Doubly nonlinear evolution equations with non-monotone perturbations

Goro Akagi* ${ }^{* 1}$
${ }^{1}$ Department of Machinery and Control Systems, School of Systems Engineering, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama-shi, Saitama 330-8570, Japan.

Abstract

The local (in time) existence of strong solutions to Cauchy problems for doubly nonlinear abstract evolution equations with non-monotone perturbations in reflexive Banach spaces is proved under appropriate assumptions, which allow the case where solutions of the corresponding unperturbed problem may not be unique. To prove the existence, a couple of approximate problems are introduced and delicate limiting procedures are discussed by using various tools from convex analysis and the Kakutani-Ky Fan fixed point theorem. Furthermore, an application of the preceding abstract theory to a nonlinear PDE is also given.

© 2007 WILEY-VCH Verlag GmbH \& Co. KGaA, Weinheim

1 Introduction

Let V and V^{*} be a reflexive Banach space and its dual space, respectively, and let H be a Hilbert space whose dual space H^{*} is identified with itself such that

$$
\begin{equation*}
V \hookrightarrow H \equiv H^{*} \hookrightarrow V^{*} \tag{1}
\end{equation*}
$$

with continuous and densely defined canonical injections. Let φ and ψ^{t} be proper lower semi-continuous functions from V into $(-\infty, \infty]$, and let $\partial_{V} \varphi, \partial_{V} \psi^{t}: V \rightarrow 2^{V^{*}}$ be subdifferential operators of φ and ψ^{t}, respectively, for each $t \in[0, T]$. This talk deals with the existence of strong solutions for the following Cauchy problem:

$$
(\mathrm{CP})\left\{\begin{array}{l}
\partial_{V} \psi^{t}\left(u^{\prime}(t)\right)+\partial_{V} \varphi(u(t))+B(t, u(t)) \ni f(t) \text { in } V^{*}, \quad 0<t<T \\
u(0)=u_{0},
\end{array}\right.
$$

where B denotes an operator from $(0, T) \times V$ into $2^{V^{*}}$ and $f:(0, T) \rightarrow V^{*}$ and $u_{0} \in D(\varphi):=\{u \in V ; \varphi(u)<\infty\}$ are given data.

For the unperturbed problem ($B \equiv 0$), Colli [4] provided sufficient conditions for the existence of strong solutions to (CP) with $\psi^{t} \equiv \psi$, and moreover, his results were extended to non-autonomous cases in [2]. As for perturbation problems ($B \not \equiv 0$), Aso, Frémond and Kenmochi [3] proved the existence of time-global strong solutions for (CP) with $\partial_{V} \psi^{t}\left(u^{\prime}(t)\right)$ replaced by $A\left(u(t), u^{\prime}(t)\right)$, where A is an operator from $H \times H \rightarrow 2^{H}$, in the Hilbert space setting, i.e., $V=V^{*}=H$. Ôtani [5] established an abstract theory on the existence of strong solutions for (CP) with $\partial_{V} \psi^{t}\left(u^{\prime}(t)\right)$ replaced by $u^{\prime}(t)$ in the Hilbert space setting. His results were applied to various nonlinear PDEs (e.g., quasilinear reaction-diffusion equation, Navier-Stokes equation).

In this study, we attempt to prove the existence of time-local strong solutions for (CP) by imposing appropriate conditions (the coerciveness, the boundedness and the t-smoothness of $\partial_{V} \psi^{t}$, the precompactness of sub-level sets of φ and the boundedness, the compactness and the measurability of B) on the non-monotone operator B as well as the functionals φ, ψ^{t}. We also emphasize that our abstract result is established in reflexive Banach space setting, and it covers the case where solutions may blow up in finite time.

As a typical example of nonlinear PDEs which fall within our abstract theory, we deal with the following initial-boundary value problem (IBVP):

$$
\begin{aligned}
& \left|u_{t}\right|^{p-2} u_{t}(x, t)-\operatorname{div}\left(|\nabla u|^{m-2} \nabla u\right)(x, t)-|u|^{q-2} u(x, t)=f(x, t), \quad(x, t) \in \Omega \times(0, T), \\
& u(x, t)=0, \quad(x, t) \in \partial \Omega \times(0, T), \quad u(x, 0)=u_{0}(x), \quad x \in \Omega
\end{aligned}
$$

where Ω is a bounded domain in $\mathbb{R}^{N}, 1<p, m, q<\infty$, and $f: \Omega \times(0, T) \rightarrow \mathbb{R}, u_{0}: \Omega \rightarrow \mathbb{R}$ are given.

2 Main result

Before describing our main result, we introduce assumptions on ψ^{t}, φ and B. Let $p \in(1, \infty)$ and $T>0$ be fixed.

[^0](A1) There exist positive constants $C_{i}(i=1,2,3,4)$ such that
\[

$$
\begin{aligned}
& C_{1}|u|_{V}^{p} \leq \psi^{t}(u)+C_{2} \quad \text { for all } t \in[0, T] \text { and } u \in D\left(\psi^{t}\right), \\
& |\eta|_{V^{*}}^{p^{\prime}} \leq C_{3} \psi^{t}(u)+C_{4} \quad \text { for all } t \in[0, T] \text { and }[u, \eta] \in \partial_{V} \psi^{t} .
\end{aligned}
$$
\]

(A2) There exist a constant $\delta>0$ such that for all $t_{0} \in[0, T]$ and $v_{0} \in D\left(\psi^{t_{0}}\right)$, we can take a function $u: I_{\delta}\left(t_{0}\right):=\left[t_{0}-\delta, t_{0}+\delta\right] \rightarrow V$ satisfying

$$
\left|u(t)-v_{0}\right|_{V} \leq\left|\alpha(t)-\alpha\left(t_{0}\right)\right| \ell_{0}\left(\left|\psi^{t_{0}}\left(v_{0}\right)\right|+\left|v_{0}\right|_{V}\right)
$$

$$
\left.\psi^{t}(u(t)) \leq \psi^{t_{0}}\left(v_{0}\right)+\left|\beta(t)-\beta\left(t_{0}\right)\right|\right) \ell_{0}\left(\left|\psi^{t_{0}}\left(v_{0}\right)\right|+\left|v_{0}\right|_{V}\right) \text { for all } t \in I_{\delta}\left(t_{0}\right)
$$

with $\alpha, \beta \in C([0, T])$ and a non-decreasing function ℓ_{0} in \mathbb{R}.
(A3) There exist a Banach space X and a non-decreasing function ℓ_{1} in \mathbb{R} such that X is compactly embedded in V and $|u|_{X} \leq \ell_{1}\left([\varphi(u)]_{+}+|u|_{H}\right)$ for all $u \in D\left(\partial_{V} \varphi\right)$, where $[s]_{+}:=\max \{s, 0\}$.
$D\left(\partial_{V} \varphi\right) \subset D(B(t, \cdot))$ for a.e. $t \in(0, T)$. For all $\varepsilon>0$, there exist a constant $C_{\varepsilon} \geq 0$ and a non-decreasing function ℓ_{2} in \mathbb{R} independent of ε such that

$$
|g|_{V^{*}}^{p^{\prime}} \leq \varepsilon|\xi|_{V^{*}}^{\sigma}+C_{\varepsilon} \ell_{2}\left(\varphi(u)+|u|_{V}\right), \text { where } \sigma:=\min \left\{2, p^{\prime}\right\},
$$

for a.e. $t \in(0, T)$ and all $u \in D\left(\partial_{V} \varphi\right), g \in B(t, u)$ and $\xi \in \partial_{V} \varphi(u)$.
(A5) Let $S \in(0, T]$ and let $\left\{u_{n}\right\}$ and $\left\{\xi_{n}\right\}$ be sequences in $C([0, S] ; V)$ and $L^{\sigma}\left(0, S ; V^{*}\right)$, respectively, with $\sigma:=\min \left\{2, p^{\prime}\right\}$, such that $u_{n} \rightarrow u$ strongly in $C([0, S] ; V),\left[u_{n}(t), \xi_{n}(t)\right] \in \partial_{V} \varphi$ for a.e. $t \in(0, S)$, and $\sup _{t \in[0, S]} \varphi\left(u_{n}(t)\right)+\int_{0}^{S}\left|u_{n}^{\prime}(t)\right|_{H}^{p} d t+\int_{0}^{S}\left|\xi_{n}(t)\right|_{V^{*}}^{\sigma} d t$ is bounded for all $n \in \mathbb{N}$, and let $\left\{g_{n}\right\}$ be a sequence in $L^{p^{\prime}}\left(0, S ; V^{*}\right)$ such that $g_{n}(t) \in B\left(t, u_{n}(t)\right)$ for a.e. $t \in(0, S)$, $g_{n} \rightarrow g$ weakly in $L^{p^{\prime}}\left(0, S ; V^{*}\right)$. Then, $\left\{g_{n}\right\}$ is precompact in $L^{p^{\prime}}\left(0, S ; V^{*}\right)$ and $g(t) \in B(t, u(t))$ for a.e. $t \in(0, S)$.
(A6) Let $S \in(0, T]$ and let $u \in W^{1, p}(0, S ; V)$ be such that $\sup _{t \in[0, S]} \varphi(u(t))<+\infty$ and suppose that there exists $\xi \in L^{p^{\prime}}\left(0, S ; V^{*}\right)$ such that $\xi(t) \in \partial_{V} \varphi(u(t))$ for a.e. $t \in(0, S)$. Then, there exists a V^{*}-valued strongly measurable function g such that $g(t) \in B(t, u(t))$ for a.e. $t \in(0, S)$. Moreover, the set $B(t, u)$ is convex for all $t \in(0, T)$ and $u \in D(B(t, \cdot))$.
Now, our result on local (in time) existence is stated as follows:
Theorem 2.1 (Akagi [1]) Let $p \in(1, \infty)$ and $T>0$ be given. Suppose that (A1)-(A6) are all satisfied. Then, for all $f \in L^{p^{\prime}}\left(0, T ; V^{*}\right)$ and $u_{0} \in D(\varphi)$, there exists $T_{*}=T_{*}\left(\varphi\left(u_{0}\right)+\left|u_{0}\right|_{H}+\|f\|_{L^{p^{\prime}}\left(0, T ; V^{*}\right)}\right) \in(0, T]$ such that (CP) admits at least one strong solution $u \in W^{1, p}\left(0, T_{*} ; V\right)$ on $\left[0, T_{*}\right]$.

3 Application to (IBVP)

Applying Theorem 2.1 to (IBVP), we have the following existence result.
Theorem 3.1 (Akagi [1]) Let $T>0$ and suppose that

$$
2 \leq p<m^{*}:=\left\{\begin{array}{ll}
\frac{m N}{N-m} & \text { if } m<N, \\
+\infty & \text { if } m \geq N
\end{array} \quad \text { and } \quad 1<q<\frac{m^{*}}{p^{\prime}}+1\right.
$$

Then, for all $f \in L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right)$ and $u_{0} \in W_{0}^{1, m}(\Omega)$, there exists $T_{*}=T_{*}\left(\varphi\left(u_{0}\right)+\|f\|_{L^{p^{\prime}}\left(0, T ; L^{p^{\prime}}(\Omega)\right)}\right)>0$ such that (IBVP) admits at least one solution $u \in W^{1, p}\left(0, T_{*} ; L^{p}(\Omega)\right)$ on $\left[0, T_{*}\right]$.

Acknowledgements The author is supported in part by the Shibaura Institute of Technology grant for Project Research (No. 211459 (2006), 211455 (2007)), and the Grant-in-Aid for Young Scientists (B) (No. 19740073), Ministry of Education, Culture, Sports, Science and Technology.

References

[1] G. Akagi, submitted.
[2] G. Akagi and M. Ôtani, Adv. Math. Sci. Appl., 14, 683-712 (2004).
[3] M. Aso, M. Frémond and N. Kenmochi, Nonlinear Anal. 60, 1003-1023 (2005).
[4] P. Colli, Japan J. Indust. Appl. Math. 9, 181-203 (1992).
[5] M. Ôtani, J. Diff. Eq. 46, 268-299 (1982).

[^0]: * Corresponding author: e-mail: g-akagi@sic.shibaura-it.ac.jp, Phone: +81486832020 Fax: +81 486875197

