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Abstract.

This note is devoted to reviewing the authors’ recent work [1] on
the stability analysis of asymptotic profiles of solutions to the Cauchy-
Dirichlet problem for the fast diffusion equation.

§1. Introduction

Let Ω be a bounded domain of RN with smooth boundary ∂Ω. We
are concerned with the Cauchy-Dirichlet problem for fast diffusion equa-
tions of the form

∂t

(
|u|m−2u

)
= ∆u in Ω × (0,∞),(1)

u = 0 on ∂Ω × (0,∞),(2)

u(·, 0) = u0 in Ω,(3)

where ∂t = ∂/∂t, 2 < m < 2∗ := 2N/(N − 2)+ and u0 ∈ H1
0 (Ω). Fast

diffusion equations appear in the study of plasma physics (see [2]). It is
well known that every solution u = u(x, t) of (1)–(3) for u0 6= 0 vanishes
at a finite time t∗ > 0 with the explicit rate of (t∗−t)1/(m−2). Hence one
can define the asymptotic profile φ = φ(x) of each solution u = u(x, t):

φ(x) := lim
t↗t∗

(t∗ − t)−1/(m−2)u(x, t) in H1
0 (Ω).

Berryman and Holland [3] first studied asymptotic profiles for classical
positive solutions and characterized them as nontrivial solutions of the
Dirichlet problem for the Emden-Fowler equation,

−∆φ = λm|φ|m−2φ in Ω, φ = 0 on ∂Ω

with the constant λm := (m − 1)/(m − 2) > 0. Kwong [11] extended
results of [3] to nonnegative weak solutions, and furthermore, Savaré
and Vespri treated sign-changing solutions. Recently, further detailed
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analysis has been done for nonnegative weak solutions by Bonforte et
al [4]. The stability of positive profiles has been also discussed within
the frame of positive solutions in [3], [11] and [4].

In this paper, we address ourselves to the stability and instability
of asymptotic profiles for (possibly) sign-changing solutions of (1)–(3).
To this end, we first set up the notions of stability and instability of
asymptotic profiles under a wider class of perturbations to initial data,
which might be sign-changing. We next present criteria of stability and
instability for some sorts of sign-definite and sign-changing profiles. Our
stability analysis is based on an infinite dimensional dynamical system
on a surface X in H1

0 (Ω), and one of novelties of this work lies in such
a view point. In the final section, we also reveal a role of this surface in
the dynamical system.

§2. Asymptotic profiles of vanishing solutions

Let us first give an explicit definition of solutions for (1)–(3).

Definition 2.1 (Solution of (1)–(3)). A function u : Ω×(0,∞) → R
is said to be a (weak) solution of (1)–(3), if the following conditions are
all satisfied :

• u ∈ C([0,∞);H1
0 (Ω)) and |u|m−2u ∈ C1([0,∞);H−1(Ω)).

• For all t ∈ (0,∞) and ψ ∈ C∞
0 (Ω),〈

d
dt

(
|u|m−2u

)
(t), ψ

〉
H1

0

+
∫

Ω

∇u(x, t) · ∇ψ(x)dx = 0.

• u(·, t) → u0 strongly in H1
0 (Ω) as t→ +0.

By using standard methods, one can prove the existence and uniqueness
of solutions of (1)–(3) for any u0 ∈ H1

0 (Ω) (see, e.g., [5] and [16, 17]).
Moreover, every solution u = u(x, t) of (1)–(3) for u0 6= 0 vanishes at a
finite time t∗ > 0 with the rate of (t∗ − t)1/(m−2) (see [3], [11], [14]).

Proposion 1 (Extinction rate of solutions). Assume that 2 < m ≤
2∗. Then for any u0 ∈ H1

0 (Ω) \ {0}, the unique solution u = u(x, t) of
(1)–(3) vanishes at a finite time t∗ = t∗(u0) > 0. Moreover, it holds that

(t∗ − t)1/(m−2) ≤ C1‖u(t)‖Lm(Ω) ≤ C2‖u(t)‖H1
0 (Ω) ≤ C3(t∗ − t)1/(m−2)

with some constants Ci (i = 1, 2, 3). Hence ‖u(t)‖H1
0 (Ω) := ‖∇u(t)‖L2(Ω)

and ‖u(t)‖Lm(Ω) vanish at the rate of (t∗ − t)1/(m−2).
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The finite time t∗ = t∗(u0) is called extinction time (of the unique
solution u) for a data u0. Here t∗ can be regarded as a functional,

t∗ : H1
0 (Ω) → [0,∞),

which maps u0 to the extinction time t∗(u0) corresponding to the initial
data u0.

Now, by virtue of the common explicit rate of the extinction of
solutions, one can define asymptotic profiles φ = φ(x) for all solutions of
(1)–(3) in the following way.

Definition 2.2 (Asymptotic profiles). Let u0 ∈ H1
0 (Ω)\{0} and let

u = u(x, t) be a solution for (1)–(3) vanishing at a finite time t∗ > 0. A
function φ ∈ H1

0 (Ω)\{0} is called an asymptotic profile of u if there exists
an increasing sequence tn → t∗ such that (t∗ − tn)−1/(m−2)u(tn) → φ
strongly in H1

0 (Ω) as n→ ∞.

As in the previous studies, let us apply the following transformation,

(4) v(x, s) := (t∗− t)−1/(m−2)u(x, t) and s := log(t∗/(t∗− t)) ≥ 0.

Then s tends to infinity as t↗ t∗, and moreover, the asymptotic profile
φ = φ(x) of u = u(x, t) is rewritten as φ(x) := limsn↗∞ v(x, sn) in
H1

0 (Ω). Furthermore, we derive the following Cauchy-Dirichlet problem
for v = v(x, s) from (1)–(3):

∂s

(
|v|m−2v

)
= ∆v + λm|v|m−2v in Ω × (0,∞),(5)

v = 0 on ∂Ω × (0,∞),(6)

v(·, 0) = v0 in Ω,(7)

where the initial data v0 and the constant λm are given by

(8) v0 = t∗(u0)−1/(m−2)u0 and λm = (m− 1)/(m− 2) > 0.

The existence of asymptotic profiles and related dynamics have been
studied in a couple of papers (see [3], [11], [14] and also [4]). The follow-
ing result is a slight modification of previous results and it covers sign-
changing solutions (cf. in [14], the asymptotic profiles for sign-changing
solutions were studied with a weaker sense of convergence).

Theorem 1 (Existence of asymptotic profiles and their characteri-
zation [1]). For any sequence sn → ∞, there exist a subsequence (n′) of
(n) and φ ∈ H1

0 (Ω)\{0} such that v(sn′) → φ strongly in H1
0 (Ω). More-

over, φ is a nontrivial stationary solution of (5)–(7), that is, φ solves
the Dirichlet problem,

(9) −∆φ = λm|φ|m−2φ in Ω, φ = 0 on ∂Ω.
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Remark 1. (i) If φ is a nontrivial solution of (9), then the
function U(x, t) = (1−t)1/(m−2)

+ φ(x) solves (1)–(3) with U(0) =
φ(x). Hence t∗(φ) = 1 and the profile of U(x, t) coincides with
φ(x).

(ii) Hence, by Theorem 1, the set of all asymptotic profiles of solu-
tions for (1)–(3) coincides with the set of all nontrivial solutions
of (9). We shall denote these sets by S.

(iii) Due to [15], the asymptotic profile is uniquely determined for
each nonnegative data u0 ≥ 0.

§3. Stability and instability of asymptotic profiles

To start our stability analysis, let us first recall the transformation
(4) and the rescaled problem (5)–(7). We particularly focus on the
relation v0 = t∗(u0)−1/(m−2)u0, and newly introduce the set

X :=
{
t∗(u0)−1/(m−2)u0 : u0 ∈ H1

0 (Ω) \ {0}
}
.

Now, the (asymptotic) stability and instability of asymptotic profiles are
defined as follows:

Definition 3.1 (Stability and instability of profiles [1]). Let φ ∈
H1

0 (Ω) be an asymptotic profile of vanishing solutions for (1)–(3).
(i) φ is said to be stable, if for any ε > 0 there exists δ = δ(ε) > 0

such that any solution v of (5)–(7) satisfies

v(0) ∈ X ∩B(φ; δ) ⇒ sup
s∈[0,∞)

‖v(s) − φ‖H1
0 (Ω) < ε,

where B(φ; δ) := {w ∈ H1
0 (Ω): ‖φ− w‖H1

0 (Ω) < δ}.
(ii) φ is said to be unstable, if φ is not stable.
(iii) φ is said to be asymptotically stable, if φ is stable, and more-

over, there exists δ0 > 0 such that any solution v of (5)–(7)
satisfies

v(0) ∈ X ∩B(φ; δ0) ⇒ lim
s↗∞

‖v(s) − φ‖H1
0 (Ω) = 0.

We can observe the following properties of the set X .
(i) If v0 ∈ X , then v(s) ∈ X for all s ≥ 0.
(ii) X =

{
v0 ∈ H1

0 (Ω): t∗(v0) = 1
}
, which is homeomorphic to a

unit sphere in H1
0 (Ω).

(iii) S := { nontrivial solutions of (9)} ⊂ X (because, t∗(φ) = 1 for
φ ∈ S by (ii) of Remark 1).
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(iv) If v0 ∈ X , then v(sn) → φ strongly in H1
0 (Ω) with some φ ∈ S

along some sequence sn → ∞ (by Theorem 1).
Hence (5)–(7) generates a dynamical system on the phase surface X .
Then solutions of (9) can be regarded as stationary points of the dy-
namical system. Therefore the notions of stability and instability of
asymptotic profiles defined above are regarded as those in Lyapunov’s
sense for the stationary points. Moreover, (5)–(7) can be formulated as
a (generalized) gradient system of the form,

d
ds

|v|m−2v(s) = −J ′(v(s)), s > 0, v(0) = v0 ∈ X ,

where J ′ stands for the Fréchet derivative of the energy functional

J(w) =
1
2

∫
Ω

|∇w(x)|2dx− λm

m

∫
Ω

|w(x)|mdx for w ∈ H1
0 (Ω).

Then multiplying (5) by ∂sv(x, s) and integrating this over Ω, we observe
that s 7→ J(v(s)) is non-increasing, and hence, J(·) is a Lyapunov func-
tional for the dynamical system. Here let us recall that φ is an asymp-
totic profile if and only if φ is a nontrivial solution of (9) (equivalently,
J ′(φ) = 0 and φ 6= 0). Therefore one can reveal the stability/instability
of profiles by investigating variational properties of the functional J over
X . However, some difficulties may arise due to the lack of explicit rep-
resentation of the functional t∗(·) (cf. we can obtain upper and lower
estimates for t∗(·) in terms of initial data).

Remark 2. Since m > 2, J forms a mountain pass structure over
the whole of H1

0 (Ω). Hence 0 is the unique local minimizer of J and all
nontrivial critical points are saddle points of J . However, our stability
analysis will be carried out on the surface X in H1

0 (Ω). Hence our
conclusion on the stability of profiles will differ from this observation,
and moreover, it would be troublesome to show the instability of profiles
due to the restriction of X .

§4. Stability criteria

Let d1 be the least energy of J over nontrivial solutions, i.e.,

d1 := inf
v∈S

J(v) with S = { nontrivial solutions of (9)}.

A least energy solution φ of (9) means φ ∈ S satisfying J(φ) = d1.
By the strong maximum principle, every least energy solution of (9) is
sign-definite.
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In [1], the authors obtained the following criteria for the stability
and instability of asymptotic profiles:

Theorem 2 (Stability of profiles [1]). Let φ be a least energy solu-
tion of (9). Then it follows that

(i) φ is a stable profile, if φ is isolated in H1
0 (Ω) from the other

least energy solutions.
(ii) φ is an asymptotically stable profile, if φ is isolated in H1

0 (Ω)
from the other sign-definite solutions.

Theorem 3 (Instability of profiles [1]). Let φ be a sign-changing
solution of (9). Then it follows that

(i) φ is not an asymptotically stable profile.
(ii) φ is an unstable profile, if φ is isolated in H1

0 (Ω) from any
ψ ∈ S satisfying J(ψ) < J(φ).

The isolation of profiles assumed above actually occurs in several
cases of Ω and m. We first note by the strong maximum principle that
sign-definite solutions are isolated in H1

0 (Ω) from all sign-changing solu-
tions. In the following cases, each least energy solution is also isolated
from all sign-definite ones.

Corollary 1 (Asymptotically stable profiles [1]). Least energy so-
lutions of (9) are asymptotically stable profiles in the following cases:

• Ω is a ball and 2 < m < 2∗ (see Gidas-Ni-Nirenberg [9]).
• Ω ⊂ R2 is bounded and convex and 2 < m < 2∗ (see Lin [12]

and also Dancer [6], Pacella [13]).
• Ω ⊂ RN is bounded and 2 < m < 2+δ with a sufficiently small

δ > 0 (see Dancer [7]).
• Ω ⊂ RN is symmetric with respect to the planes [xi = 0] and

convex in the axes xi for all i = 1, 2, . . . , N and 2∗−δ < m < 2∗

with a sufficiently small δ > 0 (see Grossi [10]).

Now, let us move on to examples of unstable profiles.

Corollary 2 (Instability of sign-changing least energy profiles [1]).
Least energy solutions among sign-changing solutions (sign-changing least
energy solutions, for short) of (9) are unstable profiles.

Since m < 2∗ and Ω is bounded, one can always assure the existence
of sign-changing least energy solutions of (9). Moreover, sign-changing
least energy solutions are distinct from all nontrivial solutions of (9)
with lower energies.

As for the one-dimensional case, the Emden-Fowler equation,

(10) −φ′′ = λm|φ|m−2φ in (0, 1), φ(0) = φ(1) = 0,
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can be explicitly solved. Moreover, the set S of all nontrivial solutions
for (10) consists of the sign-definite ones ±φ1 and the sign-changing ones
±φn with (n− 1) zeros in (0, 1) for n = 2, 3, . . . satisfying

J(±φ1) < J(±φ2) < · · · < J(±φn) → ∞ as n→ ∞,

which means the isolation of each nontrivial solution. Hence we can
completely classify all the asymptotic profiles in terms of their stability.

Corollary 3 (1D case [1]). Sign-definite profiles are asymptotically
stable. All the other profiles are unstable.

§5. Global dynamics for the rescaled problem

The final section is devoted to further discussion of the surface X ,
which was a phase space in our stability analysis, and then, we shall
reveal the global dynamics of solutions to the rescaled problem (5)–(7)
for any data v0 ∈ H1

0 (Ω).
The following proposition classifies the whole of the energy space

H1
0 (Ω) in terms of large-time behaviors of solutions for (5)–(7) (cf. see [8]

for the semilinear heat equation), and in particular, X is a separatrix
between the stable and unstable sets.

Proposion 2 (Characterization of X ). Let v(s) be a solution of
(5)–(7) with v(0) = v0. Then it follows that

(i) If v0 ∈ X , then v(sn) converges to some nontrivial solution φ
of (9) strongly in H1

0 (Ω) along some sequence sn → ∞.
(ii) If v0 ∈ X+ := {v0 ∈ H1

0 (Ω): t∗(v0) > 1}, then v(s) blows up
in infinite time. Hence X+ is an unstable set.

(iii) If v0 ∈ X− := {v0 ∈ H1
0 (Ω): t∗(v0) < 1}, then v(s) vanishes

in finite time. Hence X− is a stable set.
Moreover, X does not coincide with the Nehari manifold of J ,

N :=
{
w ∈ H1

0 (Ω) \ {0} : 〈J ′(w), w〉 = 0
}
.

Furthermore, X is surrounded by N (i.e., N ⊂ X ∪X+) and N ∩X = S.
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