Nonlinear
Analysis

On some macroscopic models for type-II superconductivity

G. Akagi*, ${ }^{*}$, M. Ôtani ${ }^{2}$
Department of Applied Physics, School of Science and Engineering, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Abstract

This paper is concerned with a variational inequality with a time-dependent constraint, which arises from some macroscopic models of type-II superconductivity, as well as its approximate problems associated with generalized p-Laplace operators. We prove the existence and uniqueness of solutions for each problem by establishing an abstract theory for doubly nonlinear evolution equations governed by two time-dependent subdifferential operators in reflexive Banach spaces.

 © 2005 Elsevier Ltd. All rights reserved.Keywords: Doubly nonlinear evolution equation; Subdifferential operator; Bean's critical-state model

1. Introduction

Barrett and Prigozhin [2] studied the dynamics of internal magnetic fields in type-II superconductors under non-stationary external magnetic fields from macroscopic points of view for two different geometric conditions; infinitely long cylindrical superconductor with parallel fields, and thin film superconductor with perpendicular fields. They employed Bean's critical-state model, which describes the correspondence between electric field \mathbf{E}

[^0]and current density \mathbf{j} given by

(B) $\quad \mathbf{E} \| \mathbf{j}, \quad|\mathbf{E}| \in \begin{cases}0 & \text { if }|\mathbf{j}|<j_{\mathrm{c}}, \\ {[0,+\infty)} & \text { if }|\mathbf{j}|=j_{\mathrm{c}}, \\ \emptyset & \text { if }|\mathbf{j}|>j_{\mathrm{c}}\end{cases}$
with the critical current density j_{c}, and derived the following variational inequality (P) from the Maxwell system and Bean's critical-state model (B).
(P) $\left\{\begin{array}{l}b\left(\frac{\partial h}{\partial t}(\cdot, t), \quad v-h(\cdot, t)\right) \geqslant-\left\langle\frac{\partial h_{\mathrm{e}}}{\partial t}(\cdot, t), v-h(\cdot, t)\right\rangle_{H_{0}^{1}} \\ \forall v \in K^{t}, \quad 0<t<T, \\ h(\cdot, t) \in K^{t}, \quad 0<t<T, \quad h(\cdot, 0)=h_{0},\end{array}\right.$
where Ω is a bounded domain in \mathbf{R}^{2} with smooth boundary $\partial \Omega, h_{\mathrm{e}}$ denotes the x_{3}-component of external magnetic field, h denotes the x_{3}-component of internal magnetic field (resp., stream function of sheet current density) for long cylinder case (resp., for thin film case), and h_{0} is initial data of h; moreover, the convex set K^{t} is defined by

$$
K^{t}:=\left\{u \in H_{0}^{1}(\Omega) ; \quad|\nabla u(x)| \leqslant j_{\mathrm{c}}(x, t) \text { for a.e. } x \in \Omega\right\}
$$

and $b(\cdot, \cdot)$ is defined as follows:

$$
b(u, v):= \begin{cases}\int_{\Omega}^{u(x) v(x) \mathrm{d} x} & \text { for long cylinder case } \\ \int_{\Omega}^{\int_{\Omega} \frac{\nabla_{x} u(x) \cdot \nabla_{x^{\prime}} v\left(x^{\prime}\right)}{4 \pi\left|x-x^{\prime}\right|} \mathrm{d} x \mathrm{~d} x^{\prime}} & \text { for thin film case. }\end{cases}
$$

In [2], the critical current density j_{c} is assumed to be constant; however, from the view point of experimental physics, it would be more reasonable to suppose that j_{c} is inhomogeneous in space and time. In this paper, we assume that the critical current density j_{c} depends on x and t, i.e., $j_{\mathrm{c}}=j_{\mathrm{c}}(x, t)$; then, the variational inequality (P) is regarded as a time-dependent constraint problem, since the convex set K^{t} depends on t.

On the other hand, (B) has strong nonlinearity, so the following approximation of (B) is often employed instead of Bean's model (B):

$$
(\mathrm{B})_{p} \quad \mathbf{E}:=\left|\frac{\mathbf{j}}{j_{\mathrm{c}}}\right|^{p-2} \frac{\mathbf{j}}{j_{\mathrm{c}}}
$$

for a large enough number p. Moreover, the following equation is also derived from the Maxwell system and the power approximation (B) $)_{p}$:

$$
(\mathrm{P})_{p}\left\{\begin{array}{l}
b\left(\frac{\partial h_{p}}{\partial t}(\cdot, t), v\right)+\int_{\Omega}\left(\frac{1}{j_{\mathrm{c}}(x, t)}\right)^{p}\left|\nabla h_{p}(x, t)\right|^{p-2} \nabla h_{p}(x, t) \cdot \nabla v(x) \mathrm{d} x \\
\quad=-\left\langle\frac{\partial h_{\mathrm{e}}}{\partial t}(\cdot, t), v\right\rangle_{W_{0}^{1, p}} \forall v \in W_{0}^{1, p}(\Omega), \quad 0<t<T \\
h_{p}(\cdot, 0)=h_{0} .
\end{array}\right.
$$

In the next section, we develop an abstract theory of the following evolution equation governed by two time-dependent subdifferential operators $\partial \psi^{t}, \partial \varphi^{t}$ in the reflexive Banach space V^{*} :
(E) $\quad \partial \psi^{t}\left(\frac{\mathrm{~d} u}{\mathrm{~d} t}(t)\right)+\partial \varphi^{t}(u(t)) \ni f(t) \quad$ in $V^{*}, \quad 0<t<T$,
since both problems (P) and $(\mathrm{P})_{p}$ can be reduced into such evolution equations. As for the case where both ψ^{t} and φ^{t} are independent of t, (E) has already been studied by several authors (see e.g. [4] and its references). Moreover, in Section 3, we discuss the solvability of (P) and $(\mathrm{P})_{p}$ by using the abstract theory developed in Section 2.

2. Abstract theory

First we reduce (P) and $(\mathrm{P})_{p}$ to evolution equations governed by time-dependent subdifferential operators. To do this, we recall the definition of subdifferential operators in the following:

Definition 2.1. Let $\Phi(X)$ be the set of all convex lower-semicontinuous functionals φ from a topological linear space X into $(-\infty,+\infty]$ satisfying $\varphi \not \equiv+\infty$. Then the subdifferential operator $\partial_{X, X^{*}} \varphi: X \rightarrow 2^{X^{*}}$ of $\varphi \in \Phi(X)$ is defined by

$$
\begin{aligned}
& \partial_{X, X^{*}} \varphi(u):=\left\{\xi \in X^{*} ; \varphi(v)-\varphi(u) \geqslant\langle\xi, v-u\rangle_{X} \forall v \in D(\varphi)\right\}, \\
& D(\varphi):=\{u \in X ; \varphi(u)<+\infty\}
\end{aligned}
$$

with the domain $D\left(\partial_{X, X^{*}} \varphi\right):=\left\{u \in D(\varphi) ; \partial_{X, X^{*}} \varphi(u) \neq \emptyset\right\}$, where $\langle\cdot, \cdot\rangle_{X}$ denotes the duality pairing between X and its dual space X^{*}. For simplicity of notation, we shall write $\partial \varphi$ and $\langle\cdot, \cdot\rangle$ instead of $\partial_{X, X^{*}} \varphi$ and $\langle\cdot, \cdot\rangle_{X}$, respectively, if no confusion arises.

Now we set

$$
V_{0}:= \begin{cases}L^{2}(\Omega) & (\text { long cylinder case }) \\ H_{00}^{1 / 2}(\Omega) & (\text { thin film case })\end{cases}
$$

where

$$
H_{00}^{1 / 2}(\Omega):=\left\{\chi \in H^{1 / 2}(\Omega) ; \quad \tilde{\chi}:=\left\{\begin{array}{ll}
\chi & \text { in } \Omega \\
0 & \text { in } \mathbf{R}^{2} \backslash \Omega
\end{array} \in H^{1 / 2}\left(\mathbf{R}^{2}\right)\right\}\right.
$$

equipped with the norm

$$
|u|_{V_{0}}:= \begin{cases}|u|_{L^{2}(\Omega)}=\left(\int_{\Omega}|u(x)|^{2} \mathrm{~d} x\right)^{1 / 2} & \text { (long cylinder case), } \\ |u|_{H_{00}^{1 / 2}(\Omega)}=\left(|u|_{H^{1 / 2}(\Omega)}^{2}+\int_{\Omega} \frac{|u(x)|^{2}}{\operatorname{dist}(x, \partial \Omega)} \mathrm{d} x\right)^{1 / 2} & \text { (thin film case). }\end{cases}
$$

Then we have $V_{0} \subset L^{2}(\Omega) \subset V_{0}^{*}$ with continuous densely defined natural injections. Moreover, from the definition of $b(\cdot, \cdot)$, we can verify

$$
\begin{align*}
& b(u, v)=b(v, u) \quad \text { for all } u, v \in V_{0}, \tag{1}\\
& C_{1}|u|_{V_{0}}^{2} \leqslant b(u, u) \quad \text { for all } u \in V_{0}, \tag{2}\\
& |b(u, v)| \leqslant C_{2}|u|_{V_{0}}|v|_{V_{0}} \quad \text { for all } u, v \in V_{0}, \tag{3}
\end{align*}
$$

where $C_{1}, C_{2}>0$ (see [2] for their proofs). Define the functional $\psi: V_{0} \rightarrow[0,+\infty$) by

$$
\psi(u):=\frac{1}{2} b(u, u) \quad \forall u \in V_{0} .
$$

Then we can easily see

$$
\psi \in \Phi\left(V_{0}\right) \quad \text { and } \quad\langle\partial \psi(u), v\rangle=b(u, v) \quad \forall u, v \in V_{0} .
$$

Furthermore, we define $\varphi_{\infty}^{t}: V_{0} \rightarrow[0,+\infty]$ by

$$
\varphi_{\infty}^{t}(u):= \begin{cases}0 & \text { if } u \in K^{t}, \\ +\infty & \text { otherwise } .\end{cases}
$$

It then follows that $\varphi_{\infty}^{t} \in \Phi\left(V_{0}\right), D\left(\partial \varphi_{\infty}^{t}\right)=D\left(\varphi_{\infty}^{t}\right)=K^{t}$, and

$$
f \in \partial \varphi_{\infty}^{t}(u) \quad \text { if and only if } \quad u \in K^{t} \quad \text { and } \quad\langle f, v-u\rangle \leqslant 0 \quad \forall v \in K^{t}
$$

under the following condition on j_{c} :

$$
\begin{equation*}
0<\delta_{0} \leqslant j_{\mathrm{c}}(x, t) \quad \text { for a.e. } x \in \Omega \quad \text { and } \quad j_{\mathrm{c}}(\cdot, t) \in L^{\infty}(\Omega) \quad \forall t \in[0, T] . \tag{4}
\end{equation*}
$$

Hence (P) is reduced to the following evolution equation:

$$
(\mathrm{CP})_{\infty} \quad \partial \psi\left(\frac{\mathrm{d} h}{\mathrm{~d} t}(t)\right)+\partial \varphi_{\infty}^{t}(h(t)) \ni-\frac{\mathrm{d} h_{\mathrm{e}}}{\mathrm{~d} t}(t) \quad \text { in } V_{0}^{*}, \quad 0<t<T, \quad h(0)=h_{0} .
$$

On the other hand, the functional $\varphi_{p}^{t}: V_{0} \rightarrow[0,+\infty]$ defined by

$$
\varphi_{p}^{t}(u):= \begin{cases}\frac{1}{p} \int_{\Omega}\left(\frac{|\nabla u(x)|}{j_{\mathrm{c}}(x, t)}\right)^{p} \mathrm{~d} x & \text { if } u \in H_{0}^{1}(\Omega) \quad \text { and } \quad|\nabla u| / j_{\mathrm{c}}(\cdot, t) \in L^{p}(\Omega) \\ +\infty & \text { otherwise }\end{cases}
$$

satisfies $\varphi_{p}^{t} \in \Phi\left(V_{0}\right), D\left(\varphi_{p}^{t}\right)=W_{0}^{1, p}(\Omega)$ and

$$
\left\langle\partial \varphi_{p}^{t}(u), v\right\rangle=\int_{\Omega}\left(\frac{1}{j_{\mathrm{c}}(x, t)}\right)^{p}|\nabla u(x)|^{p-2} \nabla u(x) \cdot \nabla v(x) \mathrm{d} x \quad \forall v \in W_{0}^{1, p}(\Omega)
$$

under the assumption (4). Thus $(\mathrm{P})_{p}$ is rewritten as

$$
(\mathrm{CP})_{p} \quad \partial \psi\left(\frac{\mathrm{~d} h_{p}}{\mathrm{~d} t}(t)\right)+\partial \varphi_{p}^{t}\left(h_{p}(t)\right)=-\frac{\mathrm{d} h_{\mathrm{e}}}{\mathrm{~d} t}(t) \quad \text { in } V_{0}^{*}, 0<t<T, \quad h_{p}(0)=h_{0} .
$$

Therefore we will deal with the following abstract Cauchy problem (CP) with two timedependent subdifferential operators $\partial \psi^{t}, \partial \varphi^{t}: V \rightarrow 2^{V^{*}}$ in the dual space V^{*} of a real
reflexive Banach space V to investigate the solvability of (P) and $(\mathrm{P})_{p}$; moreover, the scope of our abstract theory to be developed here can cover further generalized physical settings as well as (P) and $(\mathrm{P})_{p}$.

$$
\begin{equation*}
\partial \psi^{t}\left(\frac{\mathrm{~d} u}{\mathrm{~d} t}(t)\right)+\partial \varphi^{t}(u(t)) \ni f(t) \quad \text { in } V^{*}, 0<t<T, \quad u(0)=u_{0} \tag{CP}
\end{equation*}
$$

where φ^{t} and ψ^{t} belong to $\Phi(V)$ for every $t \in[0, T]$ and f is a given function from $[0, T]$ into V^{*}. Moreover, we suppose that there exists a Hilbert space H whose dual space is identified with itself such that V is densely and continuously embedded in H, which implies the continuous embedding $H^{*} \subset V^{*}$. The notion of strong solution of (CP) is defined as follows.

Definition 2.2. A function $u \in C([0, T] ; V)$ is said to be a strong solution of (CP), if the following conditions are all satisfied:
(a) u is a V-valued absolutely continuous function on $[0, T]$, and $u(+0)=u_{0}$.
(b) $u(t) \in D\left(\partial \varphi^{t}\right), \mathrm{d} u(t) / \mathrm{d} t \in D\left(\partial \psi^{t}\right)$ for a.e. $t \in(0, T)$
and there exist sections $g(t) \in \partial \varphi^{t}(u(t))$ and $\eta(t) \in \partial \psi^{t}(\mathrm{~d} u(t) / \mathrm{d} t)$ such that

$$
\begin{equation*}
\eta(t)+g(t)=f(t) \text { in } V^{*} \text { for a.e. } t \in(0, T) \tag{5}
\end{equation*}
$$

(c) The function $t \mapsto \varphi^{t}(u(t))$ is differentiable for a.e. $t \in(0, T)$ and the function $t \mapsto \psi^{t}(\mathrm{~d} u(t) / \mathrm{d} t)$ is integrable on $(0, T)$.

To state our results on the solvability of (CP), we introduce the following assumptions for some number $q \in(1,+\infty)$.
(A1) There exist constants $\alpha>0$ and $C_{3} \geqslant 0$ such that $\alpha|u|_{V}^{q} \leqslant \psi^{t}(u)+C_{3}$ for all $u \in D\left(\psi^{t}\right)$ and $t \in[0, T]$.
(A2) There exist a constant $C_{4} \geqslant 0$ and a function $a \in L^{1}(0, T)$ such that $|\eta|_{V^{*}}^{q^{\prime}} \leqslant C_{4} \psi^{t}(u)+a(t) \quad$ for all $[u, \eta] \in \partial \psi^{t} \quad$ and $\quad t \in[0, T]$.

Define the mapping $\mathscr{B}: L^{q}(0, T ; V) \rightarrow L^{q^{\prime}}\left(0, T ; V^{*}\right)$ as follows:

$$
\mathscr{B} u \ni f \quad \text { if and only if } \quad \partial \psi^{t}(u(t)) \ni f(t) \quad \text { for a.e. } t \in(0, T)
$$

for all $[u, f] \in L^{q}(0, T ; V) \times L^{q^{\prime}}\left(0, T ; V^{*}\right)$. Then \mathscr{B} is said to be a weakly closed mapping from $L^{q}(0, T ; V)$ into $L^{q^{\prime}}\left(0, T ; V^{*}\right)$ if $\eta \in \mathscr{B}(u)$ whenever $u_{n} \rightarrow u$ weakly in $L^{q}(0, T ; V)$, $\eta_{n} \in \mathscr{B}\left(u_{n}\right)$ and $\eta_{n} \rightarrow \eta$ weakly in $L^{q^{\prime}}\left(0, T ; V^{*}\right)$.
(A3) \mathscr{B} is a weakly closed mapping from $L^{q}(0, T ; V)$ into $L^{q^{\prime}}\left(0, T ; V^{*}\right)$.
The following (A3)' will be used to verify the uniqueness of solutions for (CP).
(A3)' For every $t \in[0, T], D\left(\partial \varphi^{t}\right) \subset D\left(\partial \psi^{t}\right)$, the graph of $\partial \psi^{t}$ is linear, i.e., $\alpha \xi+\beta \eta \in \partial \psi^{t}(\alpha u+\beta v) \forall[u, \xi],[v, \eta] \in \partial \psi^{t}, \forall \alpha, \beta \in \mathbf{R}$, and $\partial \psi^{t}$ is symmetric, where "symmetric" means $\langle\xi, v\rangle=\langle\eta, u\rangle$ $\forall[u, \xi],[v, \eta] \in D\left(\partial \psi^{t}\right)$.

Remark 2.3. On account of the demiclosedness of maximal monotone operators and Mazur's lemma, condition (A3) is derived from (A3)'.

The next condition is concerned with the compactness of the level set of φ^{t} in V.
(A4) There exist a Banach space X and a non-decreasing function ℓ defined on $[0,+\infty)$ such that X is compactly embedded in V and $|u|_{X} \leqslant \ell\left(\left|\varphi^{t}(u)\right|+|u|_{H}\right)$ for all $u \in D\left(\partial \varphi^{t}\right)$ and $t \in[0, T]$.

From now on, we write $\left\{\varphi^{t}\right\}_{t \in[0, T]} \in \Phi\left(V,[0, T] ; \alpha, \beta, C_{0}, r\right)$ for some functions α, β : $[0, T] \rightarrow \mathbf{R}$ and numbers $C_{0} \in \mathbf{R}, r \in(1,+\infty)$ if the following (i) and (ii) hold true.
(i) $\varphi^{t} \in \Phi(V)$ for all $t \in[0, T]$.
(ii) $\exists \delta>0, \forall t_{0} \in[0, T], \forall u_{0} \in D\left(\varphi^{t_{0}}\right), \exists u: I_{\delta}\left(t_{0}\right):=\left[t_{0}-\delta, t_{0}+\delta\right] \cap[0, T] \rightarrow V$;

$$
\begin{aligned}
& \left|u(t)-u_{0}\right|_{V} \leqslant\left|\alpha(t)-\alpha\left(t_{0}\right)\right|\left\{\left|\varphi^{t_{0}}\left(u_{0}\right)\right|+C_{0}\right\}^{1 / r}, \\
& \varphi^{t}(u(t)) \leqslant \varphi^{t_{0}}\left(u_{0}\right)+\left|\beta(t)-\beta\left(t_{0}\right)\right|\left\{\left|\varphi^{t_{0}}\left(u_{0}\right)\right|+C_{0}\right\} \quad \forall t \in I_{\delta}\left(t_{0}\right) .
\end{aligned}
$$

We now employ the following condition for the t-smoothness of functionals:
(A5) There exist functions $\alpha_{1} \in W^{1, \rho}(0, T)$ with $\rho=\max \{q, 2\}$, $\alpha_{2} \in W^{1, r}(0, T), \beta_{i} \in W^{1,1}(0, T)(i=1,2)$ and constants $C_{0} \in \mathbf{R}$, $r \in(1,+\infty)$ such that $\left\{\varphi^{t}\right\}_{t \in[0, T]} \in \Phi\left(V,[0, T] ; \alpha_{1}, \beta_{1}, C_{0}, \rho\right)$ and $\left\{\psi^{t}\right\}_{t \in[0, T]} \in \Phi\left(V,[0, T] ; \alpha_{2}, \beta_{2}, C_{0}, r\right)$.

The following (A5)' is also required to prove the uniqueness of solutions for (CP):
(A5) ${ }^{\prime}$ There exist functions $\alpha_{2}, \beta_{2} \in W^{1,1}(0, T)$ such that

$$
\left\{\psi^{t}\right\}_{t \in[0, T]} \in \Phi\left(V,[0, T] ; \alpha_{2}, \beta_{2}, 0, q\right) .
$$

Now our main result is stated as follows.
Theorem 2.4. Let $q \in(1,+\infty)$ and suppose that (A1)-(A5) are all satisfied. Then for all $f \in L^{q^{\prime}}\left(0, T ; V^{*}\right)$ and $u_{0} \in D\left(\varphi^{0}\right),(\mathrm{CP})$ has at least one strong solution u on $[0, T]$ satisfying $u \in W^{1, q}(0, T ; V)$ and $g, \eta \in L^{q^{\prime}}\left(0, T ; V^{*}\right)$, where $g(t)$ and $\eta(t)$ denote the sections of $\partial \varphi^{t}(u(t))$ and $\partial \psi^{t}(\mathrm{~d} u(t) / \mathrm{d} t)$ in (5), respectively.

In particular, suppose that (A1) with $C_{3}=0$, (A2) with $a \equiv 0$, (A3)' and (A5)' are satisfied and $\psi^{0}(0)=0$. Then the solution is unique.

Proof. The proof consists of 4 steps. For simplicity, we assume that $\psi^{t}, \varphi^{t} \geqslant 0$; however, the following argument is valid also for the general case.
Approximation: We introduce approximate problems for (CP) in the Hilbert space H. To this end, we define the extensions of ψ^{t} and φ^{t} on H as follows:

$$
(u):=\left\{\begin{array}{ll}
\phi(u) & \text { if } u \in V, \\
+\infty & \text { otherwise, }
\end{array} \quad \phi=\psi^{t}, \varphi^{t} .\right.
$$

Then we can consider the following Cauchy problems:

$$
(\mathrm{CP})_{\lambda}\left\{\begin{array}{l}
\lambda \frac{\mathrm{d} u_{\lambda}}{\mathrm{d} t}(t)+\eta_{\lambda}(t)+\partial_{H} \varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right)=f_{\lambda}(t) \quad \text { in } H, \quad 0<t<T \\
\eta_{\lambda}(t) \in \partial_{H} \psi_{H}^{t}\left(\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right), \quad u_{\lambda}(0)=u_{0},
\end{array}\right.
$$

where $\partial_{H} \varphi_{H, \lambda}^{t}$ denotes the Yosida approximation of $\partial_{H} \varphi_{H}^{t}$, and $\left(f_{\lambda}\right)$ denotes a sequence in $C([0, T] ; H)$ such that $f_{\lambda} \rightarrow f$ strongly in $L^{q^{\prime}}\left(0, T ; V^{*}\right)$ as $\lambda \rightarrow+0$. Since $(\lambda I+$ $\left.\partial_{H} \psi_{H}^{t}\right)^{-1}$ and $\partial_{H} \varphi_{H, \lambda}^{t}$ become Lipschitz continuous in H, where I denotes the identity in H, the mapping $u \mapsto A(t, u):=\left(\lambda I+\partial_{H} \psi_{H}^{t}\right)^{-1}\left\{f_{\lambda}(t)-\partial_{H} \varphi_{H, \lambda}^{t}(u)\right\}$ also becomes Lipschitz continuous with respect to u for each $t \in[0, T]$. Moreover, (A5) ensures the continuity of the mapping $t \mapsto A(t, u)$ for each $u \in H$. Consequently, since (CP) $)_{\lambda}$ is equivalent to the following

$$
\frac{\mathrm{d} u_{\lambda}}{\mathrm{d} t}(t)=A\left(t, u_{\lambda}(t)\right) \quad \text { in } H, \quad 0<t<T, \quad u_{\lambda}(0)=u_{0}
$$

Hence, Theorem 1.4 of [3] assures the existence of a unique strong solution u_{λ} for $(\mathrm{CP})_{\lambda}$ satisfying $u_{\lambda} \in C^{1}([0, T] ; H), \mathrm{d} u_{\lambda}(t) / \mathrm{d} t \in D\left(\partial_{H} \psi_{H}^{t}\right)$ for all $t \in[0, T]$ and $\mathrm{d} u_{\lambda} / \mathrm{d} t \in$ $C_{w}([0, T] ; V)$, where $C_{w}([0, T] ; V)$ denotes the set of all weakly continuous functions from $[0, T]$ into V (see [1] for more details).

A priori estimates: We first establish the following a priori estimates for $u_{\lambda}(t)$.
Lemma 2.5. There exists a constant M_{1} such that

$$
\begin{align*}
& \sup _{t \in[0, T]} \varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right) \leqslant M_{1}, \tag{6}\\
& \lambda \int_{0}^{T}\left|\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right|_{H}^{2} \mathrm{~d} t+\int_{0}^{T}\left|\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right|_{V}^{q} \mathrm{~d} t+\int_{0}^{T} \psi^{t}\left(\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right) \mathrm{d} t \leqslant M_{1}, \tag{7}\\
& \sup _{t \in[0, T]}\left|u_{\lambda}(t)\right|_{V} \leqslant M_{1} \tag{8}
\end{align*}
$$

for all $\lambda \in(0,1]$.
Proof. We note that (A5) yields $\psi^{t}(u) \leqslant\langle\eta, u\rangle+C\left(|\eta|_{V^{*}}+1\right)$ for all $[u, \eta] \in \partial \psi^{t}$ and $t \in[0, T]$ (see [1] for more details). Multiplying (CP) λ_{λ} by $\mathrm{d} u_{\lambda}(t) / \mathrm{d} t$, we get

$$
\begin{aligned}
& \lambda\left|\frac{\mathrm{d} u_{\lambda}}{\mathrm{d} t}(t)\right|_{H}^{2}+\psi^{t}\left(\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right)+\left\langle g_{\lambda}(t), \frac{\mathrm{d} u_{\lambda}}{\mathrm{d} t}(t)\right\rangle \\
& \quad \leqslant\left\langle f_{\lambda}(t), \frac{\mathrm{d} u_{\lambda}}{\mathrm{d} t}(t)\right\rangle+C\left(\left|\eta_{\lambda}(t)\right|_{V^{*}}+1\right)
\end{aligned}
$$

for a.e. $t \in(0, T)$, where $g_{\lambda}(t):=\partial_{H} \varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right)$. Now by (A5), it follows that

$$
\begin{align*}
& \left|\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right)-\left\langle g_{\lambda}(t), \frac{\mathrm{d} u_{\lambda}}{\mathrm{d} t}(t)\right\rangle\right| \\
& \leqslant\left|\dot{\alpha}_{1}(t)\right|\left|g_{\lambda}(t)\right|_{V^{*}}\left\{\varphi_{H, \lambda}^{t}\left(J_{H, \lambda}^{t} u_{\lambda}(t)\right)+C_{0}\right\}^{1 / \rho} \\
& \quad+\left|\dot{\beta}_{1}(t)\right|\left\{\varphi_{H, \lambda}^{t}\left(J_{H, \lambda}^{t} u_{\lambda}(t)\right)+C_{0}\right\}, \tag{9}
\end{align*}
$$

where $\rho=\max \{q, 2\}$ and $J_{H, \lambda}^{t}$ denotes the resolvent of $\partial_{H} \varphi_{H}^{t}$, i.e., $J_{H, \lambda}^{t} u=\left(I+\lambda \partial_{H} \varphi_{H}^{t}\right)^{-1} u$ (see [1] for its proof). Hence by (A1) and (CP) λ_{λ}, we have

$$
\begin{align*}
& \lambda\left|\frac{\mathrm{d} u_{\lambda}}{\mathrm{d} t}(t)\right|_{H}^{2}+\frac{\alpha}{2}\left|\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right|_{V}^{q}+\frac{1}{2} \psi^{t}\left(\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right)+\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right) \\
& \leqslant \\
& \quad\left|\dot{\alpha}_{1}(t)\right|\left\{\left|f_{\lambda}(t)\right|_{V^{*}}+\lambda\left|\frac{\mathrm{d} u_{\lambda}}{\mathrm{d} t}(t)\right|_{V^{*}}+\left|\eta_{\lambda}(t)\right|_{V^{*}}\right\}\left\{\varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right)+C_{0}\right\}^{1 / \rho} \\
& \quad+\left|\dot{\beta}_{1}(t)\right|\left\{\varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right)+C_{0}\right\}+\left|f_{\lambda}(t)\right|_{V^{*}}\left|\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right|_{V} \tag{10}\\
& \quad+C\left(\left|\eta_{\lambda}(t)\right|_{V^{*}}+1\right)+\frac{C_{3}}{2}
\end{align*}
$$

Therefore since $\rho=\max \{q, 2\}$, it follows from (A1) and (A2) that

$$
\begin{align*}
& \frac{\lambda}{2}\left|\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right|_{H}^{2}+\frac{\alpha}{2}\left|\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right|_{V}^{q}+\frac{1}{4} \psi^{t}\left(\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right)+\frac{\mathrm{d}}{\mathrm{~d} t} \varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right) \\
& \leqslant \\
& \leqslant C\left\{\left|\dot{\alpha}_{1}(t)\right|^{\rho}+\left|\dot{\beta}_{1}(t)\right|+\left|f_{\lambda}(t)\right|_{V^{*}}^{q^{\prime}}+|a(t)|+1\right\} \tag{11}\\
& \quad+C\left\{\left|\dot{\alpha}_{1}(t)\right|^{\rho}+\left|\dot{\beta}_{1}(t)\right|\right\} \varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right) .
\end{align*}
$$

Moreover, integrating (11) over $(0, t)$, we get

$$
\begin{align*}
& \frac{\lambda}{2} \int_{0}^{t}\left|\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} \tau}(\tau)\right|_{H}^{2} \mathrm{~d} \tau+\frac{\alpha}{2} \int_{0}^{t}\left|\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} \tau}(\tau)\right|_{V}^{q} \mathrm{~d} \tau+\frac{1}{4} \int_{0}^{t} \psi^{\tau}\left(\frac{\mathrm{d} u_{\lambda}}{\mathrm{d} \tau}(\tau)\right) \mathrm{d} \tau+\varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right) \\
& \leqslant \varphi^{0}\left(u_{0}\right)+C\left\{\int_{0}^{T}\left|\dot{\alpha}_{1}(\tau)\right|^{\rho} \mathrm{d} \tau+\int_{0}^{T}\left|\dot{\beta}_{1}(\tau)\right| \mathrm{d} \tau+\int_{0}^{T}\left|f_{\lambda}(\tau)\right|_{V^{*}}^{q^{\prime}} \mathrm{d} \tau\right. \\
& \left.\quad+\int_{0}^{T}|a(\tau)| \mathrm{d} \tau+1\right\}+C \int_{0}^{t}\left\{\left|\dot{\alpha}_{1}(\tau)\right|^{\rho}+\left|\dot{\beta}_{1}(\tau)\right|\right\} \varphi_{H, \lambda}^{\tau}\left(u_{\lambda}(\tau)\right) \mathrm{d} \tau \tag{12}
\end{align*}
$$

for all $t \in[0, T]$. Thus Gronwall's inequality implies (6). Moreover, (7) follows from (6) and (12). Furthermore, since $u_{\lambda}(0)=u_{0}$, we can derive (8) from (7).

Lemma 2.6. There exists a constant M_{2} such that

$$
\begin{align*}
& \int_{0}^{T}\left|\eta_{\lambda}(t)\right|_{V^{*}}^{q^{\prime}} \mathrm{d} t \leqslant M_{2} \tag{13}\\
& \int_{0}^{T}\left|g_{\lambda}(t)\right|_{V^{*}}^{\sigma} \mathrm{d} t \leqslant M_{2} \tag{14}
\end{align*}
$$

for all $\lambda \in(0,1]$, where $\sigma=\min \left\{q^{\prime}, 2\right\}$.
Proof. By (A2), we get

$$
\int_{0}^{T}\left|\eta_{\lambda}(t)\right|_{V^{*}}^{q^{\prime}} \mathrm{d} t \leqslant C_{4} \int_{0}^{T} \psi^{t}\left(\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} t}(t)\right) \mathrm{d} t+\int_{0}^{T} a(t) \mathrm{d} t,
$$

which together with (7) implies (13). Since $\left(f_{\lambda}\right)$ is bounded in $L^{q^{\prime}}\left(0, T ; V^{*}\right)$ and $g_{\lambda}(t)=$ $f_{\lambda}(t)-\lambda\left(\mathrm{d} u_{\lambda}(t) / \mathrm{d} t\right)-\eta_{\lambda}(t)$, (7) and (13) yield (14).

Lemma 2.7. There exists a constant M_{3} such that

$$
\begin{align*}
& \sup _{t \in[0, T]} \varphi^{t}\left(J_{H, \lambda}^{t} u_{\lambda}(t)\right) \leqslant M_{3}, \tag{15}\\
& \sup _{t \in[0, T]}\left|J_{H, \lambda}^{t} u_{\lambda}(t)\right|_{X} \leqslant M_{3} \tag{16}
\end{align*}
$$

for all $\lambda \in(0,1]$.
Proof. By (A5), we can verify $\left|J_{H, \lambda}^{t} u\right|_{H} \leqslant C\left(|u|_{H}+1\right)$ for all $u \in H$ and $t \in[0, T]$. Moreover, we get by (6),

$$
\begin{equation*}
\sup _{t \in[0, T]} \varphi_{H}^{t}\left(J_{H, \lambda}^{t} u_{\lambda}(t)\right) \leqslant \sup _{t \in[0, T]} \varphi_{H, \lambda}^{t}\left(u_{\lambda}(t)\right) \leqslant C \tag{17}
\end{equation*}
$$

Hence (16) follows immediately from (A4), (8) and (15).
Proof of Theorem 2.4 (continued).
Convergence: From a priori estimates established above, we can take a sequence $\left(\lambda_{n}\right)$ in $(0,1]$ such that $\lambda_{n} \rightarrow+0$ as $n \rightarrow+\infty$ and the following Lemmas 2.8 and 2.9 hold.

Lemma 2.8. There exists $u \in W^{1, q}(0, T ; V)$ such that

$$
\begin{align*}
& u_{\lambda_{n}} \rightarrow u \quad \text { weakly in } W^{1, q}(0, T ; V) \tag{18}\\
& \lambda_{n} \frac{\mathrm{~d} u_{\lambda_{n}}}{\mathrm{~d} t} \rightarrow 0 \quad \text { strongly in } L^{2}(0, T ; H), \tag{19}\\
& J_{H, \lambda_{n}}^{t} u_{\lambda_{n}} \rightarrow u \quad \text { strongly in } C([0, T] ; V) . \tag{20}
\end{align*}
$$

Proof. We can derive (18) and (19) immediately from (7) and (8). Moreover, since V is continuously embedded in H, it follows that

$$
\begin{aligned}
& \left|J_{H, \lambda}^{t} u_{\lambda}(t)-J_{H, \lambda}^{s} u_{\lambda}(s)\right|_{H} \\
& \quad \leqslant\left|J_{H, \lambda}^{t} u_{\lambda}(t)-J_{H, \lambda}^{s} u_{\lambda}(t)\right|_{H}+\left|u_{\lambda}(t)-u_{\lambda}(s)\right|_{H} \\
& \quad \leqslant\left|J_{H, \lambda}^{t} u_{\lambda}(t)-J_{H, \lambda}^{s} u_{\lambda}(t)\right|_{H}+C\left(\int_{0}^{T}\left|\frac{\mathrm{~d} u_{\lambda}}{\mathrm{d} \tau}(\tau)\right|_{V}^{q} \mathrm{~d} \tau\right)^{1 / q}(t-s)^{1 / q^{\prime}} .
\end{aligned}
$$

Hence, since (A5) assures that for any bounded set B in H, the function $t \mapsto J_{H, \lambda}^{t}{ }^{u}$ is equi-continuous on $[0, T] \times B$ (see [1] for its proof), the function $t \mapsto J_{H, \lambda}^{t} u_{\lambda}(t)$ becomes equi-continuous in $C([0, T] ; H)$ for all $\lambda \in(0,1]$. Hence since X is compactly embedded in V, by Theorem 5 of [6], there exists $v \in C([0, T] ; V)$ such that

$$
\begin{equation*}
J_{H, \lambda_{n}}^{t} u_{\lambda_{n}} \rightarrow v \quad \text { strongly in } C([0, T] ; V) . \tag{21}
\end{equation*}
$$

On the other hand, we have by (14),

$$
\int_{0}^{T}\left|u_{\lambda_{n}}(t)-J_{H, \lambda_{n}}^{t} u_{\lambda_{n}}(t)\right|_{V^{*}}^{\sigma} \mathrm{d} t=\lambda_{n}^{\sigma} \int_{0}^{T}\left|g_{\lambda_{n}}(t)\right|_{V^{*}}^{\sigma} \mathrm{d} t \leqslant \lambda_{n}^{\sigma} M_{2} \rightarrow 0 \quad \text { as } \lambda_{n} \rightarrow 0 .
$$

Therefore it follows from (18) and (21) that $v=u$, which implies (20).
Lemma 2.9. There exist $g, \eta \in L^{q^{\prime}}\left(0, T ; V^{*}\right)$ such that

$$
\begin{align*}
& \eta_{\lambda_{n}} \rightarrow \eta \quad \text { weakly in } L^{q^{\prime}}\left(0, T ; V^{*}\right), \tag{22}\\
& g_{\lambda_{n}} \rightarrow g \quad \text { weakly in } L^{\sigma}\left(0, T ; V^{*}\right) . \tag{23}
\end{align*}
$$

Moreover, we have

$$
\begin{equation*}
\eta(t) \in \partial \psi^{t}\left(\frac{\mathrm{~d} u}{\mathrm{~d} t}(t)\right), \quad g(t) \in \partial \varphi^{t}(u(t)), \quad \eta(t)+g(t)=f(t) \quad \text { for a.e. } t \in(0, T) . \tag{24}
\end{equation*}
$$

Proof. It is easily seen that (13) and (14) imply (22) and (23), respectively. Moreover, by Proposition 1.1 of [5], we can derive $\eta(t) \in \partial \psi^{t}(\mathrm{~d} u(t) / \mathrm{d} t)$ from (18), (22) and (A3). Furthermore, by the demiclosedness of subdifferential operators, it follows from (20) and (23) that $g(t) \in \partial \varphi^{t}(u(t))$. Finally, since $f_{\lambda_{n}} \rightarrow f$ strongly in $L^{q^{\prime}}\left(0, T ; V^{*}\right)$, by (CP) λ_{λ}, (19), (22) and (23), we can deduce that $g=f-\eta \in L^{q^{\prime}}\left(0, T ; V^{*}\right)$.

Since $u \in W^{1, q}(0, T ; V)$ and $g \in L^{q^{\prime}}\left(0, T ; V^{*}\right)$, the function $t \mapsto \varphi^{t}(u(t))$ is differentiable for a.e. $t \in(0, T)$. Moreover, by (7) and (18), the function $t \mapsto \psi^{t}(\mathrm{~d} u(t) / \mathrm{d} t)$ is integrable on $(0, T)$. Consequently, u becomes a strong solution of (CP).

Proof of Theorem 2.4 (continued).

Uniqueness: Let u_{1} and u_{2} be strong solutions of (CP). Then there exist $g_{i}(t) \in \partial \varphi^{t}\left(u_{i}(t)\right)$ and $\eta_{i}(t) \in \partial \psi^{t}\left(\mathrm{~d} u_{i}(t) / \mathrm{d} t\right)(i=1,2)$ such that

$$
\begin{equation*}
\eta_{1}(t)-\eta_{2}(t)+g_{1}(t)-g_{2}(t)=0 \quad \text { for a.e. } t \in(0, T) \tag{25}
\end{equation*}
$$

Multiplying (25) by $w(t):=u_{1}(t)-u_{2}(t)$ and using the monotonicity of $\partial \varphi^{t}$, we get $\langle\xi(t), w(t)\rangle \leqslant 0$ for a.e. $t \in(0, T)$, where $\xi(t):=\eta_{1}(t)-\eta_{2}(t)$. Now since the graph of $\partial \psi^{t}$ is linear, we have $\xi(t) \in \partial \psi^{t}(\mathrm{~d} w(t) / \mathrm{d} t)$. Hence by (A3)', we also deduce $\langle\zeta(t)$, $\mathrm{d} w(t) / \mathrm{d} t\rangle \leqslant 0$ for a.e. $t \in(0, T)$, where $\zeta(t) \in \partial \psi^{t}(w(t))$. Therefore (A2) with $a \equiv 0$ and (A5)' yield

$$
\begin{aligned}
\frac{\mathrm{d}}{\mathrm{~d} t} \psi^{t}(w(t)) & \leqslant\left|\dot{\alpha}_{2}(t)\right||\zeta(t)|_{V^{*}} \psi^{t}(w(t))^{1 / q}+\left|\dot{\beta}_{2}(t)\right| \psi^{t}(w(t)) \\
& \leqslant\left\{C_{4}^{1 / q^{\prime}}\left|\dot{\alpha}_{2}(t)\right|+\left|\dot{\beta}_{2}(t)\right|\right\} \psi^{t}(w(t))
\end{aligned}
$$

Integrating this over $(0, t)$, we get

$$
\psi^{t}(w(t)) \leqslant \psi^{0}(w(0))+\int_{0}^{t}\left\{C_{4}^{1 / q^{\prime}}\left|\dot{\alpha}_{2}(\tau)\right|+\left|\dot{\beta}_{2}(\tau)\right|\right\} \psi^{\tau}(w(\tau)) \mathrm{d} \tau
$$

Thus Gronwall's inequality implies $\psi^{t}(w(t))=0$ for all $t \in[0, T]$, since $\psi^{0}(w(0))=0$. Hence (A1) with $C_{3}=0$ implies $w(t)=0$ for all $t \in[0, T]$, which completes the proof.

3. Solvability of (\mathbf{P}) and $(\mathbf{P})_{p}$

We now prove the existence and uniqueness of solutions for (P) as well as for $(\mathrm{P})_{p}$ by applying the preceding abstract theory. We are here concerned with solutions of (P) or $(\mathrm{P})_{p}$ defined in the following.

Definition 3.1. A function $u \in W^{1,2}\left(0, T ; V_{0}\right)$ is said to be a solution of $(\mathrm{P})_{p}$ (resp., (P)), if $u(t)$ satisfies $(\mathrm{P})_{p}$ (resp., (P)) for a.e. $t \in(0, T)$, and $u(+0)=h_{0}$.

We can derive (A1) and (A2) with ψ^{t} replaced by ψ and $q=2$ immediately from (2) and (3), respectively. Moreover, since $\partial \psi$ is linear and independent of t, (1) implies (A3)' with ψ^{t} replaced by ψ.

We now suppose that (4) and the following condition are satisfied.

$$
\begin{align*}
& \mathrm{d} h_{\mathrm{e}} / \mathrm{d} t \in L^{2}\left(0, T ; V_{0}^{*}\right), \quad j_{\mathrm{c}}(x, t)=\pi(x) \phi(t), \\
& \quad \pi \in L^{\infty}(\Omega), \quad \phi \in W^{1,2}(0, T) \tag{26}
\end{align*}
$$

It then follows that

$$
|u|_{H_{0}^{1}} \leqslant C \sup _{\tau \in[0, T]}\left|j_{\mathrm{c}}(\cdot, \tau)\right|_{L^{\infty}} \quad \forall u \in D\left(\varphi_{\infty}^{t}\right)=K^{t},
$$

since $|\nabla u|_{L^{\infty}} \leqslant j_{\mathrm{c}}(x, t) \leqslant \sup _{\tau \in[0, T]}\left|j_{\mathrm{c}}(\cdot, \tau)\right|_{L^{\infty}}$ for all $u \in K^{t}$. Hence since $H_{0}^{1}(\Omega)$ is compactly embedded in V_{0}, (A4) is satisfied with X and φ^{t} replaced by $H_{0}^{1}(\Omega)$ and φ_{∞}^{t},
respectively. Moreover, let $t_{0} \in[0, T]$ and $u_{0} \in D\left(\varphi_{\infty}^{t_{0}}\right)$ be fixed and put $u(t)=\phi(t) u_{0} / \phi\left(t_{0}\right)$ for all $t \in[0, T]$. Then we have

$$
\begin{aligned}
\left|u(t)-u_{0}\right| V_{0} & \leqslant\left|\frac{\phi\left(t_{0}\right)-\phi(t)}{\phi\left(t_{0}\right)}\right| C\left|\nabla u_{0}\right|_{L^{\infty}} \\
& \leqslant \frac{C}{\delta_{0}}|\pi|_{L^{\infty}} \sup _{\tau \in[0, T]}\left|j_{\mathrm{c}}(\cdot, \tau)\right|_{L^{\infty}}\left|\phi\left(t_{0}\right)-\phi(t)\right|, \\
\varphi_{\infty}^{t}(u(t))= & \varphi_{\infty}^{t_{0}}\left(u_{0}\right) .
\end{aligned}
$$

Hence (A5) is satisfied with ψ^{t}, φ^{t} replaced by $\psi, \varphi_{\infty}^{t}$, respectively and $q=2$, since $\phi \in$ $W^{1,2}(0, T)$. Therefore setting $V=V_{0}$ and $H=L^{2}(\Omega)$ and applying Theorem 2.4 to (P), we can deduce:

Theorem 3.2. Suppose that (4) and (26) are satisfied. Then for any $h_{0} \in K^{0}$, (P) has a unique solution.

As for $(\mathrm{P})_{p}$, we can also verify (A4) and (A5) with ψ^{t}, φ^{t} and X replaced by ψ, φ_{p}^{t} and $H_{0}^{1}(\Omega)$, respectively and $q=2$ (see [1] for more details). Hence by Theorem 2.4, we obtain

Theorem 3.3. Let $p \in[2,+\infty)$ and suppose that (4) and (26) are satisfied. Then for any $h_{0} \in W_{0}^{1, p}(\Omega),(\mathrm{P})_{p}$ has a unique solution.

Remark 3.4. Barrett and Prigozhin [2] proved that h_{p} converges to the unique solution h of (P) strongly in $C\left([0, T] ; V_{0}\right)$ as $p \rightarrow+\infty$ for the case where j_{c} is constant. Akagi and Ôtani [1] also obtained similar results for the case where j_{c} depends on space and time; moreover, they introduced a new way of approximation of Bean's critical-state model which makes it possible to estimate the difference between the solution of (P) and solutions for approximate equations.

References

[1] G. Akagi, M. Ôtani, Adv. Math. Sci. Appl. 14 (2004) 683.
[2] J.W. Barrett, L. Prigozhin, Nonlinear Anal. 42 (2000) 977.
[3] H. Brézis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert, Math. Studies, vol. 5, North-Holland, Amsterdam, 1973.
[4] P. Colli, Japan J. Indust. Appl. Math. 9 (1992) 181.
[5] N. Kenmochi, Israel J. Math. 22 (1975) 304.
[6] J. Simon, Ann. Math. Pura. Appl. 146 (1987) 65.

[^0]: * Corresponding author.

 E-mail address: goro@toki.waseda.jp (G. Akagi).
 ${ }^{1}$ Supported by Waseda University Grant for Special Research Projects, no. 2004A-366.
 ${ }^{2}$ Supported by the Grant-in-Aid for Scientific Research, nos. 15654024 and 16340043, the Ministry of Education, Culture, Sports, Science and Technology, Japan, and Waseda University Grant for Special Research Projects, no. 2003B-027.

