−−→ CHs−1(pt, n)

⊕N ,

the lower horizontal map is an (Q-)isomorphism, and the vertical maps are isomorphisms by
(1.4) and (1.5). Thus the upper horizontal map is a (Q-)isomorphism. It follows that the map
p∗p

∗ : CHCr(S, n) → CH2−r(S, n) is an isomorphism.
We next show (2) implies (3). Since CH1(S,−1) = 0, one has CHC1(S,−1) = 0 and an

exact sequence
0 → CHC1(S)

p∗−−−→CH1(X)
k∗−−−→CHC1(E) → 0 .

On the other hand by (2.2) there is an exact sequence

0 → CH1(E)
k∗−−−→CH1(X)

p∗−−−→CH1(S) → 0 .

Since p∗p
∗ is an isomorphism, k∗k∗ : CH1(E) → CHC1(E) is an isomorphism.

The group CHC1(E) has a filtration as follows. By (1.3), there is a surjection p∗ : CHC1(E)
→ CH1(E(0)) with kernel (H1(Γ) ⊗ k∗)Q. Also the degree map deg : CH1(E(0)) → QN is a
surjection with kernel

⊕
Pic0(Ei)Q. But the composition

CH1(E)
k∗k∗−−−→CHC1(E)

p∗−−−→CH1(E(0))
deg−−−→QN

is an isomorphism. Thus for k∗k∗ be an isomorphism, it is necessary that (H1(Γ)⊗k∗)Q = 0 and
Pic0(Ei)Q = 0 for each i. Since the characteristic of k is zero, k∗ has a non-zero free subgroup,
so the first condition implies H1(Γ) = 0. The condition Pic0(Ei)Q = 0 implies Ei

∼= P1. This
concludes the proof.

Remark. (1) The assumption on the characteristic is necessary, since if k is the algebraic
closure of a finite field, then the group k∗ ⊗Q is zero.

(2) If k is the complex number field, the condition (3) is equivalent to the link of each
singular point of S being a rational homology sphere.

(3) There is a “motivic” version of the theorem where the Chow groups are replaced with
mixed motives. We will take this up elsewhere.
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