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1 Variational formulation of gradient flows

Gradient flows arise in the description of various sorts of phenomena with energy-dissipation
(e.g., phase transition, diffusion), and have attracted a large number of contributions from
numerous points of view. In this study, we discuss a (natural) variational principle for
gradient flows.

We start with an abstract gradient flow in a Hilbert space H for an energy functional
E : H → R. Gradient flows u : [0, T ] → H of E are generated by the evolution equation

u′(t) = −dE(u(t)) in H, t ∈ (0, T ), (1)

where u′ = du/dt and dE denotes some suitable functional derivative of E. Such a
gradient flow often appears in the study of PDEs. For instance, we give

Example 1.1 (Sublinear heat equation). Set H = L2(Ω) with a smooth bounded domain
Ω ⊂ RN and define

E(u) =
1

2

∫
Ω

|∇u|2dx− 1

q

∫
Ω

|u(x)|qdx for u ∈ D(E) ⊂ H

with 1 < q < 2 and effective domain D(E) = H1
0 (Ω). Then, the abstract evolution equa-

tion (1) corresponds to a suitable variational formulation of the sublinear heat equation

∂tu−∆u− |u|q−2u = 0 in Ω× (0, T )

along with the homogeneous Dirichlet boundary condition.

Concerning variational formulations for gradient flow, let us recall the approaches
based on

(i) time-discretization (e.g., discrete Morse flow method),

(ii) the Brézis-Ekeland variational principle (see [8, 9]),

(iii) Weighted Energy-Dissipation (WED for short) functionals.

Example 1.2 (Time-discretization of gradient flow). The time-discretization is a classical
variational method to approximate gradient flows. One can incrementally obtain un from
the previous un−1 by solving the semi-discretized problem for (1),

un − un−1

h
= −dE(un),

where h > 0 is a time step. The latter corresponds to the Euler-Lagrange equation of the
functional,

In(w) :=
1

2
|w|2H + hE(w)− (un−1, w)H for w ∈ H.

Under appropriate assumptions, un can be obtained by minimizing In. These minimizers
{un} form an approximation for the gradient flow generated by (1).
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Example 1.3 (The Brézis-Ekeland variational principle [8, 9]). Let ϕ be a proper, lower
semicontinuous, convex functional on a Hilbert space H. Brézis and Ekeland observed
that

u′(t) + ∂ϕ(u(t)) 3 0, u(0) = u0 iff J(u) = inf
D(J)

J = 0,

where J is a functional on L2(0, T ;H) given by

J(u) :=

∫ T

0

(
ϕ(u(t)) + ϕ∗(−u′(t))

)
dt+

1

2
|u(T )|2H − 1

2
|u0|2H

with the domain D(J) := {u ∈ W 1,2(0, T ;H) : u(0) = u0, ϕ(u(·)), ϕ∗(−u′(·)) ∈ L1(0, T )}.
Here, ϕ∗ is the convex conjugate of ϕ defined by

ϕ∗(v) := sup
u∈H

{(v, u)H − ϕ(u)} for v ∈ H.

In this note, we address a third approach based on the Weighted Energy-Dissipation
(WED) functional. Let us briefly outline this approach. Let E : H → R be a convex
energy and consider the Cauchy problem,{

u′(t) = −dE(u(t)) in H, 0 < t < T,

u(0) = u0.
(2)

The WED functional for (2) is defined by

Wε(u) :=

∫ T

0

e−t/ε
(ε
2
|u′(t)|2H + E(u(t))

)
dt

for u ∈ H := L2(0, T ;H) satisfying u(0) = u0. The minimization approach using WED
functionals is formulated as follows: Let uε be the unique (by strict convexity) minimizer
of Wε(u) subject to uε(0) = u0. Then, the minimizer uε approximates the gradient flow
u of E for ε > 0 sufficiently small (more precisely, uε → u strongly in C([0, T ];H) as
ε→ 0).

Example 1.4 (WED approach to the heat equation). As a simple example, let us treat
the heat equation,

(Heat)

{
∂tu−∆u = 0 in Q,
u = 0 on ∂Ω× (0, T ), u(·, 0) = u0 in Ω,

where Q := Ω× (0, T ). For each ε > 0, let us define the WED functional,

Wε(u) :=

∫∫
Q

e−t/ε

(
ε

2
|∂tu|2 +

1

2
|∇u|2

)
dxdt

for u ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) with u(·, 0) = u0. Then, the Euler-Lagrange

equation dWε(u) = 0 provides the elliptic-in-time regularizations of (Heat):

(Heat)ε

{
−ε∂2t u+ ∂tu−∆u = 0 in Q,
u|∂Ω = 0, u(·, 0) = u0, ∂tu(·, T ) = 0.
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Indeed, Wε resembles an (N + 1)-dimensional Dirichlet integral over Q, and then, for
smooth test functions φ satisfying φ(0) = 0 (from initial constraint), we observe that

0 = (dWε(u), φ)L2(Q) =

∫∫
Q

e−t/ε (ε∂tu∂tφ+∇u · ∇φ) dxdt

=

∫
Ω

εe−t/ε∂tuφ dx
∣∣∣t=T

t=0
−
∫∫

Q

ε∂t
(
e−t/ε∂tu

)
φ dxdt

−
∫∫

Q

e−t/ε∆uφ dxdt

=

∫
Ω

εe−T/ε∂tu(T )φ(T ) dx−
∫∫

Q

ε

(
e−t/ε∂2t u−

1

ε
e−t/ε∂tu

)
φ dxdt

−
∫∫

Q

e−t/ε∆uφ dxdt

=

∫
Ω

εe−T/ε∂tu(T )φ(T ) dx+

∫∫
Q

e−t/ε
(
−ε∂2t u+ ∂tu−∆u

)
φ dxdt.

From the arbitrariness of φ(T ) and φ, we obtain (Heat)ε. Then uε → u strongly in
C([0, T ];L2(Ω)) as ε→ 0 and u solves (Heat). This procedure is known as elliptic-in-time
regularization technique (see, e.g., [16]).

Let us briefly review previous studies on this topic. Ilmanen [12] introduced transla-
tive functional, which is based on a similar idea to WED functionals, to prove the partial
regularity of Brakke mean curvature flow of varifolds. See also [6] and [11], where similar
variational methods are employed to construct approximate solutions for some nonlin-
ear evolution equations. The term “WED functional” was first introduced by Mielke-
Ortiz and Conti-Ortiz in [17] and [10], where rate-independent systems are studied for
some application to Mechanics. Moreover, a discrete version of WED functional for rate-
independent process is also studied in detail by Mielke-Stefanelli [19].

Thereafter, variational formulations using WED functionals have been done for gradi-
ent flows in various settings. Mielke-Stefanelli [18] provided an WED approach to gradient
flows generated by

u′ + ∂ϕ(u) 3 f in a Hilbert space H (3)

for lower semicontinuous convex energies ϕ : H → (−∞,∞] and proved the convergence
of minimizers as ε → 0. Furthermore, Akagi-Stefanelli [4, 3] also presented an WED
formulation for generalized gradient flows as

dψ(u′) + ∂ϕ(u) 3 0 in a dual space V ∗ of a reflexive Banach space V

with convex dissipation functional ψ and convex energy ϕ defined on V , by introducing
the corresponding WED functional given by

Wε(u) =

∫ T

0

e−t/ε (εψ(u′) + ϕ(u)) dt

for all trajectories u : (0, T ) → V satisfying the initial condition.
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Rossi et al [22, 21] extended the WED approach to metric gradient flows, which are
formulated as curves of maximal slope for ϕ, that is, absolutely continuous curves u with
values in a Polish space (X, d) satisfying the relation,

ϕ(u(t)) +
1

2

∫ t

0

|u′|2(τ)dτ + 1

2

∫ t

0

|∂ϕ|2(u(τ))dτ = ϕ(u0) for all t ≥ 0, (4)

where |u′|(t) denotes the metric derivative of u at t and |∂ϕ| stands for the local slope of
ϕ (see [5] for more details). The relation above is a metric counterpart of the following
well-known energy identity for the gradient flow (3) in a Hilbert space:

d

dt
ϕ(u(t)) = (∂ϕ(u(t)), u′(t))H = −1

2
|∂ϕ(u(t))|2H − 1

2
|u′(t)|2H ,

which is derived from a chain-rule for subdifferential as well as (3). The WED functional
for (4) is

Wε(u) =

∫ ∞

0

e−t/ε
(ε
2
|u′|2(t) + ϕ(u(t))

)
dt

for u : (0,∞) → X satisfying u(0) = u0.
Concerning nonlinear diffusion such as porous medium and fast diffusion equations and

the Stefan problem, Akagi and Stefanelli [2] presented a WED formulation by dualization
for another type of generalized gradient flow,

d

dt
∂ψ(u) + ∂ϕ(u) 3 g in V ∗,

which corresponds to the above-mentioned nonlinear diffusion models.
The WED approach is also applicable to other types of problems, e.g., wave equations

and Lagrangian systems without dissipation. In contrast to dissipative systems such as
gradient flows, these issues are originally formulated in a variational fashion, and then,
solutions are obtained as critical points (mostly, saddle points) of the corresponding ac-
tion functionals. On the other hand, applying the WED approach to these issues, one can
reformulate solutions by minimization, and moreover, one can provide a variational for-
mulation for wave equations and Lagrangian systems, possibly including some dissipation
such as friction (see [14, 15]).

Notably, for the semilinear wave equation

∂2t u−∆u+ |u|p−2u = 0 in RN × (0,∞),

the WED functional is given by

Wε(u) =

∫ T

0

∫
RN

e−t/ε

(
ε2

2
|∂tu|2 +

1

2
|∇u|2 + 1

p
|u|p

)
dxdt

for all trajectories satisfying appropriate initial constraints. The convergence of minimiz-
ers of Wε to a solution of the semilinear wave equation corresponds to a conjecture by De
Giorgi (see [25], [23]).

Here we emphasize that all these works are done for convex (or λ-convex) energies.
The aim of this note is to extend the WED framework for gradient flows of non-convex
energies. We particularly address the case of an energy functional E which is decomposed
into the sum of a convex (but possibly nonsmooth) part ϕ and a smooth (but possibly
nonconvex) part φ, i.e., E = ϕ+ φ.
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2 WED formulation for nonconvex energies

Let H be a Hilbert space and let E : H → (−∞,∞] be a non-convex energy of the form

E(u) := ϕ(u) + φ(u) for u ∈ H,

where ϕ : H → [0,∞] is a proper, lower semicontinuous, convex functional with the
effective domain D(ϕ) := {u ∈ H : ϕ(u) <∞} and φ : H → R is of class C1, that is, the
gradient operator φ′ (in the sense of Fréchet differential) is continuous on H (the notions
of functional derivative are briefly reviewed in Appendix §A). Then, the effective domain
D(E) of E coincides with D(ϕ).

Here we remark that if φ is of class C1,1 over H (i.e., φ′ is Lipschitz continuous on H),
then E becomes λ-convex, and therefore, such a case falls within the scope of [18].

Let us consider a gradient flow u : [0, T ] → H of the energy functional E starting from
u0 ∈ H. Namely, u is generated by the Cauchy problem,

(GF)

{
u′(t) + ∂FE(u(t)) 3 0 in H, 0 < t < T,

u(0) = u0,

where ∂FE stands for the Fréchet subdifferential of E given by

ξ ∈ ∂FE(v) ⇔ lim inf
w→v in H

E(w)− E(v)− (ξ, w − v)H
|w − v|H

≥ 0

with the domain D(∂FE) := {u ∈ D(E) : ∂FE(u) 6= ∅}. Then, we remark that

∂FE = ∂ϕ+ φ′ and D(∂FE) = D(∂ϕ)

(see, e.g., [5, Corollary 1.4.5]).
Before defining an WED functional for (GF), let us set up assumptions.

(A1) The convex part ϕ is proper, lower semicontinuous, and convex in H. Moreover,
the smooth part φ is of class C1 over H. It also holds that u0 ∈ D(∂FE) = D(∂ϕ).

(A2) The energy functional E is bounded from below, that is,

E(u) ≥ −C1 for all u ∈ H (5)

for some constant C1 ≥ 0. There exist a Banach space X compactly embedded in
H and a non-decreasing function `1 on [0,∞) such that

|u|X ≤ `1(|u|H) (|E(u)|+ 1) ∀u ∈ D(E). (6)

(A3) There exists a constant C2 ≥ 0 such that

|φ′(u)|2H ≤ C2

(
|u|2H + 1

)
∀u ∈ H,

where φ′ denotes the Fréchet derivative of φ.
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Remark 2.1. By (A3), we find that

|φ(u)| ≤ C(|u|2H + 1) for all u ∈ H.

Indeed, by the mean value theorem, for any u ∈ H, one can take λ ∈ (0, 1) such that

φ(u)− φ(0) = (φ′(λu), u)H ,

which together with (A3) implies

|φ(u)| ≤ |φ(0)|+ |φ′(λu)|H |u|H ≤ C
(
|u|2H + 1

)
,

where C is a constant depending only on φ(0) and C2.

We define the WED functional Wε for (GF) by

Wε(u) :=



∫ T

0

e−t/ε
(ε
2
|u′(t)|2H + E(u(t))

)
dt

if u ∈ W 1,2(0, T ;H), u(0) = u0,

u(t) ∈ D(E) for a.e. t ∈ (0, T ), E(u(·)) ∈ L1(0, T ),

∞ else

for u ∈ H := L2(0, T ;H) with norm ‖u‖H := (
∫ T

0
|u(t)|2Hdt)1/2. The minimization ap-

proach presented here for (GF) consists of the following steps:

• Firstly, we find minimizers uε of Wε for ε > 0.

• We then take a limit of minimizers uε as ε→ ∞.

• Eventually, we prove that the limit u of uε is a solution of (GF).

Our main result reads as follows.

Theorem 2.2 (Minimization approach to (GF)). Suppose that (A1)–(A3) hold. Then, it
holds that :

(i) For each ε > 0, Wε admits a global minimizer over H.

Let uε be a global or local minimizer of Wε.

(ii) Then uε belongs to W 2,2(0, T ;H) and solves

(EL)

{
−εu′′ε(t) + u′ε(t) + ∂FE(uε(t)) 3 0 in H, 0 < t < T,

uε(0) = u0, u′ε(T ) = 0.

(iii) There exists u ∈ W 1,2(0, T ;H) such that, up to a subsequence,

uε → u strongly in C([0, T ];H),

weakly in W 1,2(0, T ;H) as ε→ 0.

Moreover, the limit u solves (GF).
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3 Outline of proof

In this section, we give an outline of proof for Theorem 2.2.

Step 1. For ε > 0, the WED functional Wε admits a global minimizer.

We prove the existence of global minimizer of Wε by employing the Direct Method of
the calculus of variations. By (5), one observes that

Wε(u) ≥ −C1

∫ T

0

e−t/εdt for all u ∈ H.

Then Wε admits a minimizing sequence un ∈ D(Wε), i.e., Wε(un) converges to the infi-
mum of Wε over H. In particular, Wε(un) is bounded, so we find by (5) that∫ T

0

|u′n(t)|2Hdt ≤ C,

which along with the initial constraint un(0) = u0 also implies that

sup
t∈[0,T ]

|un(t)|H ≤ C.

Using (A2), we also deduce that ∫ T

0

|un(t)|Xdt ≤ C.

Therefore one can verify, up to a subsequence, that un converges to u weakly inW 1,2(0, T ;
H). Moreover, since X is compactly embedded in H, by Theorem 3 of [24], we deduce,
up to a subsequence, that un converges to u strongly in C([0, T ];H). Hence, u satisfies
the initial constraint, u(0) = u0. From the fact that φ is continuous on H and Remark
2.1, it follows that ∫ T

0

e−t/εφ(un(t))dt→
∫ T

0

e−t/εφ(u(t))dt.

Due to the weakly lower semicontinuity of the convex part of Wε, one has

lim inf
n→∞

∫ T

0

e−t/ε
(ε
2
|un(t)|2H + ϕ(un(t))

)
dt ≥

∫ T

0

e−t/ε
(ε
2
|u(t)|2H + ϕ(u(t))

)
dt.

Thus we obtain
lim inf
n→∞

Wε(un) ≥ Wε(u).

However, since the left-hand-side converges to the infimum of Wε, the limit u minimizes
Wε over H.
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Step 2. Every minimizer uε of Wε over H solves (EL).

Let uε be a global or local minimizer of Wε over H. Then one can take r > 0 such
that

Wε(uε) ≤ Wε(v) for all v ∈ B(uε; r) (7)

with the neighborhood B(uε; r) := {v ∈ H : ‖uε − v‖H < r} of uε in H.
In this step, we shall prove that every minimizer uε solves the Euler-Lagrange equa-

tion (EL). Here it is noteworthy that the WED functional Wε involves the (possibly)
nonsmooth part ϕ and the initial constraint, u(0) = u0. In particular, the solution of
(EL) is more delicate than in usual variational problems for smooth functionals without
constraint. We divide Wε into a sum of two parts, Wε = Cε + Sε, where Cε and Sε are
defined by

Cε(u) :=



∫ T

0

e−t/ε
(ε
2
|u′(t)|2H + ϕ(u(t))

)
dt

if u ∈ W 1,2(0, T ;H), u(0) = u0,

u(t) ∈ D(ϕ) for a.e. t ∈ (0, T ), ϕ(u(·)) ∈ L1(0, T ),

+∞ else

and

Sε(u) :=

∫ T

0

e−t/εφ(u(t))dt

for u ∈ H. Then D(Cε) = D(Wε) and D(Sε) = H by Remark 2.1.
Let g ∈ ∂Cε(u). Then, u minimizes the convex functional

v 7→ Cε(v)−
∫ T

0

(g(t), v(t))Hdt = Cε(v)−
∫ T

0

e−t/ε
(
et/εg(t), v(t)

)
H
dt

defined on H. It has already been proved in [18, Theorem 3.1] that u solves

−εu′′ + u′ + ∂ϕ(u) 3 et/εg in H, 0 < t < T,

u(0) = u0, u′(T ) = 0, u ∈ W 2,2(0, T ;H),

and that u satisfies the following maximal regularity estimate:

ε‖u′′‖H + ‖u′‖H + ‖ξ‖H ≤ ‖et/εg‖H + ε|(∂ϕ)◦(u0)|2H + 2ϕ(u0), (8)

where ξ := eε/tg + εu′′ − u′ is a section of ∂ϕ(u) and (∂ϕ)◦(u0) stands for the minimal
section of ∂ϕ(u0) (see [7]).

As for the smooth part, we first prove that Sε is Gâteaux differentiable over H and
derive a representation of the derivative,

S ′
ε(u) = e−t/εφ′(u(·)) for u ∈ H. (9)

Let u, e ∈ H and h ∈ R. Since φ is of class C1 over H, one notes that

φ(u(t) + he(t))− φ(u(t))

h
→ (φ′(u(t)), e(t))H strongly in H as h→ 0
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for a.e. t ∈ (0, T ). Then by virtue of the mean value theorem, it follows that∣∣∣∣e−t/εφ(u(t) + he(t))− φ(u(t))

h

∣∣∣∣ ≤ e−t/ε|φ′(u(t) + hθe(t))|H |e(t)|H

with θ ∈ (0, 1) depending on t. Here we note by (A3) that

|φ′(u(t) + hθe(t))|H ≤ C (|u(t)|H + |e(t)|H + 1) .

Therefore we deduce that∣∣∣∣e−t/εφ(u(t) + he(t))− φ(u(t))

h

∣∣∣∣ ≤ e−t/ε
(
|u(t)|2H + |e(t)|2H + 1

)
∈ L1(0, T ).

Thus, due to Lebesgue’s dominated convergence theorem, we deduce that∫ T

0

e−t/εφ(u(t) + he(t))− φ(u(t))

h
dt→

∫ T

0

e−t/ε (φ′(u(t)), e(t))H dt

as h→ 0. This concludes that Wε is Gâteaux differentiable in H and (9) follows.
We further claim that S ′

ε is continuous in H. Indeed, let un → u strongly in H. Then
one can take g ∈ L1(0, T ) and a non-relabeled subsequence of (n) such that un(t) → u(t)
strongly in H for a.e. t ∈ (0, T ) and |un(t)|2H ≤ g(t). By assumption φ ∈ C1(H;R), it
follows that

e−t/εφ′(un(t)) → e−t/εφ′(u(t)) strongly in H for a.e. t ∈ (0, T ).

Moreover, by (A3), we find that

|e−t/εφ′(un(t))|2H ≤ Ce−2t/ε(|un(t)|2H + 1) ≤ Ce−2t/ε(g(t) + 1) ∈ L1(0, T ).

Thus, by Lebesgue’s dominated convergence theorem we deduce that S ′
ε(un) → S ′

ε(u)
strongly in H. Therefore, S ′

ε is continuous on H. Since the Gâteaux derivative is contin-
uous in H, one can check that Sε is also Fréchet differentiable over H.

Recall (7) and let w ∈ D(Wε) = D(Cε) and θ ∈ (0, 1). If θ is small enough, uε+ θ(w−
uε) belongs to D(Cε) ∩B(uε; r). Substitute uε + θ(w − uε) = (1− θ)uε + θw for v. Then
we have, by the convexity of Cε,

Cε(uε) + Sε(uε) ≤ Cε((1− θ)uε + θw) + Sε(uε + θ(w − uε))

≤ (1− θ)Cε(uε) + θCε(w) + Sε(uε + θ(w − uε)),

which yields that

Sε(uε)− Sε(uε + θ(w − uε)) ≤ θ (Cε(w)− Cε(uε)) .

Dividing both sides by θ > 0 and passing to the limit as θ → 0+, we get

(−S ′
ε(uε), w − uε)H ≤ Cε(w)− Cε(uε).
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From the arbitrariness of w ∈ D(Cε), one obtains

−S ′
ε(uε) ∈ ∂Cε(uε).

Thus we conclude that

−εu′′ε + u′ε + ∂ϕ(uε) 3 −et/εS ′
ε(uε) = −φ′(uε) in H, 0 < t < T,

u(0) = u0, u′(T ) = 0, u ∈ W 2,2(0, T ;H).

Hence, uε solves (ER). Furthermore, one can derive from (8) that

ε‖u′′ε‖H + ‖u′ε‖H + ‖ξε‖H ≤ ‖φ′(uε)‖H + ε|(∂ϕ)◦(u0)|2H + 2ϕ(u0) (10)

with ξε := −φ′(uε(·)) + εu′′ε − u′ε ∈ ∂ϕ(uε(·)).

Step 3. Convergence of minimizers uε as ε→ 0

In this step, we shall prove the convergence of minimizers uε ofWε along a subsequence
of ε→ 0. A crucial task is to derive uniform estimates for the minimizers. To this end, we
employ the fact that all minimizers solve (EL) and establish energy estimates of solutions
for (EL).

Here we only exhibit a formal argument to obtain uniform estimates for uε. For
simplicity, we omit the subscript ε. Multiply (EL) by u′ to get

−ε(u′′(t), u′(t))H + |u′(t)|2H +
d

dt
E(u(t)) = 0.

Noting (u′′(t), u′(t))H = (1/2)(d/dt)|u′(t)|2H and integrating it over (0, T ), we deduce that

ε

2
|u′(0)|2H +

∫ T

0

|u′(t)|2Hdt+ E(u(T )) =
ε

2
|u′(T )|2H + E(u0).

Here we use that E(u(T )) ≥ −C1 by (A2) and u′(T ) = 0 in order to get

ε|u′(0)|2H +

∫ T

0

|u′(t)|2Hdt ≤ C.

Moreover, integrating (EL)×u′(t) over (0, t), we have

ε

2
|u′(0)|2H +

∫ t

0

|u′(τ)|2Hdτ + E(u(t)) ≤ ε

2
|u′(t)|2H + E(u0).

Integrate both sides over (0, T ) again. We obtain∫ T

0

E(u(t))dt ≤ C +
ε

2

∫ T

0

|u′(t)|2Hdt ≤ C.
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By (A3), we get ∫ T

0

|φ′(u(t))|2Hdt ≤ C2

(∫ T

0

|u(t)|2Hdt+ 1

)
≤ C.

Recalling the maximal regularity estimate (10), one obtains∫ T

0

|εu′′(t)|2Hdt+
∫ T

0

|ξ(t)|2Hdt ≤ C.

Combining all these estimates, one can derive the convergence of minimizers uε as ε→ 0,
and moreover, employing the maximal monotonicity of ∂ϕ and the continuity of φ′ in H,
one can identify the limit of ξε.

4 Application to sublinear heat equations

Let us consider the following sublinear heat equation:

(P)

{
∂tu−∆u− |u|q−2u = 0 in Q := Ω× (0, T ),
u|∂Ω = 0, u(·, 0) = u0,

where 1 < q < 2 and Ω ⊂ RN is a bounded domain with smooth boundary ∂Ω.
Set H = L2(Ω) and an energy functional,

E(u) := ϕ(u) + φ(u) for u ∈ H

with a convex part ϕ : H → [0,∞] and a smooth part φ : H → R given by

ϕ(u) :=


1

2

∫
Ω

|∇u|2dx if u ∈ H1
0 (Ω),

∞ else,

φ(u) :=

−1

q

∫
Ω

|u|qdx if u ∈ Lq(Ω),

∞ else.

Here we find that ϕ is proper, lower semicontinuous and convex in H and its effective
domain D(ϕ) coincides with H1

0 (Ω). Moreover, ∂ϕ coincides with the Dirichlet Laplacian
−∆. On the other hand, one can prove the following in a standard way.

Proposition 4.1. The smooth part φ is of class C1 over H. Moreover, φ′(u) = −|u|q−2u.

Here we emphasize that φ is not of class C1,1. Indeed, φ′(u) = −|u|q−2u is not Lipschitz
continuous at u = 0 due to the fact that 1 < q < 2.

Thus (P) is reduced into the Cauchy problem,

u′(t) + ∂FE(u(t)) = 0 in H, 0 < t < T, u(0) = u0.
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Let us briefly check (A1)–(A3) for this setting. (A1) has already been checked. As for
(A2), since q < 2, there exists C1 ≥ 0 such that

1

q

∫
Ω

|u|qdx ≤ 1

4

∫
Ω

|∇u|2dx+ C1 =
1

2
ϕ1(u) + C1 for all u ∈ H1

0 (Ω),

which implies E(u) ≥ −C1 for all u ∈ L2(Ω). Concerning (A3), one can take C2 ≥ 0 such
that

|φ′(u)|2H =

∫
Ω

|u|2(q−1)dx ≤ C2

(
|u|2H + 1

)
.

Therefore Theorem 2.2 is applicable to (P).

5 Final remarks

We close this note with giving a couple of remarks.

(i) The WED formalism enables us to apply variational tools such as Direct Method of
the calculus of variations, critical point theories, Γ-convergence, and relaxation to
analyze gradient flows.

(ii) The WED formalism also provides numerical schemes for gradient flows. Actually,
one may obtain approximate solutions by directly minimizing WED functionals.
This perspective would be particularly helpful to treat moving boundary problems
and free boundary problems.

(iii) As for further generalizations, one may consider gradient flows with nonconvex
energies which are unbounded from below, some relaxation of assumptions (A1)–
(A3), how to describe smoothing effect in this formulation, and an extension of the
formulation to Banach space settings.

(iv) Moreover, one can also apply Theorem 2.2 to other types of PDEs such as the Allen-
Cahn equation, ∂tu−∆u+ u3 − u = 0, as well as quasilinear (e.g., p-Laplace) heat
equations with sublinear nonlinearity.

In the forthcoming paper [1], we shall further discuss the case that the energy func-
tional E is the difference of two possibly nonsmooth convex functionals and also relax
the assumption (A3) on the boundedness of the nonmonotone part. This case can cover
Allen-Cahn equations with more general potentials. In this case, due to the nonsmooth-
ness of the nonconvex part, one needs a couple of additional steps to derive the equivalence
between minimizers of the WED functional and solutions of the Euler-Lagrange equation
as well as to prove the existence of minimizers.

A Functional derivative

In this appendix, let us recall the notions of Fréchet derivative, Gâteaux derivative and
subdifferential. A functional ψ : H → R is said to be Fréchet differentiable in H if for
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each u ∈ H there exists ξ ∈ H such that

ψ(u+ v)− ψ(u)− (ξ, v)H
|v|H

= 0, whenever v → 0 strongly in H.

Moreover, ψ is said to be Gâteaux differentiable in H if for each u ∈ H there exists ξ ∈ H
such that

lim
h→0

ψ(u+ hv)− ψ(u)

h
= (ξ, v)H for any v ∈ H.

If ψ is Gâteaux differentiable, then it is also Fréchet differentiable and derivatives in both
senses coincide.

In both notions above, ξ is called a Fréchet or Gâteaux derivative of ψ at u and denoted
by ψ′(u). Furthermore, one can define a gradient operator ψ′ : u 7→ ψ′(u) from H into
itself.

Now, let ψ be a proper (i.e., ψ 6≡ ∞), lower semicontinuous, convex functional. Then,
∂ψ : H → H is called a subdifferential operator of ψ defined by

∂ψ(u) := {ξ ∈ H : ψ(v)− ψ(u) ≥ (ξ, v − u)H ∀v ∈ D(ψ)} for u ∈ D(ψ)

with the domain D(∂ψ) := {u ∈ D(ψ) : ∂ψ(u) 6= ∅}. If ψ is Gâteaux differentiable, then
∂ψ(u) = {ψ′(u)}.
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