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Abstract

This paper is concerned with group invariant solutions for fast
diffusion equations in symmetric domains. It is first proved that the
group invariance of weak solutions is inherited from initial data. After
briefly reviewing previous results on asymptotic profiles of vanishing
solutions and their stability, the notions of stability and instability of
group invariant profiles are introduced under a similarly invariant class
of perturbations, and moreover, some stability criteria are exhibited
and applied to an annular domain case.
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1 Introduction

In this paper, we are concerned with the Cauchy-Dirichlet problem for the
fast diffusion equation,

∂t
(
|u|m−2u

)
= ∆u in Ω× (0,∞), (1.1)

u = 0 on ∂Ω× (0,∞), (1.2)

u(·, 0) = u0 in Ω, (1.3)

where Ω is a bounded domain of RN with smooth boundary ∂Ω, m > 2,
∂t = ∂/∂t, u0 ∈ H1

0 (Ω) and ∆ stands for the N -dimensional Laplacian. By
putting w = |u|m−2u, Equation (1.1) can be rewritten in a usual form of fast
diffusion equation,

∂tw = ∆
(
|w|r−2w

)
in Ω× (0,∞) (1.4)
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with the exponent r = m/(m− 1) < 2. Fast diffusion equations arise in the
studies of plasma physics (see [6]), kinetic theory of gases, solid state physics
and so on. It is well known that every solution of (1.1)–(1.3) vanishes in finite
time for the case that 2 < m ≤ 2∗ := 2N/(N − 2)+ (see [18], [5]). Moreover,
for the case that 2 < m < 2∗, Berryman and Holland [7] studied asymptotic
profiles of solutions as well as the explicit rate of the extinction of solutions.

Now, let us address ourselves to the stability and instability of asymp-
totic profiles. Namely, our question is the following: For any initial data
u0 ∈ H1

0 (Ω) sufficiently close to an asymptotic profile φ, does the asymptotic
profile of the unique solution u = u(x, t) for (1.1)–(1.3) also coincide with
φ or not ? In [7] and [15], the stability of the unique positive asymptotic
profile is discussed for nonnegative initial data in some special cases (e.g.,
N = 1). Recently, in [8], further detailed behaviors of nonnegative solu-
tions near the extinction time are investigated. Moreover, in [3], the notions
of stability and instability of asymptotic profiles are precisely defined for
(possibly) sign-changing initial data, and furthermore, some criteria for the
stability and instability are presented under 2 < m < 2∗. Furthermore, they
are applied to several concrete cases of the domain Ω (e.g., ball domains) and
the exponent m. However, there are still cases (e.g., annular domain case)
which do not fall within the scope of the criteria.

In this paper, we treat symmetric domain cases and discuss the stabil-
ity and instability of group invariant asymptotic profiles. More precisely,
for a subgroup G of O(N) and a G-invariant domain Ω, we only deal with
G-invariant (e.g., radial) initial data and solutions of (1.1)–(1.3). Further-
more, the stability and instability of profiles are also discussed only under
G-invariant perturbations.

In the next section, we prove the G-invariance of weak solutions for
parabolic problems such as (1.1)–(1.3) with G-invariant initial data and do-
mains. This issue would be obvious in strong formulations, where one can
directly calculate the change of variables. However, one should pay care-
ful attention in weak formulations of parabolic problems such as nonlinear
diffusion equations because of the lack of pointwise representation of the
time-derivative of solution in a dual space H−1(Ω) = (H1

0 (Ω))
∗. In Section 3,

we first briefly review previous studies, particularly [3], on asymptotic pro-
files of vanishing solutions for fast diffusion equations and their stability. We
next define the notions of stability and instability of G-invariant asymptotic
profiles under G-invariant perturbations, and then, stability criteria will be
presented for them under 2 < m < 2∗. Finally, we discuss applications of the
stability criteria to some cases (e.g., the annular domain case) which do not
fall within the scope of the criteria in [3].

Notation. Let H1
0 (Ω) be the closure of C∞

0 (Ω) in the usual Sobolev space
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H1(Ω) = W 1,2(Ω). Let us denote by ‖ · ‖m the usual norm of Lm(Ω)-space,
and moreover, ‖ ·‖1,2 := ‖∇·‖2 stands for the norm of H1

0 (Ω). For a function
u = u(x, t) : Ω × (0,∞) → R, we often write u(t) := u(·, t), which is a
function from Ω into R, for a fixed time t > 0.

2 Group invariance of weak solutions for parabolic

problems

In this section, we shall prove that the group invariance of weak solutions
for parabolic problems such as (1.1)–(1.3) is inherited from initial data and
domains. More precisely, let G be a subgroup of O(N) and let Ω be a G-
invariant domain of RN , i.e., g(Ω) = Ω for any g ∈ G, with smooth boundary
∂Ω. Here let us treat

∂t
(
|u|m−2u

)
= ∆u+ λ|u|m−2u in Ω× (0,∞), (2.1)

u = 0 on ∂Ω× (0,∞), (2.2)

u(·, 0) = u0 in Ω (2.3)

with
λ ∈ R, 1 < m <∞ and u0 ∈ H1

0 (Ω) ∩ Lm(Ω)

(as an independent interest, we also treat 1 < m < 2 and λ ∈ R). We shall
prove that u is G-invariant, i.e., u(g−1x, t) = u(x, t) for all g ∈ G, provided
that u0 is G-invariant. This fact can be easily checked for strong solutions
by directly calculating the change of variables. As for weak formulations of
differential equations, one should more carefully treat this issue. There are
many papers on this topic for elliptic problems. However, there seems to be
very little contribution to weak formulations for parabolic problems (see [4]).

We start with the definition of weak solutions for (2.1)–(2.3) by setting

X := H1
0 (Ω) ∩ Lm(Ω),

which coincides with H1
0 (Ω), provided that 1 < m ≤ 2∗.

Definition 2.1 (Solution of (2.1)–(2.3)). A function u : Ω× (0,∞) → R is
said to be a (weak) solution of (2.1)–(2.3), if the following conditions are all
satisfied :

• u ∈ C([0,∞);X) and |u|m−2u ∈ C1([0,∞);X∗).

• For all t ∈ (0,∞) and ψ ∈ C∞
0 (Ω),〈

d

dt

(
|u|m−2u

)
(t), ψ

〉
X

+

∫
Ω

∇u(x, t) · ∇ψ(x)dx

= λ

∫
Ω

(
|u|m−2u

)
(x, t)ψ(x)dx.
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• u(·, t) → u0 strongly in X as t→ +0.

Hence the weak formulation of (2.1)–(2.3) stated above can be written as an
evolution equation for u(t) := u(·, t) in X∗,

d

dt

(
|u|m−2u

)
(t)−∆u(t) = λ

(
|u|m−2u

)
(t) in X∗, t > 0, u(0) = u0.

Then for any u0 ∈ X, the problem (2.1)–(2.3) admits a unique solution (see,
e.g., [9], [20, 21] and also [2]).

Remark 2.2. In case m > 2, where (2.1) is the fast diffusion equation, every
sign-definite solution becomes a classical solution (see [12]). However, sign-
changing solutions should be treated in the weak formulation, because the
transformed equation from (2.1) in a similar way to (1.4) has a singularity
when u(x, t) = 0. In case m < 2, where (2.1) is the porous medium equation,
the weak formulation is essentially required for sign-definite solutions as well
as for sign-changing solutions because of the lack of regularity of solution.

Let G be a subgroup of O(N) whose elements leave Ω invariant. For
g ∈ G and a function u : Ω → R, we define a function gu : Ω → R by

(gu)(x) := u(g−1x) for x ∈ Ω.

Then X and X∗ become Banach G-spaces. More precisely, we have a repre-
sentation πX of G over X given by

πX(g)u := gu for u ∈ X and g ∈ G,

where πX(g) is a bounded linear operator in X. Moreover, define a represen-
tation πX∗ of G over X∗ by

〈πX∗(g)f, u〉X := 〈f, πX(g−1)u〉X for u ∈ X, f ∈ X∗ and g ∈ G.

The following facts are well known in the variational analysis of elliptic
problems. For the convenience of the reader, we briefly give a proof.

Proposition 2.3 (G-equivariance of −∆u and |u|m−2u). Define operators
A,B : X → X∗ by

A(u) := −∆u, B(u) = |u|m−2u for u ∈ X.

Then A and B are G-equivariant, i.e.,

πX∗(g) (A(u)) = A (πX(g)u) , πX∗(g) (B(u)) = B (πX(g)u)

for all u ∈ X and g ∈ G.
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Proof. It is well known that A = φ′
A and B = φ′

B, where φA, φB : X → [0,∞)
are given by

φA(u) :=
1

2

∫
Ω

|∇u(x)|2dx, φB(u) :=
1

m

∫
Ω

|u(x)|mdx for u ∈ X.

Moreover, φA and φB are G-invariant, i.e., φA(gu) = φA(u) for all u ∈ X
and g ∈ G. Hence φ′

A and φ′
B are G-equivariant from the general fact

that the derivative of G-invariant functional is G-equivariant. Indeed, for
an G-invariant Gâteaux differentiable functional φ : X → R, the Gâteaux
differential φ′ of φ satisfies

〈φ′(πX(g)u), e〉X = lim
h→0

φ(πX(g)u+ he)− φ(πX(g)u)

h

= lim
h→0

φ(u+ hπX(g
−1)e)− φ(u)

h
= 〈φ′(u), πX(g

−1)e〉X
= 〈πX∗(g)φ′(u), e〉X for any e, u ∈ X and g ∈ G,

which implies φ′(πX(g)u) = πX∗(g)φ′(u) for all u ∈ X and g ∈ G. One can
also obtain a similar conclusion for Fréchet differentials as well.

A tiny novelty of this section is the following proposition, where the G-
equivariance of the time-differential operator is shown in a space of vector
functions with values in X∗. A similar attempt has been done for a Gel’fand
triplet setting in [4], where a parabolic version of the so-called “principle of
symmetric criticality” is established.

To this end, we work on a large space, H := L2(0, T ;X∗). Then the
representation πH of G over H is given by

(πH(g)u) (t) = πX∗(g)u(t) for t ∈ (0, T ), u ∈ H and g ∈ G.

Moreover, we define the time-differential operator,

d

dt
: H → H

with the domain

D(d/dt) := {u ∈ H : du/dt ∈ H} = W 1,2(0, T ;X∗).

Proposition 2.4 (G-equivariance of d/dt). The differential operator d/dt is
G-equivariant, i.e.,

πH(g)
du

dt
=

d

dt
(πH(g)u) for all u ∈ D(d/dt) and g ∈ G,
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which is equivalently rewritten as

πX∗(g)
du

dt
(t) =

d

dt
(πX∗(g)u(t)) for all u ∈ D(d/dt) and g ∈ G

for a.e. t ∈ (0, T ).

Proof. For u ∈ D(d/dt), g ∈ G, η ∈ C∞
0 (0, T ) and e ∈ X, it follows that〈∫ T

0

(
πH(g)

du

dt

)
(t) η(t) dt, e

〉
X

=

∫ T

0

〈
πX∗(g)

du

dt
(t), e

〉
X

η(t) dt

=

∫ T

0

〈
du

dt
(t), πX(g

−1)e

〉
X

η(t) dt

=

〈∫ T

0

du

dt
(t)η(t) dt, πX(g

−1)e

〉
X

=

〈
−
∫ T

0

u(t)
dη

dt
(t) dt, πX(g

−1)e

〉
X

= −
∫ T

0

〈
u(t), πX(g

−1)e
〉
X

dη

dt
(t) dt

= −
∫ T

0

〈πX∗(g)u(t), e〉X
dη

dt
(t) dt

=

〈
−
∫ T

0

(πH(g)u) (t)
dη

dt
(t) dt, e

〉
X

.

Thus we have∫ T

0

(
πH(g)

du

dt

)
(t)η(t) dt = −

∫ T

0

(πH(g)u) (t)
dη

dt
(t) dt in X∗,

which implies

πH(g)
du

dt
=

d

dt
(πH(g)u)

in the sense of distribution. Hence d/dt is G-equivariant in H.

Combining all these facts, we are now in position to prove the following
theorem.

Theorem 2.5 (G-invariance of weak solutions). Let G be a subgroup of O(N)
and let Ω be a G-invariant bounded domain of RN with smooth boundary. Let
u = u(x, t) be a weak solution of (2.1), (2.2). Then so is gu := u(g−1x, t) for
any g ∈ G.

In addition, if the initial data u0 is G-invariant, then so is the unique
weak solution of (2.1)–(2.3).
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Proof. Let u = u(x, t) be a weak solution of (2.1), (2.2) and put w(x, t) =
u(g−1x, t). Then, w(t) = πX(g)u(t). Then for each φ ∈ X, it follows that〈

d

dt
B(u(t)) + A(u(t))− λB(u(t)), πX(g

−1)φ

〉
X

= 0.

Then by Propositions 2.3 and 2.4, we have〈
d

dt
B(u(t)) + A(u(t))− λB(u(t)), πX(g

−1)φ

〉
X

=

〈
πX∗(g)

(
d

dt
B(u(t))

)
+ πX∗(g)A(u(t))− λπX∗(g)B(u(t)), φ

〉
X

=

〈
d

dt

(
πX∗(g)B(u(t))

)
+ A(w(t))− λB(w(t)), φ

〉
X

=

〈
d

dt
B(w(t)) + A(w(t))− λB(w(t)), φ

〉
X

.

Therefore w also solves (2.1), (2.2).
In addition, if the initial data u0 is G-invariant, all the solutions w(x, t) =

u(g−1x, t) for any g ∈ G solve (2.1)–(2.3) with the same data u0. Therefore
from the uniqueness of weak solution, w coincides with u for all g ∈ G.
Consequently, the unique solution u is G-invariant.

3 Stability analysis of group invariant asymp-

totic profiles

This section is devoted to a stability analysis of asymptotic profiles invariant
under symmetry group for vanishing solutions of (1.1)–(1.3). Throughout
this section, we assume that

2 < m < 2∗ :=

{
2N/(N − 2) if N ≥ 3,

∞ if N = 1, 2
and u0 ∈ H1

0 (Ω) (3.1)

(then H1
0 (Ω) is compactly embedded in Lm(Ω)). In Subsection 3.1, we

overview the stability analysis of asymptotic profiles for fast diffusion equa-
tions so far. In Subsection 3.2, we define the notions of stability and insta-
bility of asymptotic profiles under group invariant perturbations and present
some stability criteria. Moreover, this stability criteria will be proved in
the following two subsections. The contents in these subsections would be
similar to those in [3], even though the setting under consideration here is
not covered. However, results in Subsection 3.5 to be obtained by applying
these criteria would be noteworthy, because they enable us to discuss the
asymptotic stability of radial profiles under radial perturbations as well as to
investigate further information on the instability of sign-changing profiles.

7



3.1 Asymptotic profiles for fast diffusion equations

In this subsection, we briefly review previous results on asymptotic profiles
for fast diffusion equations. The finite-time extinction of solutions for fast
diffusion equations is first proved by Sabinina [18] (for N = 1), and then,
generalized by Bénilan and Crandall [5]. We denote by t∗(u0) the extinction
time of the unique solution u of (1.1)–(1.3) for the initial data u0. Berryman
and Holland [7] obtained an optimal rate of the finite-time extinction for each
solution u of (1.1)–(1.3),

c(t∗ − t)
1/(m−2)
+ ≤ ‖u(t)‖1,2 ≤ c−1(t∗ − t)

1/(m−2)
+

with the extinction time t∗ of u and a positive constant c > 0. Moreover,
they showed the existence of asymptotic profiles

φ(x) := lim
tn↗t∗

(t∗ − tn)
−1/(m−2)
+ u(x, tn) in H1

0 (Ω)

with some sequence tn ↗ t∗ for positive classical solutions.
In order to characterize φ, let us apply the following transformation:

v(x, s) := (t∗ − t)−1/(m−2)u(x, t) and s := log(t∗/(t∗ − t)) ≥ 0. (3.2)

Then s tends to infinity as t↗ t∗. Moreover, the asymptotic profile φ = φ(x)
of u = u(x, t) is reformulated as

φ(x) := lim
sn↗∞

v(x, sn) in H1
0 (Ω) with sn := log(t∗/(t∗ − tn)) → ∞.

Furthermore, the Cauchy-Dirichlet problem (1.1)–(1.3) for u = u(x, t) is
rewritten as the following rescaled problem:

∂s
(
|v|m−2v

)
= ∆v + λm|v|m−2v in Ω× (0,∞), (3.3)

v = 0 on ∂Ω× (0,∞), (3.4)

v(·, 0) = v0 in Ω, (3.5)

where the initial data v0 and the constant λm are given by

v0 = t∗(u0)
−1/(m−2)u0 and λm = (m− 1)/(m− 2) > 0. (3.6)

Then (3.3)–(3.5) can be regarded as a generalized gradient system,

d

ds
|v|m−2v(s) = −J ′(v(s)) for s > 0,

where J : H1
0 (Ω) → R is given by

J(w) :=
1

2

∫
Ω

|∇w(x)|2dx− λm
m

∫
Ω

|w(x)|mdx for w ∈ H1
0 (Ω),

and moreover, the function s 7→ J(v(s)) is nonincreasing. One can prove the
following theorem (see [7], [15], [19], [8], [3]):
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Theorem 3.1 (Existence of asymptotic profiles and their characterization).
For any sequence sn → ∞, there exist a subsequence (n′) of (n) and φ ∈
H1

0 (Ω) \ {0} such that v(sn′) → φ strongly in H1
0 (Ω). Moreover, φ is a

nontrivial stationary solution of (3.3)–(3.5), that is, φ solves the Dirichlet
problem,

−∆φ = λm|φ|m−2φ in Ω, φ = 0 on ∂Ω. (3.7)

The Dirichlet problem (3.7) is an Euler-Lagrange equation for J .

Remark 3.2. (i) If φ is a nontrivial solution of (3.7), then the function

U(x, t) = (1 − t)
1/(m−2)
+ φ(x) solves (1.1)–(1.3) with U(x, 0) = φ(x).

Hence t∗(φ) = 1 and the profile of U(x, t) coincides with φ(x).

(ii) Hence, by Theorem 3.1, the set of all asymptotic profiles of solutions
for (1.1)–(1.3) coincides with the set of all nontrivial solutions of (3.7).
Obviously, they also coincide with the set of all nontrivial critical points
of J . We shall denote these sets by S.

(iii) Due to [13], the asymptotic profile is uniquely determined for each
nonnegative data u0 ≥ 0.

In [7], [15], [19], [8], the stability of positive profiles is discussed for non-
negative solutions. However, until the work in [3], sign-changing profiles had
not been treated, and the stability of positive profiles had not been discussed
under a wider class of perturbations which allow sign-changing initial data.

In [3], the notions of stability and instability of asymptotic profiles of
solutions for (1.1)–(1.3) were first precisely defined for possibly sign-changing
solutions by introducing a set,

X :=
{
t∗(u0)

−1/(m−2)u0 : u0 ∈ H1
0 (Ω) \ {0}

}
,

which coincides with the level set {v0 ∈ H1
0 (Ω) : t∗(v0) = 1} of the functional

t∗ : H
1
0 (Ω) → R. Here we note

Lemma 3.3 (Property of X , [3]). Let v be a solution of (3.3)–(3.5) for an
initial data v0.

(i) If v0 ∈ X , then v(s) ∈ X for all s ≥ 0.

(ii) If v0 ∈ X , then for any sn → ∞, up to a subsequence, v(sn) → φ for
some φ ∈ S (by Theorem 3.1).

(iii) It follows that S ⊂ X .

Moreover, the following criteria for the stability and instability of profiles
were presented:

9



• Each least energy solution φ of (3.7) is (resp., asymptotically) stable
in the sense of asymptotic profiles, if φ is isolated from the other least
energy (resp., sign-definite) solutions.

• All the sign-changing solutions are not asymptotically stable profiles.
Moreover, they are unstable, if they are isolated from the other profiles
with lower energies.

As a by-product of [3], the whole of the energy space H1
0 (Ω) of initial

data is completely classified in terms of large-time behaviors of solutions for
(3.3)–(3.5). In particular, the set X turns out to be a separatrix between
stable and unstable sets (cf. see [14] for a semilinear heat equation).

However, the criteria stated above do not cover all the situations. Indeed,
in case Ω is a thin annulus, there exists a positive radial profile φ1 which may
not take the least energy among S.

In the following subsections, we introduce the notions of stability and
instability of G-invariant profiles under similarly invariant perturbations for
a subgroup G of O(N) and slightly modify the argument of [3] to obtain
stability criteria for G-invariant profiles. As a typical application of the
criteria, we shall discuss the stability of the unique positive radial profile in
the annulus case under O(N)-invariant perturbations.

3.2 Stability and instability of G-invariant profiles

Let G be a subgroup of O(N) and let Ω be a G-invariant domain of RN

with smooth boundary. Assume (3.1) and denote the space of G-invariant
functions of class H1

0 (Ω) by

H1
0,G(Ω) := {u ∈ H1

0 (Ω): gu = u for all g ∈ G}.

Each asymptotic profile lying on H1
0,G(Ω) is called a G-invariant asymptotic

profile. Let us introduce the notions of stability and instability of G-invariant
asymptotic profiles of solutions for (1.1)–(1.3) under G-invariant perturba-
tions. To this end, we first introduce the set,

XG :=
{
t∗(u0)

−1/(m−2)u0 : u0 ∈ H1
0,G(Ω) \ {0}

}
= X ∩H1

0,G(Ω).

Then we define:

Definition 3.4 (Stability and instability of profiles under G-invariant per-
turbations). Let φ ∈ H1

0,G(Ω) be an asymptotic profile of vanishing solutions
for (1.1)–(1.3).
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(i) φ is said to be stable under G-invariant perturbations, if for any ε > 0
there exists δ = δ(ε) > 0 such that any solution v of (3.3)–(3.5) satisfies

v(0) ∈ XG ∩BH1
0
(φ; δ) ⇒ sup

s∈[0,∞)

‖v(s)− φ‖1,2 < ε,

where BH1
0
(φ; δ) := {w ∈ H1

0 (Ω) : ‖φ− w‖1,2 < δ}.

(ii) φ is said to be unstable under G-invariant perturbations, if φ is not
stable under G-invariant perturbations.

(iii) φ is said to be asymptotically stable under G-invariant perturbations, if
φ is stable under G-invariant perturbations, and moreover, there exists
δ0 > 0 such that any solution v of (3.3)–(3.5) satisfies

v(0) ∈ XG ∩BH1
0
(φ; δ0) ⇒ lim

s↗∞
‖v(s)− φ‖1,2 = 0.

Remark 3.5. Apparently, XG is a subset of X . Hence if an asymptotic profile
φ is (asymptotically) stable in the sense of [3], then so is it under G-invariant
perturbations. On the other hand, if φ is unstable or not asymptotically
stable under G-invariant perturbations, then so is φ without restriction of
perturbation.

To state our stability criteria under G-invariant perturbations, we set up
notation. Let SG = S∩H1

0,G(Ω), which is the set of all G-invariant nontrivial
solutions. A function φ ∈ SG is called least energy G-invariant solution if φ
attains the infimum of J over SG. Then our criteria read as follows.

Theorem 3.6 (Stability of G-invariant profiles). Assume (3.1). Let φ ∈
H1

0,G(Ω) be a least energy G-invariant solution of (3.7). Then it follows that

(i) φ is a stable profile under G-invariant perturbations, if φ is isolated in
H1

0 (Ω) from the other least energy G-invariant solutions.

(ii) φ is an asymptotically stable profile under G-invariant perturbations,
if φ is isolated in H1

0 (Ω) from the other sign-definite G-invariant solu-
tions.

Theorem 3.7 (Instability of G-invariant profiles). Assume (3.1). Let φ ∈
H1

0,G(Ω) be a sign-changing G-invariant solution of (3.7). Then it follows
that

(i) φ is not an asymptotically stable profile under G-invariant perturba-
tions.

(ii) φ is an unstable profile under G-invariant perturbations, if φ is isolated
in H1

0 (Ω) from any ψ ∈ SG satisfying J(ψ) < J(φ).
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3.3 Proof of Theorem 3.6

We first prepare a couple of lemmas.

Lemma 3.8 (Properties of XG). Let v be a solution of (3.3)–(3.5) for an
initial data v0.

(i) If v0 ∈ XG, then v(s) ∈ XG for all s ≥ 0.

(ii) If v0 ∈ XG, then for any sn → ∞, up to a subsequence, v(sn) → φ for
some φ ∈ SG.

(iii) It holds that SG ⊂ XG.

Proof. Combining Theorem 2.5 with (i) of Lemma 3.3, we have (i). Let
v0 ∈ XG. By Theorem 3.1, there exist sn → ∞ and φ ∈ S such that
v(sn) → φ strongly in H1

0 (Ω). Since v(sn) ∈ H1
0,G(Ω) by (i) and H1

0,G(Ω)
is closed, φ is G-invariant. Thus (ii) holds. Recall XG = X ∩ H1

0,G(Ω),
SG = S ∩H1

0,G(Ω) and (iii) of Lemma 3.3 to obtain (iii).

Lemma 3.9 (Weak closedness of XG). If un ∈ XG and un → u weakly in
H1

0 (Ω), then u ∈ XG.

Proof. The (sequentially) weak closedness of X is proved in [3]. Moreover,
H1

0,G(Ω) is also weakly closed, and hence, so is XG = X ∩H1
0,G(Ω).

Lemma 3.10 (Variational feature of XG). Let d1 = infSG
J . Then

XG ⊂ [d1 ≤ J ] :=
{
v0 ∈ H1

0 (Ω): d1 ≤ J(v0)
}
.

Moreover, if v0 ∈ XG and J(v0) = d1, then J
′(v0) = 0.

Proof. Let v0 ∈ XG and let v(s) be a solution of (3.3)–(3.5) with v(0) = v0.
Then by (ii) of Lemma 3.8 there exist sn → ∞ and φ ∈ SG such that
v(sn) → φ strongly in H1

0 (Ω). From the nonincrease of J(v(·)), we deduce
that

J(v0) ≥ J(v(s)) ≥ J(φ) ≥ d1 = inf
XG

J.

Hence d1 ≤ J(v0).
If v0 ∈ XG and J(v0) = d1, then J(v0) = minXG

J . Hence v(s) ≡ v0.

Denote by LESG the set of all least energy G-invariant solutions of (3.7).
Let us assume that

BH1
0
(φ; r) ∩ LESG = {φ} (3.8)

with some r > 0. Here we write BH1
0
(φ; r) := {w ∈ H1

0 (Ω): ‖w − φ‖1,2 < r}.
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Claim 3.1. For any ε ∈ (0, r), it holds that

c := inf{J(v) : v ∈ XG, ‖v − φ‖1,2 = ε} > d1.

Assume on the contrary that c = d1, i.e., there exists vn ∈ XG such that

‖vn − φ‖1,2 = ε and J(vn) → d1.

Since m < 2∗, it entails that, up to a subsequence,

vn → v∞ weakly in H1
0 (Ω) and strongly in Lm(Ω).

By Lemmas 3.9 and 3.10, we obtain

v∞ ∈ XG, and hence, d1 ≤ J(v∞).

Therefore it follows that

1

2
‖vn‖21,2 = J(vn) +

λm
m

‖vn‖mm

→ d1 +
λm
m

‖v∞‖mm ≤ J(v∞) +
λm
m

‖v∞‖mm =
1

2
‖v∞‖21,2.

By using the weak lower semicontinuity,

lim inf
n→∞

‖vn‖1,2 ≥ ‖v∞‖1,2,

and the uniform convexity of ‖ · ‖1,2, we deduce that vn → v∞ strongly in
H1

0 (Ω). Hence ‖v∞−φ‖1,2 = ε and J(v∞) = d1. Thus v∞ ∈ LESG by Lemma
3.10. However, the fact that ‖v∞ − φ‖1,2 = ε < r contradicts (3.8).

Let ε ∈ (0, r) be arbitrarily given. Choose δ ∈ (0, ε) so small that

J(v) < c for all v ∈ BH1
0
(φ; δ).

Here it is possible, because c > d1 = J(φ) by Claim 3.1, and J is continuous
in H1

0 (Ω). For any v0 ∈ XG ∩BH1
0
(φ; δ), let v(s) be a solution of (3.3)–(3.5).

Then v(s) ∈ XG for s ≥ 0 by (i) of Lemma 3.8.

Claim 3.2. For any s ≥ 0, v(s) ∈ BH1
0
(φ; ε), and hence φ is stable.

Assume on the contrary that v(s0) ∈ ∂BH1
0
(φ; ε) at some s0 > 0. By the

definition of c, it holds that c ≤ J(v(s0)). However, it contradicts the fact
that J(v(s0)) ≤ J(v0) < c. Thus v(s) ∈ BH1

0
(φ; ε) for all s ≥ 0.

Moreover, if φ is isolated in H1
0 (Ω) from all sign-definite G-invariant so-

lutions of (3.7), then one can prove that v(sn) converges strongly in H1
0 (Ω)

to φ along any sequence sn → ∞ (see [3] for more details).
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3.4 Proof of Theorem 3.7

Let φ be a sign-changing G-invariant solution of (3.7) (hence φ admits more
than two nodal domains).

We first prove (i). Let D be a nodal domain of φ and define

φµ(x) :=

{
µφ(x) if x ∈ D,
φ(x) if x ∈ Ω \D for µ ≥ 0

(Note: φµ might not belong to X ). Then one can observe that

• φµ is G-invariant,

• φµ → φ strongly in H1
0 (Ω) as µ→ 1,

• if µ 6= 1, then J(cφµ) < J(φ) for any c ≥ 0.

Moreover, we set

u0,µ := φµ, τµ := t∗(u0,µ), v0,µ := τ−1/(m−2)
µ u0,µ ∈ XG.

As in [3], it then follows that

• τµ → t∗(φ) = 1 and v0,µ → φ strongly in H1
0 (Ω) as µ→ 1,

• if µ 6= 1, then J(v0,µ) < J(φ).

Hence the solution vµ(s) of (3.3)–(3.5) with vµ(0) = v0,µ never converges
to φ as s → ∞. Therefore φ is not an asymptotically stable profile under
G-invariant perturbations.

Let us move on to (ii). Here we further assume that

BH1
0
(φ;R) ∩ {ψ ∈ SG : J(ψ) < J(φ)} = ∅ (3.9)

with some R > 0.

Claim 3.3. If µ 6= 1, then vµ(s) 6∈ BH1
0
(φ;R) for any s� 1.

Assume on the contrary that vµ(sn) ∈ BH1
0
(φ;R) with some sequence

sn → ∞. Then by (ii) of Lemma 3.8, we deduce that, up to a subsequence,

vµ(sn) → ψ strongly in H1
0 (Ω)

with some ψ ∈ BH1
0
(φ;R) ∩ SG. Moreover, we have

J(ψ) ≤ J(v0,µ) < J(φ),

which contradicts (3.9). Thus φ is an unstable profile.
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3.5 Applications of stability criteria

We first apply the preceding stability criteria to the case that Ω is an annular
domain given by

Ω := {x ∈ RN : a < |x| < b}
with constants 0 < a < b. Then it is known that (3.7) admits a unique
positive radial solution φ1 (see [17]) and an arbitrary number of positive
nonradial solutions by properly choosing a, b. Particularly, least energy solu-
tions of (3.7) are nonradial, provided that (b− a)/a� 1 (see [11], [16], [10]).
Hence the unique positive radial solution φ1 is out of the scope of the stability
criteria proposed in [3]. It is also known that (3.7) admits infinitely many
radial sign-changing solutions under (3.1) (see also [17]) and all the sign-
changing solutions turn out to be not asymptotically stable under a wider
class of perturbations by [3].

Corollary 3.11. Let Ω be an annular domain in RN and assume (3.1).
Then the sign-definite radial solutions ±φ1 are asymptotically stable profiles
under O(N)-invariant perturbations. Furthermore, the other radial solutions
of (3.7) are not asymptotically stable profiles under O(N)-invariant pertur-
bations.

Proof. Let G = O(N). Since φ1 is the least energy G-invariant solution, we
conclude by Theorem 3.6 that ±φ1 are asymptotically stable profiles under
G-invariant perturbations. The other radial solutions are sign-changing, so
by Theorem 3.7 they are not asymptotically stable under O(N)-invariant
perturbations.

Remark 3.12. The frame of stability analysis for positive radial profiles in
annular domains without restriction of perturbation will be discussed in a
forthcoming joint paper with Ryuji Kajikiya.

We next give a corollary for general G-invariant domains. Here we call
φ least energy sign-changing G-invariant solution if φ is a sign-changing G-
invariant solution of (3.7) and takes the least energy among sign-changing
G-invariant solutions. Such a least energy sign-changing G-invariant solution
always exists for any subgroup G ⊂ O(N) under (3.1).

Corollary 3.13. Let Ω be a G-invariant domain of RN with smooth bound-
ary and assume (3.1). Then least energy sign-changing G-invariant solutions
of (3.7) are unstable asymptotic profiles under G-invariant perturbations.

Proof. As in [3], one can prove that every least energy sign-changing G-
invariant solution φ is distinct from all the G-invariant nontrivial solutions
taking lower energies (i.e., sign-definite G-invariant solutions) by maximum
principle. Thus φ is unstable under G-invariant perturbations by Theorem
3.7.
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This fact is new also for the stability analysis as in [3]. When Ω is
an annulus, least energy sign-changing solutions are nonradial by [1] and
unstable in the sense of asymptotic profiles for (1.1)–(1.3) by [3]. By Remark
3.5, this corollary further assures that least energy sign-changing G-invariant
solutions are also unstable profiles for any subgroup G of O(N).
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