走化性方程式を中心とする話題に関するセミナーです。
セミナーに関する問い合わせは、世話人の藤江 健太郎 (東北大学 理学研究科)までお願い致します。
連絡先:fujie[at]tohoku.ac.jp
本セミナーは科学研究費 挑戦的研究(萌芽) (研究課題番号 25K21996, 代表 藤江健太郎)の支援を受けて開催されます。
Upcoming seminar
-
開催日時:2025年8月26日 16時-17時
開催場所:東北大学 青葉山キャンパス 理学研究科合同A棟 8階801室 交通アクセス・MAP
講演者:水上 雅昭 氏 (京都教育大学)
講演題目:空間非一様なロジスティック項をもつKeller-Segel系の爆発解の存在と性質
講演要旨: Keller-Segel系は細胞性粘菌の集中現象を記述した数理モデルであり、質量保存則やLyapunov汎函数の存在といった問題の構造を基に解の性質が研究されてきた。特に、爆発解の解析が精力的に行われており、爆発解の挙動や爆発点の性質といった詳細な解析も行われている。一方、Mimura-Tsujikawa (1996) は、生物の集中現象に加えて個体数の増減も考慮に入れた数理モデルとしてロジスティック項をもつKeller-Segel系を提唱した。この問題に対して、有界な大域解の存在や挙動については研究が進展しているものの、Lyapunov汎函数の存在のような構造がわかっていないことから爆発解の研究には未解決な課題が多い。本講演では、空間非一様なロジスティック項をもつKeller-Segel系の爆発解の存在や性質に関する結果を報告する。本研究は、Mario Fuest氏 (Leibniz University Hannover)、Johannes Lankeit氏 (Leibniz University Hannover) との共同研究に基づく。
program