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Abstract. Let V and V ∗ be a reflexive Banach space and its dual space, respectively,
and let H be a Hilbert space whose dual space H∗ is identified with itself H such that

V ↪→ H ≡ H∗ ↪→ V ∗

with continuous and densely defined canonical injections. This paper is concerned with
Cauchy problems for doubly nonlinear evolution equations governed by subdifferential
operators with non-monotone perturbations of the form:

(CP)

{
∂V ψ(u′(t)) + ∂V ϕ(u(t)) +B(u(t)) 3 f in V ∗, 0 < t < T,
u(0) = u0,

where ∂V ψ, ∂V ϕ : V → 2V ∗
denote subdifferential operators of proper, lower semicontin-

uous and convex functions ψ, ϕ : V → (−∞,+∞], respectively, and f ∈ V ∗ and u0 ∈ V
are given data. Moreover, let B be a (possibly) multi-valued operator from V into V ∗

such that B may be non-monotone in V × V ∗.
In this paper, after reviewing author’s recent results on sufficient conditions for the

local (in time) existence of strong solutions to (CP) as well as those for the global existence,
the long-time behavior of global strong solutions for (CP) is discussed. It is emphasized
that our abstract framework is established in a reflexive Banach space setting and can
cover evolution problems without any gradient structures. Furthermore, solutions of (CP)
may not be unique, so the usual semigroup approach to dynamical systems is not effective
for our setting. In this paper, the theory of generalized semiflow due to J.M. Ball is
exploited to treat dynamical systems generated by (CP).
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1 Introduction

The theory of evolution equations governed by subdifferential operators is well known
as a powerful tool to analyze the existence and uniqueness of solutions as well as their
asymptotic behaviors for nonlinear parabolic PDEs now. Developments of the theory
started with the study of a simple form:

u′(t) + ∂Hϕ(u(t)) 3 0, 0 < t < T(1. 1)

in a Hilbert space H (see Brézis [15]) as a special case of the nonlinear semigroup theory
due to Kōmura [26], and Brézis’s abstract theory for (1. 1) was applied to degenerate
parabolic equations associated with the p-Laplace operator and porous medium equations.
His theory has been generalized in various directions by many mathematicians, and some
of such generalizations succeeded triumphantly in applications to nonlinear parabolic
equations. Indeed, many free boundary problems, e.g., Stefan problem (see, e.g., §3.5
of [23]) were solved through a generalization with time-dependent subdifferentials due
to Kenmochi [22, 23], Attouch et al, Yamada [35] and so on. Non-monotone perturba-
tion theories for (1. 1) also extended the applicability of subdifferential approaches to
degenerate parabolic equations with blow-up terms, Navier-Stokes equation (see Ôtani-
Yamada [30], Ôtani [28, 29]), Allen-Cahn equation, Cahn-Hilliard equation (see Kenmochi
et al [24]), and so on. Moreover, doubly nonlinear problems naturally arise in the descrip-
tion of phase transition phenomena, so abstract theories are also established for doubly
nonlinear evolution equations of the form

∂Hψ(u′(t)) + ∂Hϕ(u(t)) 3 f in H, 0 < t < T(1. 2)

with two subdifferential operators ∂Hψ and ∂Hϕ by Barbu [12], Arai [8], Colli-Visintin [19]
(see also [18], [6], [31, Sect. 11], [32] and [9]). Another type of doubly nonlinear problems
are also treated by Barbu [14] and Kenmochi-Pawlow [25] (see also [20], [34], [27], [36],
[31, Sect. 11], [3]). On the other hand, evolution equations governed by subdifferential
operators were originally studied only in Hilbert space settings. However, several authors
(e.g., Brézis [15], Kenmochi [22], Barbu [14] and Colli [18]) made attempts to establish
abstract theories which enable us to treat them in V -V ∗ frameworks with reflexive Banach
spaces V and their dual spaces V ∗ (see also Akagi-Ôtani [4, 5, 6], Akagi [3], Aso et
al [10]). These contributions provide us more useful frameworks to handle PDEs with
severe nonlinearities.

The author recently made an attempt to develop a new framework which can unify
these branches in [1], where doubly nonlinear problems governed by (time-dependent)
subdifferential operators with non-monotone perturbations in reflexive Banach spaces are
treated. In this paper, we deal with an autonomous version of the problems treated in [1].
More precisely, let V and V ∗ be a reflexive Banach space and its dual space, respectively,
and let H be a Hilbert space whose dual space H∗ is identified with itself such that

V ↪→ H ≡ H∗ ↪→ V ∗

with continuous and densely defined canonical injections. Let ∂V ψ, ∂V ϕ : V → 2V ∗
stand

for the subdifferential operators of proper, lower semicontinuous and convex functions ψ
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and ϕ, respectively, from V into (−∞,+∞]. Moreover, let B be a (possibly) multi-valued
mapping from V into V ∗ such that B may be non-monotone in V × V ∗. Then one can
consider the following Cauchy problem:

(CP)

{
∂V ψ(u′(t)) + ∂V ϕ(u(t)) +B(u(t)) 3 f in V ∗, 0 < t < T,
u(0) = u0,

where u′(t) = du(t)/dt, and f ∈ V ∗ and u0 ∈ V are given. In Sections 3 and 4, we briefly
review the results of [1] on the existence of solutions for (CP).

The main purpose of this paper is to reveal the long-time behaviors of the global
solutions of (CP), in particular, the existence of global attractors; however, since solutions
of (CP) may not be unique, the usual semi-group approach to dynamical systems could
be no longer valid. Therefore we employ the notion of generalized semiflow proposed by
J.M. Ball [11] to investigate the asymptotic behavior of solutions for (CP).

Segatti in [32] studies a doubly nonlinear gradient system in the Hilbert space setting,
i.e., V = V ∗ = H and the perturbation term in (CP) has a special form, B(u) = −λu
with λ > 0, when growth conditions of linear order are imposed on ∂Hψ. He constructed
global (in time) solutions and proved the existence of global attractors by using the notion
of generalized semiflow and establishing a dissipative estimate for a Lyapunov functional
J(u) := ϕ(u) − λ

2
|u|2H . However, in our setting, the perturbation term has no explicit

form, in particular, it might have no gradient structure. Moreover, since we work in a
Banach space setting, there also arises some technical difficulties. These difficulties will
be solved and the existence of a global attractor for a generalized semiflow generated by
(CP) will be demonstrated in §5.

Notation. We denote by C a non-negative constant, which does not depend on the
elements of the corresponding space or set and may vary from line to line. Let I be a
section in R and let E be a set. Then AC(I;E) (respectively, AC(I)) stands for the set
of all E-valued (respectively, real-valued) absolutely continuous functions defined on I.
Moreover, the set of all proper (i.e., φ 6≡ +∞), lower semicontinuous and convex functions
φ from E into (−∞,+∞] is denoted by Φ(E).

2 Abstract setting and basic assumptions

Let V and V ∗ be a real reflexive Banach space and its dual space, respectively, and let H
be a real Hilbert space whose dual space H∗ is identified with itself such that

V ↪→ H ≡ H∗ ↪→ V ∗(2. 1)

with continuous and densely defined canonical injections. Let ψ, ϕ ∈ Φ(V ) and let ∂V ψ
and ∂V ϕ be the subdifferential operators of ψ and ϕ respectively. Moreover, let B be a
(possibly non-monotone) mapping from V into 2V ∗

. We consider the following Cauchy
problem.

(CP)

{
∂V ψ(u′(t)) + ∂V ϕ(u(t)) +B(u(t)) 3 f in V ∗, 0 < t < +∞,
u(0) = u0,
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where f ∈ V ∗ and u0 ∈ V are given data. Here and henceforth, we are concerned with
strong solutions of (CP) defined as follows:

Definition 2.1. For T ∈ (0,∞), a function u ∈ AC([0, T ];V ) is said to be a strong
solution of (CP) on [0, T ], if the following conditions are satisfied :

(i) u(0) = u0;

(ii) there exists a negligible set N ⊂ (0, T ), i.e., the Lebesgue measure of N is zero, such
that u(t) ∈ D(∂V ϕ) and u′(t) ∈ D(∂V ψ) for all t ∈ [0, T ] \ N , and moreover, there
exist sections η(t) ∈ ∂V ψ(u′(t)), ξ(t) ∈ ∂V ϕ(u(t)) and g(t) ∈ B(u(t)) such that

η(t) + ξ(t) + λg(t) = f in V ∗ for all t ∈ [0, T ] \N,(2. 2)

(iii) u(t) ∈ D(ϕ) for all t ∈ [0, T ], and the function t 7→ ϕ(u(t)) is absolutely continuous
on [0, T ].

For T ∈ (0,∞], a function u ∈ AC([0, T );V ) is said to be a strong solution of (CP) on
[0, T ), if u is a strong solution of (CP) on [0, S] for every S ∈ (0, T ).

Let us introduce basic assumptions on ψ, ϕ and B with parameters p ∈ (1,+∞) and
T > 0.

(A1) There exist constants C1 > 0 and C2 ≥ 0 such that

C1|u|pV ≤ ψ(u) + C2 for all u ∈ D(ψ).

(A2) There exist constants C3, C4 ≥ 0 such that

|η|p
′

V ∗ ≤ C3ψ(u) + C4 for all [u, η] ∈ ∂V ψ.

Here we give the following proposition for later use (see §5).

Proposition 2.2. Suppose that (A2) is satisfied. Then there exist constants C5 > 0,
C6 ≥ 0 such that

C5ψ(u) ≤ 〈η, u〉 + C6 for all [u, η] ∈ ∂V ψ.

As for ϕ, we employ the following compactness condition.

(Φ1) There exist a reflexive Banach space X and a non-decreasing function `1 on [0,+∞)
such that X is compactly embedded in V and

|u|X ≤ `1([ϕ(u)]+ + |u|H) for all u ∈ D(∂V ϕ),

where [s]+ := max{s, 0} ≥ 0 for s ∈ R.

Concerning the non-monotone mapping B, we impose the following assumptions.
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(B1) D(∂V ϕ) ⊂ D(B). There exists a non-decreasing function `2 on [0,+∞) satisfying
the following: for all ε > 0, there exists a constant Cε ≥ 0 such that

|g|p
′

V ∗ ≤ ε|ξ|σV ∗ + Cε`2(|ϕ(u)| + |u|V ), σ := min{2, p′}

for all u ∈ D(∂V ϕ), g ∈ B(u) and ξ ∈ ∂V ϕ(u).

(B2) For S ∈ (0, T ], let {un} and {ξn} be sequences in C([0, S];V ) and Lσ(0, S;V ∗) with
σ := min{2, p′}, respectively, such that

un → u strongly in C([0, S];V ), [un(t), ξn(t)] ∈ ∂V ϕ for a.e. t ∈ (0, S),

sup
t∈[0,S]

|ϕ(un(t))| +
∫ S

0

|u′n(t)|pHdt+

∫ S

0

|ξn(t)|σV ∗dt is bounded for all n ∈ N.

Moreover, let {gn} be a sequence in Lp′(0, S;V ∗) such that

gn(t) ∈ B(un(t)) for a.e. t ∈ (0, S), gn → g weakly in Lp′(0, S;V ∗).

Then {gn} is precompact in Lp′(0, S;V ∗) and g(t) ∈ B(u(t)) for a.e. t ∈ (0, S).

(B3) For S ∈ (0, T ], let u ∈ C([0, S];V ) ∩W 1,p(0, S;H) be such that

sup
t∈[0,S]

|ϕ(u(t))| < +∞.

Suppose that there exists ξ ∈ Lp′(0, S;V ∗) such that ξ(t) ∈ ∂V ϕ(u(t)) for a.e.
t ∈ (0, S). Then there exists a V ∗-valued strongly measurable function g such that
g(t) ∈ B(u(t)) for a.e. t ∈ (0, S). Moreover, the set B(u) is convex for all u ∈ D(B).

Remark 2.3. We can assume that ψ ≥ 0 and ϕ ≥ 0 without any loss of generality.
Indeed, putting ψ̂ := ψ + C2 and using (A1), we find that ψ̂ ≥ 0, D(ψ̂) = D(ψ),
D(∂V ψ̂) = D(∂V ψ) and ∂V ψ̂ = ∂V ψ. As for ϕ, from the fact that ϕ ∈ Φ(V ) and (Φ1),
the extension ϕ̃ of ϕ onto H defined by

ϕ̃(u) :=

{
ϕ(u) if u ∈ V,
+∞ if u ∈ H \ V

belongs to Φ(H). Hence there exist u∗ ∈ H and µ ∈ R such that ϕ̃(u) ≥ (u∗, u)H +µ for all
u ∈ H (see, e.g., Proposition 2.1 of [13, p. 51]). Thus we have ϕ̂(u) := ϕ(u)−(u∗, u)H−µ ≥
0 for all u ∈ V , and moreover, it holds that D(ϕ̂) = D(ϕ), D(∂V ϕ̂) = D(∂V ϕ) and
∂V ϕ̂ = ∂V ϕ− u∗. Therefore the evolution equation in (CP) is equivalent to the following:

∂V ψ̂(u′(t)) + ∂V ϕ̂(u(t)) +B(u(t)) 3 f̂ := f − u∗.

Moreover, (A1), (A2), (Φ1) and (B1)-(B3) are all satisfied with ψ and ϕ replaced by ψ̂
and ϕ̂ respectively.
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3 Local existence of solutions

The existence of local (in time) solutions for (CP) has already been proved under the
preceding assumptions by the author in [1], where (CP) is treated in a more general
setting; more precisely, ψ, B and f may explicitly depend on t.

Theorem 3.1 (Local existence, [1]). Let p ∈ (1,+∞) and T > 0 be given. Suppose that
(A1), (A2), (Φ1), (B1)–(B3) are all satisfied. Then, for all f ∈ V ∗ and u0 ∈ D(ϕ), there
exists T∗ = T∗(ϕ(u0) + |u0|H + |f |V ∗) ∈ (0, T ] such that (CP) admits at least one strong
solution u ∈ W 1,p(0, T∗;V ) on [0, T∗] satisfying

η, ξ, g ∈ Lp′(0, T∗;V
∗), ϕ(u(·)) ∈ W 1,1(0, T∗),

where η(t), ξ(t) and g(t) denote the sections of ∂V ψ(u′(t)), ∂V ϕ(u(t)) and B(u(t)), re-
spectively, as in (2. 2) for a.e. t ∈ (0, T∗).

Let us show the outline of proof for this theorem (see [1] for more detail).

Phase 1. We introduce the following approximate problems of (CP) for all λ ∈ [0, 1]:

(CP)λ

{
λu′(t) + ∂V ψ(u′(t)) + ∂Hϕ̃λ(u(t)) +B(Jλu(t)) 3 f in V ∗,
u(0) = u0,

where ϕ̃ is the extension of ϕ onto H and Jλ and ∂Hϕ̃λ denote the resolvent and the
Yosida approximation of ∂Hϕ̃ respectively. To construct strong solutions for (CP)λ on
[0, T∗] with some T∗ ∈ (0, T ] independent of λ ∈ (0, 1], we prepare the following two steps.

Phase 1, Step 1. We first prove the existence and uniqueness of solutions for the
following unperturbed problems for a given function g ∈ Lp′(0, T ;V ∗) (see also Remark
3.2).

(CP)λ,g

{
λu′(t) + ∂V ψ(u′(t)) + ∂Hϕ̃λ(u(t)) + g(t) 3 f in V ∗,
u(0) = u0.

Phase 1, Step 2. We next define the mapping FS on Lp′(0, S;V ∗) by

FS : g 7→ B(Jλu(·)), where u is a solution of (CP)λ,g on [0, S].

Then applying Kakutani-Ky Fan’s fixed point theorem for multi-valued mappings (see
Corollary 2 to Theorem (6. 3) of [17, p. 75]), we find a fixed point gλ ∈ Lp′(0, T∗;V

∗) of
FT∗ with some T∗ independent of λ ∈ (0, 1]. Let uλ be a strong solution of (CP)λ,g with
g = gλ on [0, T∗]. Then uλ solves (CP)λ on [0, T∗].

Phase 2. Establishing a priori estimates and deriving the convergences for uλ as λ→ +0,
we can obtain local (in time) solutions for (CP).

Remark 3.2. For the case where V = V ∗ = H is a Hilbert space, one can easily prove
the uniqueness of strong solutions for (CP)λ,g. Indeed, (CP)λ,g can be rewritten into

u′(t) = (λI + ∂Hψ)−1 (f − g(t) − ∂Hϕ̃λ(u(t))) in H, 0 < t < T,
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and we observe that the mapping u 7→ (λI + ∂Hψ)−1 (f − g(t) − ∂Hϕ̃λ(u)) becomes Lip-
schitz continuous in H for every t ∈ [0, T ]. Hence the uniqueness of strong solutions
follows immediately. However, for the case where V is not a Hilbert space, the mapping
(λI + ∂V ψ)−1 : V ∗ → V is no longer Lipschitz continuous. In [1], the uniqueness of solu-
tions for (CP)λ,g is proved by using the Lipschitz continuity of ∂Hϕ̃λ only and Gronwall’s
inequality.

4 Global existence of solutions

As for the global (in time) existence, [1] also presents the following two theorems.

Theorem 4.1 (Global existence, [1]). Let p ∈ (1,+∞) and T > 0 be fixed. Suppose that
(A1), (A2), (Φ1), (B2), (B3) and the following (B4) are satisfied.

(B4) D(∂V ϕ) ⊂ D(B). For all ε > 0, there exists a constant Cε ≥ 0 such that

|g|p
′

V ∗ ≤ ε|ξ|σV ∗ + Cε {|ϕ(u)| + |u|pV + 1} , σ := min{2, p′}

for all u ∈ D(∂V ϕ), g ∈ B(u) and ξ ∈ ∂V ϕ(u).

Then, for all f ∈ V ∗ and u0 ∈ D(ϕ), there exists a strong solution u ∈ W 1,p(0, T ;V ) of
(CP) on [0, T ] such that

η, ξ, g ∈ Lp′(0, T ;V ∗), ϕ(u(·)) ∈ W 1,1(0, T ),(4. 1)

where η(t), ξ(t) and g(t) denote the sections of ∂V ψ(u′(t)), ∂V ϕ(u(t)) and B(u(t)), re-
spectively, as in (2. 2) for a.e. t ∈ (0, T ).

As in §6.1 of [1], we can prove the following proposition, which will be used in §5.

Proposition 4.2. Let p ∈ (1,+∞) and T > 0 be given. Assume that (B4) holds. Let u
be a strong solution of (CP) on [0, T ]. Then for any γ > 0, there exist a constant Cγ ≥ 0
independent of u, T , u0 and f such that

|g(t)|p
′

V ∗ ≤ Cγ

(
|f |p

′

V ∗ + 1
)

+ Cγ {|ϕ(u(t))| + |u(t)|pV } + γψ (u′(t)) ,

where g(t) denotes the section of B(u(t)) as in (2. 2), for a.e. t ∈ (0, T ).

Furthermore, in the next theorem, the global existence is assured for small data u0

and f in a proper sense by imposing the following (B5) instead of (B4).

(B5) There exist a positive constant C7 and non-decreasing functions `i (i = 3, 4, 5) on
[0,+∞) such that lims→+0 `i(s) = 0 and

C7ϕ(u) ≤ 〈ξ + g, u〉 + `3(ϕ(u))ϕ(u),(4. 2)

|u|pV ≤ `4(ϕ(u))ϕ(u),(4. 3)

for all u ∈ D(∂V ϕ), ξ ∈ ∂V ϕ(u), g ∈ B(u), and moreover, for all ε > 0, there exists
a constant Cε ≥ 0 such that

|g|p
′

V ∗ ≤ ε|ξ|p
′

V ∗ + Cε`5(ϕ(u))ϕ(u)(4. 4)

for all u ∈ D(∂V ϕ), ξ ∈ ∂V ϕ(u), g ∈ B(u).
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Theorem 4.3 (Global existence for small data). Let p ∈ (1,+∞) and T > 0 be fixed.
Suppose that (A1), (A2), (Φ1), (B1)–(B3) and (B5) are all satisfied with C2 = C4 = 0 and
ψ(0) ≡ 0. Then there exists δ > 0 independent of T such that if |f |V ∗ + ϕ(u0) < δ, then
(CP) admits a strong solution u ∈ W 1,p(0, T ;V ∗) on [0, T ] such that (4. 1) holds true.

5 Long-time behavior of solutions

As we mentioned in §1, solutions of (CP) may not be unique. Hence the usual approach
to dynamical systems based on the semigroup theory is not valid for our problem. Hence
we exploit the theory of generalized semiflow proposed by J.M. Ball [11], which can be
adapted to dynamical systems generated by equations whose solutions are not unique,
instead of the usual one. Our strategy of proof is based on that of [32] and techniques
developed in [1] for (CP).

5.1 Theory of generalized semiflow

The notion of generalized semiflow is first introduced by J.M. Ball [11]. He also extend the
notion of global attractor to generalized semiflows and provide a criterion of the existence
of global attractors. We first recall the definition of generalized semiflow.

Definition 5.1. Let X be a metric space with metric dX = dX(·, ·). A family G of maps
ϕ : [0,+∞) → X is said to be a generalized semiflow in X, if the following four conditions
are all satisfied :

(H1) (Existence) For each x ∈ X there exists ϕ ∈ G such that ϕ(0) = x;

(H2) (Translation invariance) If ϕ ∈ G and τ ≥ 0, then the map ϕτ also belongs to G,
where ϕτ (t) := ϕ(t+ τ) for t ∈ [0,+∞);

(H3) (Concatenation invariance) If ϕ1, ϕ2 ∈ G and ϕ2(0) = ϕ1(τ) for some τ ≥ 0, then
the map ψ, the concatenation of ϕ1 and ϕ2 at τ , defined by

ψ(t) :=

{
ϕ1(t) if t ∈ [0, τ ],
ϕ2(t− τ) if t ∈ (τ,+∞)

also belongs to G;

(H4) (Upper semicontinuity) If ϕn ∈ G, x ∈ X and ϕn(0) → x in X, then there exist a
subsequence {n′} of {n} and ϕ ∈ G such that ϕn′(t) → ϕ(t) for each t ∈ [0,+∞).

Let G be a generalized semiflow in a metric space X. We define a mapping T (t) :
2X → 2X by

(5. 1) T (t)E := {ϕ(t); ϕ ∈ G and ϕ(0) ∈ E} for E ⊂ X

for each t ≥ 0. One can check from (H1)–(H3) that {T (t)}t≥0 satisfies the semi-group
properties, that is, (i) T (0) is the identity mapping in 2X ; (ii) T (t)T (s) = T (t+ s) for all
t, s ≥ 0.

Moreover, global attractors for generalized semiflows are defined as follows.
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Definition 5.2. Let G be a generalized semiflow in a metric space X and let {T (t)}t≥0 be
the family of mappings defined as in (5. 1). A set A ⊂ X is said to be a global attractor
for the generalized semiflow G if the following (i)–(iii) hold.

(i) A is compact in X;

(ii) A is invariant under T (t), i.e., T (t)A = A, for all t ≥ 0;

(iii) A attracts any bounded subsets B of X by {T (t)}t≥0, i.e.,

lim
t→+∞

dist(T (t)B,A) = 0,

where dist(·, ·) is defined by

dist(A,B) := sup
a∈A

inf
b∈B

dX(a, b) for A,B ⊂ X.

As in the standard theory of dynamical systems for (single-valued) semi-group opera-
tors, we can also introduce the notion of ω-limit set.

Definition 5.3. Let G be a generalized semiflow in a metric space X. For E ⊂ X, the
ω-limit set of E for G is given as follows.

ω(E) :=
{
x ∈ X; there exist sequences {ϕn} in G and {tn} on [0,+∞)

such that ϕn(0) is bounded and belongs to E

for all n ∈ N, tn → +∞ and ϕn(tn) → x
}
.

In order to prove the existence of global attractors for generalized semiflows, we employ
the following theorem due to J.M. Ball [11].

Theorem 5.4 (J.M. Ball [11]). A generalized semiflow G in a metric space X has a global
attractor A if and only if the following two conditions are satisfied.

(i) G is point dissipative, that is,

∃a bounded set B ⊂ X, ∀ϕ ∈ G, ∃τ = τ(ϕ) ≥ 0, ∀t ≥ τ, ϕ(t) ∈ B;

(ii) G is asymptotically compact, that is, for any sequences {ϕn} in G and {tn} on
[0,+∞), if {ϕn(0)} is bounded in X and tn → +∞, then {ϕn(tn)} is precompact in
X.

Moreover, A is a unique global attractor for G and given by

A =
∪

{ω(B); B is a bounded set in X} = ω(X).

Furthermore, A is the maximal compact invariant subset of X under the family of map-
pings {T (t)}t≥0.
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The following proposition gives a sufficient condition for the asymptotic compactness
of generalized semiflows.

Proposition 5.5 (J.M. Ball [11]). Let G be a generalized semiflow in a metric space X.
If G satisfies the following conditions :

(i) G is eventually bounded, that is, for any bounded set D ⊂ X, there exist τ = τ(D) ≥
0 and a bounded set B = B(D) ⊂ X such that∪

t≥τ

T (t)D ⊂ B,

(ii) G is compact, that is, for any sequence {un} in G, if {un(0)} is bounded in X, then
there exists a subsequence {n′} of {n} such that {un′(t)} is convergent in X for each
t > 0,

then G is asymptotically compact.

5.2 Formation of a generalized semiflow

Our analysis of the large-time behavior of solutions for (CP) is based on the theory of
generalized semiflow briefly reviewed in §5.1. In this subsection, we first define the set G
and next prove that it forms a generalized semiflow in a metric space.

Let X := D(ϕ) be a metric space equipped with the distance dX(·, ·) defined by

dX(u, v) := |u− v|V + |ϕ(u) − ϕ(v)| for u, v ∈ X

and define

G := {u ∈ AC([0,+∞);X); u is a strong solution of (CP) on [0,+∞)

with some u0 ∈ X}.

Then we have:

Theorem 5.6. Let p ∈ (1,+∞) be fixed. Assume that (A1), (A2), (Φ1), (B2)–(B4) are
satisfied for any T > 0. Then G is a generalized semiflow in X.

Proof. It suffices to check the four conditions (H1)–(H4) (see Definition 5.1). The assertion
(H1) follows from Theorem 4.1. Moreover, it is easily seen that (H2) and (H3) are satisfied.
Hence it remains to check (H4).

Let un ∈ G and v ∈ X be such that un(0) → v in X. Then multiplying (CP) with
u = un by u′n(t), we have

〈ηn(t), u′n(t)〉 + 〈ξn(t), u′n(t)〉 + 〈gn(t), u′n(t)〉 = 〈f, u′n(t)〉

with sections ηn(t) ∈ ∂V ψ(u′n(t)), ξn(t) ∈ ∂V ϕ(un(t)), gn(t) ∈ B(un(t)) for a.e. t ∈
(0,+∞). We then derive from (A2)′ and the chain rule for subdifferentials that

C5ψ (u′n(t)) − C6 +
d

dt
ϕ(un(t)) ≤ (|f |V ∗ + |gn(t)|V ∗) |u′n(t)|V .
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Furthermore, by Young’s inequality and (A1),

3

4
C5ψ (u′n(t)) +

d

dt
ϕ(un(t)) ≤ C

(
|f |p

′

V ∗ + |gn(t)|p
′

V ∗ + 1
)
.(5. 2)

By Proposition 4.2 and (A1),

C5

4
ψ(u′n(t)) +

C5

4
(C1|u′n(t)|pV − C2) +

d

dt
ϕ(un(t))(5. 3)

≤ C
(
|f |p

′

V ∗ + 1
)

+ C {ϕ(un(t)) + |un(t)|pV } .

Thus

C5

4
ψ(u′n(t)) +

d

dt
{ϕ(un(t)) + |un(t)|pV }(5. 4)

≤ C
(
|f |p

′

V ∗ + 1
)

+ C {ϕ(un(t)) + |un(t)|pV }

for a.e. t ∈ (0,+∞). Hence integrating both sides over (0, t) and applying Gronwall’s
inequality, we deduce that

(5. 5) sup
t∈[0,T ]

{ϕ(un(t)) + |un(t)|pV } ≤
{
ϕ(u0) + |u0|pV + CT

(
|f |p

′

V ∗ + 1
)}

eCT

with an arbitrary positive number T > 0. Hence (Φ1) implies that {un(t)}n∈N is precom-
pact in V for each t > 0. Furthermore, we can also deduce that∫ T

0

ψ(u′n(t))dt ≤ CT ,(5. 6) ∫ T

0

|u′n(t)|pV dt ≤ CT(5. 7)

with a constant CT ≥ 0. Here and henceforth, CT denotes a non-negative constant
independent of n and t but possibly depending on T and may vary from line to line.
Performing a diagonal process, we can verify

unk
(t) → u(t) strongly in V for each t ∈ [0,+∞)(5. 8)

with some u ∈ C([0,+∞);V ) and a subsequence {nk} of {n} (see [2] for more details).
We next prove that u ∈ G, that is, u is a strong solution of (CP) on [0,+∞). Recall

(5. 5)–(5. 7) with an arbitrary T > 0 and use (A2), Proposition 4.2 and (2. 2) to get∫ T

0

|ηn(t)|p
′

V ∗dt ≤ CT ,(5. 9) ∫ T

0

|gn(t)|p
′

V ∗dt ≤ CT ,(5. 10) ∫ T

0

|ξn(t)|p
′

V ∗dt ≤ CT ,(5. 11)
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respectively, for all n ∈ N. Hence we can take a subsequence of {nk}, which is denoted
by {nk} again, such that

unk
→ u weakly in W 1,p(0, T ;V ),(5. 12)

strongly in C([0, T ];V ),(5. 13)

ηnk
→ η weakly in Lp′(0, T ;V ∗),(5. 14)

gnk
→ g weakly in Lp′(0, T ;V ∗),(5. 15)

ξnk
→ ξ weakly in Lp′(0, T ;V ∗)(5. 16)

with some η, g, ξ ∈ Lp′(0, T ;V ∗). Therefore from the demiclosedness of subdifferential
operators we can derive that ξ(t) ∈ ∂V ϕ(u(t)) for a.e. t ∈ (0, T ), and moreover, (B2)
implies that g(t) ∈ B(u(t)) for a.e. t ∈ (0, T ) and

gnk
→ g strongly in Lp′(0, T ;V ∗).(5. 17)

Furthermore, multiply ηnk
(t) by u′nk

(t) and integrate this over (0, T ). It then follows from
(5. 12) and (5. 17) that

(5. 18) lim sup
nk→+∞

∫ T

0

〈
ηnk

(t), u′nk
(t)

〉
dt ≤ −ϕ(u(T )) + ϕ(v) +

∫ T

0

〈f − g(t), u′(t)〉 dt.

Here we also used the fact that un(0) → v in X, in particular, ϕ(un(0)) → ϕ(v). Thus by
Proposition 2.1 of [1], we obtain η(t) ∈ ∂V ψ(u′(t)) for a.e. t ∈ (0, T ), which implies that
u is a strong solution of (CP) with u0 = v on [0, T ]. From the arbitrariness of T , we can
also verify that u becomes a strong solution of (CP) on [0,+∞). Hence u belongs to G.

Finally, we show that ϕ(unk
(t)) → ϕ(u(t)) for each t ∈ [0,+∞), by taking a subse-

quence of {nk} if necessary. To do so, we first derive a convergence of ϕ(unk
(t)) for a.e.

t ∈ (0,+∞).

Lemma 5.7. It follows that

lim inf
nk→+∞

ϕ(unk
(t)) = ϕ(u(t)) for a.e. t ∈ (0,+∞).

Proof. Let T > 0 be arbitrarily given. Then by (5. 11), Fatou’s lemma ensures that

p(·) := lim inf
n→+∞

|ξn(·)|p
′

V ∗ ∈ L1(0, T ).

Hence p(t) < +∞ for a.e. t ∈ (0, T ). Thus we get, by (5. 8),

lim inf
nk→+∞

ϕ(unk
(t)) ≤ ϕ(u(t)) + p(t)

(
lim

nk→+∞
|unk

(t) − u(t)|V
)

= ϕ(u(t)) for a.e. t ∈ (0, T ).

Combining this fact with the lower semicontinuity of ϕ, we can prove this lemma.
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Continuation of proof of (H4). We next exhibit the convergence of ϕ(unk
(t)) at every

t ∈ [0,+∞). Recalling (5. 3), we find

d

dt
ζn(t) ≤ 0 for a.e. t ∈ (0,+∞),

where ζn is an absolutely continuous function from [0,+∞) into R given by

ζn(t) := ϕ(un(t)) − Ct
(
|f |p

′

V ∗ + 1
)
−M2

∫ t

0

{ϕ(un(τ)) + |un(τ)|pV } dτ

for t ∈ [0,+∞). Hence ζn is non-increasing on [0,+∞). Applying Helly’s lemma (see
Lemma 3.3.3 of [7]) and a diagonal process to our situation (see [2] for more details), we
have

lim
nk→+∞

ζnk
(t) = φ(t) for all t ∈ [0,+∞).(5. 19)

It remains only to reveal the representation of φ.

Lemma 5.8. For each t ∈ [0,+∞), it follows that

φ(t) = ϕ(u(t)) − Ct
(
|f |p

′

V ∗ + 1
)
−M2

∫ t

0

{ϕ(u(τ)) + |u(τ)|pV } dτ.

Proof. Let T > 0 be fixed. We can then derive that∫ t

0

ϕ(unk
(τ))dτ →

∫ t

0

ϕ(u(τ))dτ for all t ∈ [0, T ]

from the definition of subdifferential together with (5. 13) and (5. 16). Hence the
definition of ζn and Lemma 5.7 yield

lim inf
nk→+∞

ζnk
(t) = ζ(t) for a.e. t ∈ (0, T ),

where ζ ∈ AC([0,+∞)) is given by

ζ(t) := ϕ(u(t)) − Ct
(
|f |p

′

V ∗ + 1
)
−M2

∫ t

0

{ϕ(u(τ)) + |u(τ)|pV } dτ.

Therefore we can obtain φ(t) = ζ(t) for a.e. t ∈ (0,+∞) from the arbitrariness of T > 0.
Thus since ζ is continuous and φ is non-increasing on [0,∞), we can verify

φ(t) = ζ(t) for all t ∈ [0,+∞)

by (5. 19) (see [2] for more details).

Continuation of Proof of (H4). From Lemma 5.8, we conclude that unk
(t) → u(t) in X

for each t ∈ [0,+∞). Thus (H4) follows.
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5.3 Existence of global attractors

This subsection is devoted to proving the existence of global attractors for the generalized
semiflow G. To this end, we first introduce the following structure condition.

(S1) There exist constants α > 0 and C8 ≥ 0 such that

α {ϕ(u) + |u|pV } ≤ 〈ξ + g, u〉 + C8

for all u ∈ D(∂V ϕ) ∩D(B), ξ ∈ ∂V ϕ(u) and g ∈ B(u).

Furthermore, we also introduce the following assumption on the growth order of B, which
is more restrictive than (B4).

(B6) D(∂V ϕ) ⊂ D(B). There exists a number γ ∈ (0, 1) satisfying that: for all ε > 0,
there exists a constant Cε ≥ 0 such that

|g|p
′

V ∗ ≤ ε|ξ|σV ∗ + Cε {|ϕ(u)| + |u|pV + 1}γ , σ := min{2, p′}

for all u ∈ D(∂V ϕ), g ∈ B(u) and ξ ∈ ∂V ϕ(u).

Theorem 5.9. Let p ∈ (1,+∞) be fixed and assume that (A1), (A2), (Φ1), (B2), (B3),
(B6) and (S1) are satisfied for any T > 0. Then the generalized semiflow G has a unique
global attractor A, which is given by

A :=
∪

{ω(B);B is a bounded subset of X} = ω(X).

Furthermore, A is the maximal compact invariant subset of X.

In order to prove Theorem 5.9, we prepare a couple of lemmas.

Lemma 5.10. Under the same assumptions as in Theorem 5.9, there exist a constant
R ≥ 0 and an increasing function T0(·) on [0,+∞) such that

ϕ(u(t)) + |u(t)|pV ≤ R for all u0 ∈ X, u ∈ G satisfying u(0) = u0

and t ≥ T0(ϕ(u0) + |u0|pV ).(5. 20)

Proof. Let u0 ∈ X and let u ∈ G be such that u(0) = u0. By (S1), we find that

α {ϕ(u(t)) + |u(t)|pV } ≤ C
(
|f |p

′

V ∗ + |η(t)|p
′

V ∗ + 1
)

+
α

2
|u(t)|pV

with sections ξ(t) ∈ ∂V ϕ(u(t)), g(t) ∈ B(u(t)), η(t) ∈ ∂V ψ(u′(t)) for a.e. t ∈ (0,+∞).
Thus by (A2) we can take a constant c0 ≥ 0 such that

(5. 21)
α

2
{ϕ(u(t)) + |u(t)|pV } ≤ C

(
|f |p

′

V ∗ + 1
)

+ c0ψ(u′(t))

for a.e. t ∈ (0,+∞). As in (5. 4), taking an enough small number σ > 0, we can deduce
from (B6) that

C5

4
ψ(u′(t)) +

d

dt
{ϕ(u(t)) + σ|u(t)|pV }(5. 22)

≤ C
(
|f |p

′

V ∗ + 1
)

+ C {ϕ(u(t)) + |u(t)|pV }
γ
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for a.e. t ∈ (0,+∞) with the constant γ ∈ (0, 1) of (B6).
Now, set φ(t) := ϕ(u(t)) + σ|u(t)|pV . Multiplying (5. 21) by an enough small number

and adding this to (5. 22), we can derive

dφ

dt
(t) + βφ(t) ≤ F := C

(
|f |p

′

V ∗ + 1
)

for a.e. t ∈ (0,+∞)

with a positive number β (see [2] for more details). By standard techniques for differential
inequalities, we have

φ(t) ≤ F

β
+ φ(0)e−βt for all t ∈ [0,+∞),

in particular,

φ(t) ≤ F

β
+ 1 for all t ≥ log(φ(0) + 1)/β.

Thus, by putting R := F/(σβ) + 1/σ and T0(·) := log(· + 1)/β, we obtain (5. 20).

Hence we obtain the following lemma.

Lemma 5.11. Under the same assumptions as in Theorem 5.9, the following (i) and (ii)
are satisfied.

(i) G is point dissipative.

(ii) G is eventually bounded.

Proof. Let R ≥ 0 and T0(·) be the constant and the increasing function given by Lemma
5.10 respectively. Moreover, we write

Br := {v ∈ X; ϕ(v) + |v|pV ≤ r} for r > 0

in the following.
Proof of (i). Put B := BR. Let u ∈ G and set τ := T0(ϕ(u(0)) + |u(0)|pV ). Then by
Lemma 5.10, we can deduce that u(t) ∈ B for all t ≥ τ .
Proof of (ii). Let D be a bounded set in X. Then we can take R1 ∈ (0,+∞) such that
D ⊂ BR1 . Moreover, put τ := T0(R1) and B := BR. Then by Lemma 5.10, for any u ∈ G
with u(0) ∈ D ⊂ BR1 , it follows that u(t) ∈ B for all t ≥ τ .

Concerning the compactness of G, we have:

Lemma 5.12. Under the same assumptions as in Theorem 5.9, G is compact.

Proof. Since un(0) is bounded in X, i.e., |un(0)|V + ϕ(un(0)) ≤ C with some constant C
independent of n, the estimates (5. 5)–(5. 7), (5. 9)–(5. 11) and the convergences (5. 8),
(5. 12)–(5. 17) are established with an arbitrary T > 0 as in the proof of (H4) (see the
proof of Theorem 5.6). Moreover, we can also verify that there exists a subsequence {nk}
of {n} such that

ϕ(unk
(t)) → ϕ(u(t)) for all t ∈ (0,+∞).(5. 23)

Thus unk
(t) → u(t) in X for each positive t. This completes our proof.
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Finally, these lemmas prove Theorem 5.9 immediately.

Proof of Theorem 5.9. Thanks to Theorem 5.4 and Lemmas 5.11 and 5.12, we obtain our
desired conclusion.

We close this paper with the following final remark.

Remark 5.13. (1) One can also discuss the existence of global attractors for

∂V ψ(u′(t)) + ∂V ϕ(u(t)) + λB(u(t)) 3 f in V ∗, 0 < t < T

with an enough small λ ≥ 0, even if (B4) is satisfied instead of (B6).

(2) We can apply the preceding abstract theory to the initial-boundary value problem
for doubly nonlinear parabolic equations such as

α(ut) − ∆mu+ g(u) = f and α(ut) − ∆u+ h(u,∇u) = f,

where α is a maximal monotone operator in R satisfying a growth condition of order
p, and g (respectively, h) is a continuous function from R (respectively, R×RN) into
R satisfying appropriate growth conditions, to investigate the existence of solutions
and their asymptotic behaviors, in particular, the existence of global attractors.
Generalized forms of the Allen-Cahn equation particularly fall within our framework.
Moreover, we emphasize that our framework can cover the case where h depends on
the gradient of u.

These generalization and application of our work reported in the current paper have
been discussed in [2] with more details of the arguments in §5.
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