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Abstract. A new framework is proposed to deal with degenerate parabolic equations such
as ut(x, t)−∆pu(x, t)−|u|q−2u(x, t) = f(x, t), x ∈ Ω, t > 0, where 1 < p, q < +∞ and ∆p is
the so-called p-Laplacian given by ∆pu := ∇ · (|∇u|p−2∇u). Such a degenerate parabolic
equation can be reduced to an abstract evolution equation governed by subdifferential
operators in an appropriate reflexive Banach space. However, the most of studies on
evolution equations governed by subdifferential operators have been done so far only in
Hilbert space settings.

Let V and V ∗ be a reflexive Banach space and its dual space, respectively, and suppose
that there exists a Hilbert space H such that V ⊂ H ≡ H∗ ⊂ V ∗ continuously and
densely. In this paper, sufficient conditions for the existence of local or global (in time)
solutions of Cauchy problems for evolution equations of the form: du(t)/dt+∂V ϕ1(u(t))−
∂V ϕ2(u(t)) 3 f(t) in V ∗, 0 < t < T , where ∂V ϕi (i = 1, 2) are subdifferential operators
of proper lower semicontinuous convex functionals ϕi : V → (−∞, +∞], are provided

for the case u0 ∈ D(ϕ1) (resp. u0 ∈ D(ϕ1)
H

) by using the theory of subdifferential
operators. Moreover, these results are also applied to the initial-boundary value problem
for the degenerate parabolic equation described above, and in particular, if p ≤ q and
u0 ∈ W 1,p

0 (Ω) (resp. u0 ∈ L2(Ω)), then the initial-boundary value problem admits a
time-local solution under q < p∗ (resp. q < (N + 2)p/2), where p∗ denotes the so-called
Sobolev’s critical exponent.
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1 Introduction

Subdifferential operator theory is often utilized for constructing a solution of degenerate
parabolic equations, because it enables us to take account of energy structures of equations
as well as to employ useful properties of maximal monotone operators. In particular,
energy structures play an important role in studies on degenerate parabolic equations.

We introduce a new framework to deal with initial-boundary value problems of degen-
erate parabolic equations such as

(NHE)





∂u

∂t
(x, t) − ∆pu(x, t) − |u|q−2u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

u(x, t) = 0, (x, t) ∈ ∂Ω × (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

where Ω denotes a bounded domain in RN with smooth boundary ∂Ω, 1 < q < +∞ and
∆p is the so-called p-Laplacian given by

∆pφ(x) := ∇ · (|∇φ(x)|p−2∇φ(x)), 1 < p < +∞.

More precisely, we reduce (NHE) to Cauchy problem of an abstract evolution equation in
the dual space V ∗ of a reflexive Banach space V of the form:

du

dt
(t) + ∂V ϕ1(u(t)) − ∂V ϕ2(u(t)) 3 f(t) in V ∗, 0 < t < T,(1. 1)

where ∂V ϕi : V → 2V ∗
(i = 1, 2) denote subdifferential operators of functionals ϕi : V →

(−∞, +∞] and f : (0, T ) → V ∗ is given, in Section 3; moreover, we provide sufficient
conditions for the existence of solutions of Cauchy problem for (1. 1) in Section 4. To
do this, we also recall various properties of subdifferential operators (see Sect. 2), which
will be employed in major 3 steps, i.e., approximation of equations, establishing a priori
estimates and convergence of approximate solutions, to construct a solution of (1. 1).

The existence of solutions for (NHE) has already been studied by several authors.
Tsutsumi [12] provided sufficient conditions for the existence of local or global (in time)
solutions for (NHE) by using Galerkin’s method and energy method. On the other hand,
Ôtani [9, 10] and Ishii [6] developed abstract theories of (1. 1) in the Hilbert space setting,
where V must be a Hilbert space whose dual space is identified with V , and applied their
abstract theories to (NHE). However, it has been an open problem for a long time whether
there exists a time-local solution of (NHE) with u0 ∈ W 1,p

0 (Ω) under q < p∗, where p∗

denotes the so-called Sobolev’s critical exponent given by p∗ := Np/(N − p) if p < N ;
p∗ := +∞ if p ≥ N , because of the restriction on the choice of base spaces in [9, 10]
and [6] (see [2] for more details).

In Section 5, we apply our abstract theory developed in Section 4 to (NHE) for both
cases: u0 ∈ W 1,p

0 (Ω) and u0 ∈ L2(Ω), and derive sufficient conditions for the existence of
local or global (in time) solutions of (NHE). Particularly, if p ≤ q, then we can assure
that (NHE) with u0 ∈ W 1,p

0 (Ω) (resp. u0 ∈ L2(Ω)) admits a local solution under q < p∗

(resp. q < (N + 2)p/N).



2 Subdifferential Operators in Reflexive Banach Spaces

The theory of subdifferential operators has been developed by many mathematicians (see
e.g. [4], [5], [3], [8]), and in this section, some of their results will be reviewed to be used
later.

Let X be a reflexive Banach space and let Φ(X) denote the set of all lower semi-
continuous convex functions φ from X into (−∞, +∞] satisfying φ 6≡ +∞. Then the
subdifferential ∂Xφ(u) of φ ∈ Φ(X) at u is defined by

∂Xφ(u) := {ξ ∈ X∗; φ(v) − φ(u) ≥ 〈ξ, v − u〉X ∀v ∈ D(φ)},

where 〈·, ·〉X denotes the natural duality between X and X∗ and the effective domain
D(φ) of φ is given by

D(φ) := {u ∈ X; φ(u) < +∞}.

Then the subdifferential operator ∂Xφ of φ can be defined by

∂Xφ : X → 2X∗
; u 7→ ∂Xφ(u)

with the domain D(∂Xφ) := {u ∈ D(φ); ∂Xφ(u) 6= ∅}. It is well known that every
subdifferential operator forms a maximal monotone graph in X × X∗.

In particular, if X is a Hilbert space H whose dual space H∗ is identified with H, then
the subdifferential ∂Hφ(u) of φ ∈ Φ(H) at u can be written by

∂Hφ(u) = {ξ ∈ H; φ(v) − φ(u) ≥ (ξ, v − u)H ∀v ∈ D(φ)} ,

where (·, ·)H denotes the inner product in H, and furthermore the subdifferential ∂Hφ
also becomes a maximal monotone operator from H into itself. Hence we can define
the resolvent Jφ

λ and the Yosida approximation (∂Hφ)λ of ∂Hφ, which become Lipschitz
continuous in H with Lipschitz constants 1 and 2/λ, respectively. Moreover, the Moreau-
Yosida regularization φλ of φ is defined by

φλ(u) := inf
v∈H

{
1

2λ
|u − v|2H + φ(v)

}
∀u ∈ H,

and the following proposition holds true:

Proposition 2.1 Let φ ∈ Φ(H). Then φλ is a Fréchet differentiable convex function
from H into R. Moreover, it follows that

φλ(u) =
1

2λ
|u − Jφ

λ u|2H + φ(Jφ
λ u) =

λ

2
|(∂Hφ)λ(u)|2H + φ(Jφ

λ u).

Furthermore, the following (1)-(3) hold.

(1) ∂H(φλ) = (∂Hφ)λ, where ∂H(φλ) is the subdifferential (Fréchet derivative) of φλ.

(2) φ(Jφ
λ u) ≤ φλ(u) ≤ φ(u) for all u ∈ H and λ > 0.



(3) φλ(u) → φ(u) as λ → +0 for all u ∈ H.

As for evolution problems generated by subdifferential operators, we often use the
following chain rule for subdifferential operators.

Proposition 2.2 Let φ ∈ Φ(X) and let u ∈ W 1,p(0, T ; X) with p ∈ (1, +∞). Suppose
that there exists g ∈ Lp′(0, T ; X∗) such that g(t) ∈ ∂Xφ(u(t)) for a.e. t ∈ (0, T ). Then
the function t 7→ φ(u(t)) is differentiable for a.e. t ∈ (0, T ) and the following holds true.

d

dt
φ(u(t)) =

〈
h(t),

du

dt
(t)

〉

X

∀h(t) ∈ ∂Xφ(u(t)), for a.e. t ∈ (0, T ).

Furthermore, for all φ ∈ Φ(X), we can define the functional Ψ on X := Lp(0, T ; X)
with p ∈ (1, +∞):

Ψ(u) :=





∫ T

0
φ(u(t))dt if φ(u(·)) ∈ L1(0, T ),

+∞ otherwise.

Then we note that for all u ∈ X and f ∈ X ∗, it follows that f ∈ ∂XΨ(u) if and only if
f(x) ∈ ∂Xφ(u(x)) for a.e. x ∈ Ω.

Finally, we recall the closedness of graphs of maximal monotone operators. Through-
out this paper, we use the same letter A for the graph of A.

Proposition 2.3 Let A be a maximal monotone operator from X into X∗ and let [un, ξn] ∈
A. Moreover, suppose that

un → u weakly in X, ξn → ξ weakly in X∗, lim sup
n→+∞

〈ξn, un〉X ≤ 〈ξ, u〉X .

Then [u, ξ] ∈ A and 〈ξn, un〉X → 〈ξ, u〉X .

3 Reduction of (NHE) to an Evolution Equation

In order to employ nice properties of subdifferential operators described in the last section
and construct a solution of (NHE), we reduce (NHE) to an evolution equation governed
by the difference of two subdifferential operators in an appropriate reflexive Banach space.

Now suppose that 2N/(N + 2) ≤ p and q ≤ p∗. Then it is easily seen that W 1,p
0 (Ω) ⊂

L2(Ω) ⊂ W−1,p′(Ω), W 1,p
0 (Ω) ⊂ Lq(Ω) with continuous and densely defined canonical

injections.
Moreover, we define the functionals ϕp, ψq : W 1,p

0 (Ω) → [0, +∞) in the following:

ϕp(u) :=
1

p

∫

Ω
|∇u(x)|pdx, ψq(u) :=

1

q

∫

Ω
|u(x)|qdx ∀u ∈ W 1,p

0 (Ω).

Then ϕp and ψq belong to Φ(W 1,p
0 (Ω)), and furthermore ∂W 1,p

0
ϕp(u) and ∂W 1,p

0
ψq(u) coin-

cide with −∆pu equipped with homogeneous Dirichlet boundary condition u|∂Ω = 0 and
|u|q−2u, respectively, in the sense of distribution. Thus putting u(t) := u(·, t) ∈ W 1,p

0 (Ω),
we can reduce (NHE) to the following Cauchy problem:

(CP)p,q





du

dt
(t) + ∂W 1,p

0
ϕp(u(t)) − ∂W 1,p

0
ψq(u(t)) = f(t) in W−1,p′(Ω), 0 < t < T,

u(0) = u0.



4 Abstract Theory

In this section, we establish an abstract theory on evolution equations governed by the
difference of two subdifferential operators in reflexive Banach spaces to verify the existence
of solutions for (CP)p,q.

Let V and let V ∗ be a reflexive Banach space and its dual space, respectively, and
suppose that there exists a Hilbert space H whose dual space H∗ is identified with H
such that V ⊂ H ≡ H∗ ⊂ V ∗ with continuous and densely defined canonical injections.

Now we consider the following Cauchy problem:

(CP)





du

dt
(t) + ∂V ϕ1(u(t)) − ∂V ϕ2(u(t)) 3 f(t) in V ∗, 0 < t < T,

u(0) = u0,

where ∂V ϕi (i = 1, 2) denote the subdifferential operators of ϕi ∈ Φ(V ) and f : (0, T ) →
V ∗. Solutions of (CP) are defined in the following:

Definition 4.1 A function u ∈ C([0, S]; H) is said to be a strong solution of (CP) on
[0, S], if the following conditions are satisfied :

(i) u(t) is a V ∗-valued absolutely continuous function on [0, S].

(ii) u(t) → u0 strongly in H as t → +0.

(iii) u(t) ∈ D(∂V ϕ1) ∩ D(∂V ϕ2) for a.e. t ∈ (0, S)

and there exist sections gi(t) ∈ ∂V ϕi(u(t)) (i = 1, 2) such that

du

dt
(t) + g1(t) − g2(t) = f(t) in V ∗ for a.e. t ∈ (0, S).(4. 1)

Furthermore, a function u ∈ C([0, S); H) is said to be a strong solution of (CP) on [0, S),
if u is a strong solution of (CP) on [0, τ ] for any τ < S.

Throughout the present paper, we denote by C a non-negative constant, which may
vary from line to line, and L denotes the set of all non-decreasing functions from [0, +∞)
into itself.

First, we treat the case where u0 ∈ D(ϕ1). To state results on the existence of solutions
for (CP), we introduce the following assumptions: Let p ∈ (1, +∞) be fixed.

(A1) |u|pV − C1|u|2H − C2 ≤ C3ϕ
1(u) ∀u ∈ D(ϕ1) for some C1, C2, C3 ≥ 0.

(A2) D(ϕ1) ⊂ D(∂V ϕ2). Furthermore, if {un} is a sequence such that∫ T
0 |ϕ1(un(t))|dt + supt∈[0,T ] |un(t)|H +

∫ T
0 |dun(t)/dt|V ∗dt is bounded, then for

every gn(·) ∈ ∂V ϕ2(un(·)), {gn} becomes a precompact subset in Lp′(0, T ; V ∗).

(A3) There exists an extension ϕ̃2 ∈ Φ(H) of ϕ2, i.e., ϕ̃2(u) = ϕ2(u) ∀u ∈ V,
such that ϕ1 (Jλu) ≤ `1 (ϕ1(u) + `2(|u|H)) ∀λ ∈ (0, 1], ∀u ∈ D(ϕ1),
where `i ∈ L (i = 1, 2) and Jλ denotes the resolvent of ∂Hϕ̃2.

(A4) ϕ2(u) ≤ kϕ1(u) + C4|u|2H + C5 ∀u ∈ D(ϕ1) for some k ∈ [0, 1), C4, C5 ≥ 0.



Theorem 4.2 (Akagi-Ôtani [2]) Assume that (A1), (A2), (A3) and (A4) hold. Then
for all u0 ∈ D(ϕ1) and f ∈ W 1,p′(0, T ; V ∗), (CP) has a strong solution u on [0, T ] satis-
fying :





u ∈ Cw([0, T ]; V ) ∩ W 1,2(0, T ; H),

u(t) ∈ D(∂V ϕ1) ∩ D(∂V ϕ2) for a.e. t ∈ (0, T ),

g1 ∈ L2(0, T ; V ∗), g2 ∈ C([0, T ]; V ∗),
sup

t∈[0,T ]

ϕ1(u(t)) < +∞, ϕ2(u(·)) ∈ C([0, T ]),

(4. 2)

where gi (i = 1, 2) are the sections of ∂V ϕi(u(·)) satisfying (4. 1) and Cw([0, T ]; V ) denotes
the set of all V -valued weakly continuous functions on [0, T ].

In order to prove Theorem 4.2, we introduce the following approximate problems:

(CP)λ





duλ

dt
(t) + ∂Hϕ1

H(uλ(t)) − ∂Hϕ̃2
λ(uλ(t)) 3 fλ(t) in H, 0 < t < T,

uλ(0) = u0,

where ϕ1
H is the extension of ϕ1 given by

ϕ1(u) :=

{
ϕ1(u) if u ∈ V,
+∞ if u ∈ H \ V,

and ϕ̃2
λ denotes the Moreau-Yosida regularization of ϕ̃2, and fλ ∈ C1([0, T ]; H) satisfies

fλ → f strongly in W 1,p′(0, T ; V ∗). By Proposition 2.1, ∂Hϕ̃2
λ is Lipschitz continuous

in H, so (CP)λ admits a unique strong solution uλ on [0, T ]. Moreover, multiplying
(CP)λ by duλ(t)/dt and integrating this over (0, t), by virtue of Proposition 2.2, we can
deduce from (A4) that

∫ T
0 |duλ(t)/dt|2H dt + supt∈[0,T ] ϕ

1(uλ(t)) ≤ C, which together with
(A1) and (A3) implies that uλ and Jλuλ are bounded in L∞(0, T ; V ). Furthermore, we
can derive the convergence of uλ as λ → +0; moreover, Proposition 2.3 ensures that
the limit becomes a strong solution of (CP) on [0, T ], where we also used the fact that
∂Hϕ̃2

λ(uλ(t)) ∈ ∂Hϕ̃2(Jλuλ(t)) (see [2] for more details).
Moreover, we can verify the existence of local (in time) solutions of (CP) without

assuming (A4), which seems to be somewhat restrictive from the aspect of applications
to (NHE).

Theorem 4.3 (Akagi-Ôtani [2]) Assume that (A1), (A2) and (A3) hold. Then for all
u0 ∈ D(ϕ1) and f ∈ W 1,p′(0, T ; V ∗), there exists a number T0 ∈ (0, T ] such that (CP) has
a strong solution u on [0, T0] satisfying (4. 2) with T replaced by T0.

As for the global (in time) existence, we introduce the following.

(A5) αϕ1(u) ≤ 〈ξ − η, u〉 + `3(ϕ
2(u)) · ϕ1(u) ∀[u, ξ] ∈ ∂V ϕ1, ∀[u, η] ∈ ∂V ϕ2,

where α > 0 and `3 denotes a non-decreasing continuous function from [0, +∞) to R
satisfying `3(0) = 0. Then we have:



Theorem 4.4 (Akagi-Ôtani [2]) In addition to all the assumptions in Theorem 4.3,
assume that C1 = C2 = 0 in (A1), ϕ2 ≥ 0 and (A5) is satisfied. Let δ0 be a positive
number such that `3(δ0) < α. Then, for all R > 0, there exists a positive number δR such
that for all T > 0 and (u0, f) belonging to

XT
δR,R :=

{
(u0, f) ∈ D(ϕ1) × W 1,p′(0, T ; V ∗);

ϕ1(u0) +
∫ T

0
|f(τ)|p

′

V ∗dτ +
∫ T

0

∣∣∣∣∣
df

dτ
(τ)

∣∣∣∣∣

p′

V ∗
dτ ≤ R, ϕ2(u0) < δ0,

|u0|H +
{
max

(
1,

1

T

) ∥∥∥|f(·)|p
′

V ∗

∥∥∥
1,T

}1/p

< δR

}
,

where

∥∥∥|f(·)|p
′

V ∗

∥∥∥
1,T

:=





∫ T

0
|f(τ)|p

′

V ∗dτ if T < 1,

sup
t∈[1,T ]

∫ t

t−1
|f(τ)|p

′

V ∗dτ if T ≥ 1,

(CP) has a strong solution u on [0, T ] satisfying (4. 2).

Secondly, we also deal with the case where u0 ∈ D(ϕ1)
H

. To this end, let us introduce
the following.

(A6) There exists `4 ∈ L such that

|ξ|p
′

V ∗ ≤ `4(|u|H)
{
ϕ1(u) + 1

}
∀[u, η] ∈ ∂V ϕ1.

(A7) For all ε > 0, there exists a constant Cε ≥ 0 such that

|η|p
′

V ∗ ≤ εϕ1(u) + Cε`5(|u|H) ∀[u, η] ∈ ∂V ϕ2, where `5 ∈ L.

As for time-local existence, we have:

Theorem 4.5 Suppose that (A1), (A2), (A3), (A6) and (A7) are satisfied. Moreover,

assume that ∂Hϕ̃2(0) 3 0, where ϕ̃2 is given by (A3). Then for all u0 ∈ D(ϕ1)
H

and
f ∈ Lρ(0, T ; V ∗) with ρ > p′, there exists a number T0 = T0(|u0|H , ‖f‖Lρ(0,T ;V ∗)) ∈ (0, T ]
such that (CP) admits at least one strong solution u on [0, T0] satisfying

{
u ∈ Lp(0, T0; V ) ∩ C([0, T0]; H) ∩ W 1,p′(0, T0; V

∗),

g1, g2 ∈ Lp′(0, T0; V
∗), ϕ1(u(·)), ϕ2(u(·)) ∈ L1(0, T0),

(4. 3)

where gi (i = 1, 2) are the sections of ∂V ϕi(u(·)) satisfying (4. 1).

Proof of Theorem 4.5 Let us introduce the following Cauchy problems:

(CP)r,n





dun

dt
(t) + ∂V ϕ1

r(un(t)) − ∂V ϕ2(un(t)) 3 fn(t) in V ∗, 0 < t < T,

un(0) = u0,n,



where ϕ1
r : V → (−∞, +∞] is defined as follows

ϕ1
r(u) :=

{
ϕ1(u) if |u|H ≤ r,
+∞ otherwise

for an enough large number r ∈ R satisfying |u0|H < r and D(ϕ1
r) 6= ∅, and fn ∈

W 1,p′(0, T ; V ∗) and u0,n ∈ D(ϕ1) satisfy

fn → f strongly in Lp′(0, T ; V ∗) and weakly in Lρ(0, T ; V ∗),(4. 4)

u0,n → u0 strongly in H.(4. 5)

In the rest of this proof, we denote by Cr a constant depending on r but independent
of n, which may vary from line to line.

It is easily seen that (A1) and (A2) hold with ϕ1 replaced by ϕ1
r. Since ∂Hϕ̃2(0) 3 0, we

note that Jλ0 = 0, where Jλ denotes the resolvent of ∂Hϕ̃2 (see (A3)); hence it follows that
|Jλu|H ≤ |u|H for all u ∈ H. Therefore, by (A3), it follows that ϕ1

r(Jλu) = ϕ1(Jλu) ≤
`1 (ϕ1(u) + `2(|u|H)) = `1 (ϕ1

r(u) + `2(|u|H)) for all u ∈ D(ϕ1
r). Hence (A3) is satisfied

with ϕ1 replaced by ϕ1
r. Moreover, we can deduce from (A7) that

ϕ2(u) ≤ ϕ2(0) + 〈η, u〉 ≤ 1

2
ϕ1(u) + Cr =

1

2
ϕ1

r(u) + Cr ∀u ∈ D(ϕ1
r),

where η ∈ ∂V ϕ2(u). Thus Theorem 4.2 ensures the existence of strong solutions un for
(CP)r,n on [0, T ]. Since un(t) ∈ D(ϕ1

r) for all t ∈ [0, T ], it follows immediately that

sup
t∈[0,T ]

|un(t)|H ≤ r.(4. 6)

Now multiplying (CP)r,n by un(t)− v0 for some v0 ∈ D(ϕ1
r), we get by (A1) and (A7),

1

2

d

dt
|un(t) − v0|2H + ϕ1

r(un(t))

≤ ϕ1
r(v0) + |g2

n(t)|V ∗|un(t) − v0|V + |fn(t)|V ∗ |un(t) − v0|V

≤ ϕ1
r(v0) +

1

2
ϕ1(un(t)) + Cr + C

(
|fn(t)|p

′

V ∗ + |v0|pV
)
,

where g2
n(t) denotes the section of ∂V ϕ2(un(t)) as in (4. 1). Hence

1

2

d

dt
|un(t) − v0|2H +

1

2
ϕ1(un(t)) ≤ ϕ1

r(v0) + Cr + C
(
|fn(t)|p

′

V ∗ + |v0|pV
)

for a.e. t ∈ (0, T ). Moreover, integrating this over (0, t), we obtain

1

2
|un(t) − v0|2H +

1

2

∫ t

0
ϕ1(un(τ))dτ(4. 7)

≤ 1

2
|u0,n − v0|2H +

{
ϕ1

r(v0) + C|v0|pV + Cr

}
t + C

∫ t

0
|fn(τ)|p

′

V ∗dτ.

Since {u0,n} and {fn} are bounded in H and Lp′(0, T ; V ∗), respectively, by Proposition
2.1 of [3, Chap. II], we have

∫ T

0
|ϕ1(un(t))|dt ≤ Cr,(4. 8)



which together with (A1) yields

∫ T

0
|un(t)|pV dt ≤ Cr.(4. 9)

Moreover, by (A1), it follows from (4. 7) that

1

2
|un(t) − v0|2H +

1

2C3

∫ t

0
|un(τ)|2V dτ

≤ 1

2
|u0,n − v0|2H +

{
ϕ1

r(v0) + C|v0|pV +
C1

2C3

r2 +
C2

2C3

+ Cr

}
t

+C

(∫ T

0
|fn(τ)|ρV ∗dτ

)p′/ρ

t(ρ−p′)/ρ.

Now determine r such that

1

2
|u0 − v0|2H <

1

4
(r − |v0|H)2(4. 10)

and take a positive number T0 ∈ (0, T ] depending on r and ‖f‖Lρ(0,T ;V ∗) such that

{
ϕ1

r(v0) + C|v0|pV +
C1

2C3

r2 +
C2

2C3

+ Cr

}
T0

+C

(∫ T

0
|f(τ)|ρV ∗dτ + 1

)p′/ρ

T
(ρ−p′)/ρ
0 <

1

4
(r − |v0|H)2 .

Hence there exists N0 ∈ N such that supt∈[0,T0] |un(t)|H < r for all n ≥ N0.
Noting that u ∈ D(∂V ϕ1) and ∂V ϕ1

r(u) = ∂V ϕ1(u) if u ∈ D(∂V ϕ1
r) and |u|H < r

(see [5]), we deduce that ∂V ϕ1
r(un(t)) = ∂V ϕ1(un(t)) for all t ∈ [0, T0] and n ≥ N0.

Furthermore, by (A6), we have

∫ T0

0
|g1

n(t)|p
′

V ∗dt ≤ Cr,(4. 11)

where g1
n(t) := fn(t) − dun(t)/dt + g2

n(t). By (A7), it follows from (4. 6) and (4. 8) that

∫ T

0
|g2

n(t)|p
′

V ∗dt ≤ Cr.(4. 12)

From the fact that dun(t)/dt := fn(t) − g1
n(t) + g2

n(t), we also find that

∫ T0

0

∣∣∣∣∣
dun

dt
(t)

∣∣∣∣∣

p′

V ∗
dt ≤ Cr.(4. 13)

By grace of these a priori estimates, we can take a subsequence {n′} of {n} such that

un′ → u weakly in Lp(0, T0; V ) ∩ W 1,p′(0, T0; V
∗),(4. 14)

g1
n′ → g1 weakly in Lp′(0, T0; V

∗),(4. 15)

g2
n′ → g2 weakly in Lp′(0, T0; V

∗).(4. 16)



Hence u ∈ C([0, T0]; H). Moreover, we claim that

un′(t) → u(t) weakly in V ∗ for all t ∈ [0, T0].(4. 17)

Indeed, for any q ∈ (1, +∞), we can take a subsequence {n′
q} of {n′} such that un′

q
→ u

weakly in Lq(0, t; V ∗) for all t ∈ [0, T0]; therefore we see

‖u − u0‖Lq(0,t;V ∗) ≤ lim inf
n′

q→+∞
‖un′

q
− u0,n′

q
‖Lq(0,t;V ∗)

= lim inf
n′

q→+∞

{∫ t

0

∣∣∣∣∣

∫ τ

0

dun′
q

ds
(s)ds

∣∣∣∣∣

q

V ∗
dτ

}1/q

≤ C1/p′

r

(
p

p + q

)1/q

t1/p+1/q.

Thus letting q → +∞, we obtain supτ∈[0,t] |u(τ) − u0|V ∗ ≤ C1/p′
r t1/p, which implies that

u(t) → u0 strongly in V ∗ as t → +0. Moreover, we find that

〈un′(t) − u(t), φ〉 =
∫ t

0

〈
dun′

dτ
(τ) − du

dτ
(τ), φ

〉
dτ + 〈u0,n′ − u0, φ〉

→ 0 as n′ → +∞ for all φ ∈ V,

which implies (4. 17). Furthermore, by (4. 6), for every t ∈ [0, T0], we can extract a
subsequence {n′

t} of {n′} such that

un′
t
(t) → u(t) weakly in H.(4. 18)

Now, by (A2), it follows that

g2
n′ → g2 strongly in Lp′(0, T0; V

∗).(4. 19)

Therefore, by Proposition 2.3, it follows from (4. 14) and (4. 19) that g2(t) ∈ ∂V ϕ2(u(t))
for a.e. t ∈ (0, T0).

We next claim that g1(t) ∈ ∂V ϕ1(u(t)) for a.e. t ∈ (0, T0). Indeed, calculating

∫ T0

0
〈g1

n′(t), un′(t)〉dt

=
∫ T0

0
〈fn′(t), un′(t)〉dt −

∫ T0

0

〈
dun′

dt
(t), un′(t)

〉
dt +

∫ T0

0
〈g2

n′(t), un′(t)〉dt

=
∫ T0

0
〈fn′(t), un′(t)〉dt − 1

2
|un′(T0)|2H +

1

2
|u0,n′|2H +

∫ T0

0
〈g2

n′(t), un′(t)〉dt,

we infer

lim sup
n′→+∞

∫ T0

0
〈g1

n′(t), un′(t)〉dt

≤
∫ T0

0
〈f(t), u(t)〉dt − 1

2
|u(T0)|2H +

1

2
|u0|2H +

∫ T0

0
〈g2(t), u(t)〉dt

=
∫ T0

0

〈
f(t) − du

dt
(t) + g2(t), u(t)

〉
dt.



Hence, by Proposition 2.3, it follows from (4. 14) and (4. 15) that

g1(t) = f(t) − du

dt
(t) + g2(t) ∈ ∂V ϕ1(u(t)) for a.e. t ∈ (0, T0).

Finally, we prove that the limit u satisfies the initial condition, i.e., u(t) → u0 strongly
in H as t → +0. To this end, we employ the following auxiliary problem:

(CP)0

dv

dt
(t) + ∂V ϕ1(v(t)) 3 f(t) in V ∗, 0 < t < T, v(0) = u0.

By (A1) and (A6), the existence of a unique strong solution v is ensured by Theorem 3.2
of [1]; moreover, v belongs to v ∈ Lp(0, T ; V ) ∩ C([0, T ]; H) ∩ W 1,p′(0, T ; V ∗).

Now multiplying (CP)r,n−(CP)0 by wn(t) := un(t)−v(t) and noting that ∂V ϕ1
r(un(t)) =

∂V ϕ1(un(t)) for all t ∈ [0, T0] and n ≥ N0, we find that

1

2

d

dt
|wn(t)|2H ≤ |g2

n(t)|V ∗|wn(t)|V + |fn(t) − f(t)|V ∗ |wn(t)|V

for a.e. t ∈ (0, T0). Therefore, by (A1) and (A7), for any ε > 0, there exists a constant
Cε depending on ε such that

1

2

d

dt
|wn(t)|2H ≤ ε

{
ϕ1(un(t)) + |un(t)|pV + |v(t)|pV

}
+ Cε

{
|fn(t) − f(t)|p

′

V ∗ + 1
}

.

Hence integrating this over (0, t), we get

1

2
|wn(t)|2H ≤ 1

2
|u0,n − u0|2H + ε

{∫ T

0
|ϕ1(un(τ))|dτ +

∫ T

0
|un(τ)|pV dτ +

∫ T

0
|v(τ)|pV dτ

}

+Cε

{∫ T

0
|fn(τ) − f(τ)|p

′

V ∗dτ + t

}
.

Thus (4. 8) and (4. 9) yield

|wn(t)|2H ≤ |u0,n − u0|2H + εC + 2Cε

{∫ T

0
|fn(t) − f(t)|p

′

V ∗dt + t

}
.

Since wn′
t
(t) → u(t) − v(t) weakly in H, it follows from (4. 4) and (4. 5) that

|u(t) − v(t)|2H ≤ lim inf
n′

t→+∞
|wn′

t
(t)|2H ≤ εC + 2Cεt.

Hence u(t) → u0 strongly in H as t → +0. Consequently, u becomes a strong solution of
(CP) on [0, T0].

Before describing the results on the global (in time) existence, we prepare the following
lemma concerned with the maximal existence time of solutions for (CP) defined by

Tmax := sup {T0 ∈ (0, T ]; (CP) has a strong solution on [0, T0]} .

By virtue of Theorem 4.5, we can verify the following lemma.



Lemma 4.6 Let Tmax be the maximal existence time of solutions for (CP) and suppose
that Tmax < T . Then it follows that limt→Tmax−0 |u(t)|H = +∞.

As for the global existence, our result is stated as follows.

Theorem 4.7 In addition to the same assumptions as in Theorem 4.5, suppose that

(A8) There exist constants α > 0 and C6 ≥ 0 such that

αϕ1(u) ≤ 〈ξ − η, u〉 + C6

(
|u|2H + 1

)
∀[u, ξ] ∈ ∂V ϕ1, ∀η ∈ ∂V ϕ2(u).

Then (CP) has a strong solution u on [0, T ] satisfying (4. 3) with T0 = T .

Proof of Theorem 4.7 Let Tmax be the maximal existence time of solutions for (CP)
and suppose that Tmax < T . Moreover, let u be a strong solution of (CP) on [0, Tmax).
Then multiplying (CP) by u(t), we get by (A8),

1

2

d

dt
|u(t)|2H + αϕ1(u(t)) ≤ |f(t)|V ∗|u(t)|V + C6

(
|u(t)|2H + 1

)

for a.e. t ∈ (0, Tmax). Moreover, (A1) implies

1

2

d

dt
|u(t)|2H +

α

2
ϕ1(u(t)) ≤ C

(
|f(t)|p

′

V ∗ + |u(t)|2H + 1
)
.

Hence integrating this over (0, t), by Proposition 2.1 of [3, Chap. II] and Gronwall’s
inequality, we have supt∈[0,Tmax) |u(t)|H ≤ C, which contradicts Lemma 4.6; therefore,
(CP) admits a strong solution on [0, T ].

Furthermore, we can also derive the global existence by assuming an additional growth
condition on ∂V ϕ2 and the smallness of u0 and f in an appropriate sense.

Theorem 4.8 In addition to the same assumptions as in Theorem 4.5, suppose that
ϕ1(0) = 0, `5(x) = o(xp) as x → 0 in (A7), and C1 = C2 = 0 in (A1). Then there exists

a constant δ > 0 independent of T such that for any f ∈ Lp′(0, T ; V ∗) and u0 ∈ D(ϕ1)
H

satisfying |u0|H + ‖|f(·)|p
′

V ∗‖1/p
1,T < δ, where ‖|f(·)|p

′

V ∗‖1,T is given in Theorem 4.4, (CP)
admits a strong solution u on [0, T ] satisfying (4. 3) with T0 = T .

Proof of Theorem 4.8 Let Tmax be the maximal existence time of solutions for (CP)
and let u be a strong solution of (CP) on [0, Tmax). Now suppose that Tmax < T . By
Lemma 4.6, it then follows that |u(t)|H → +∞ as t → Tmax − 0.

Multiply (CP) by u(t). By (A1) with C1 = C2 = 0 and (A6), we have

1

2

d

dt
|u(t)|2H + ϕ1(u(t)) ≤ ϕ1(0) + |f(t)|V ∗ |u(t)|V + |g2(t)|V ∗|u(t)|V

≤ 1

2
ϕ1(u(t)) + C

{
|f(t)|p

′

V ∗ + `5(|u(t)|H)
}

.

Since V is continuously embedded in H, by (A1) with C1 = C2 = 0, it follows that

1

2

d

dt
|u(t)|2H + γ|u(t)|pH ≤ C

{
|f(t)|p

′

V ∗ + `5(|u(t)|H)
}

(4. 20)



for some positive constant γ independent of T .
From the fact that `5(x) = o(xp) as x → 0, there exists a constant δ0 > 0 such that

`5(x) ≤ γ

2C
xp ∀x ∈ [0, δ0].(4. 21)

Now, if |u0|H < δ0/2, then there exists T∗ ∈ (0, Tmax) such that |u(t)|H < δ0 for all
t ∈ [0, T∗) and |u(T∗)|H = δ0. Hence combining (4. 20) and (4. 21), we obtain

1

2

d

dt
|u(t)|2H +

γ

2
|u(t)|pH ≤ C|f(t)|p

′

V ∗

for a.e. t ∈ (0, T∗), where γ and C are independent of T∗. Hence, by Lemma 4.4 of [1],
there exists a positive constant δ < δ0/2 independent of T∗ such that if

|u0|H +
∥∥∥|f(·)|p

′

V ∗

∥∥∥
1/p

1,T
≤ δ,

then supt∈[0,T∗) |u(t)|H ≤ 3δ0/4, which contradicts the definition of T∗. Thus Tmax = T .

5 Applications to (NHE)

Now we apply the preceding abstract theory to (NHE) and derive sufficient conditions for
the existence of local or global (in time) solutions of (NHE).

5.1 The Case: u0 ∈ W 1,p
0 (Ω)

By grace of Theorems 4.2-4.4, we obtain the followings (see [2] for their proofs).

Theorem 5.1 (Akagi-Ôtani [2]) Assume that p ≤ q and

2N/(N + 2) ≤ p, q < p∗.(5. 1)

Then, for all u0 ∈ W 1,p
0 (Ω) and f ∈ W 1,p′(0, T ; W−1,p′(Ω)), there exists a number T0 ∈

(0, T ] such that (NHE) has a weak solution u on [0, T0] satisfying :

u ∈ Cw([0, T0]; W
1,p
0 (Ω)) ∩ C([0, T0]; L

q(Ω)) ∩ W 1,2(0, T0; L
2(Ω)).(5. 2)

Theorem 5.2 (Akagi-Ôtani [2]) Assume (5. 1) holds and p < q. Let R be an arbitrary
positive number, and let δ be a positive number such that δ < C(p, q)−p/(q−p), where C(p, q)
denotes the best possible constant for the Sobolev-Poincaré-type inequality : |u|Lq(Ω) ≤
C(p, q)|u|V . Then there exists a positive number δR independent of T such that if u0 and
f satisfy

1

p
|u0|pV +

∫ T

0
|f(τ)|p

′

V ∗dτ +
∫ T

0

∣∣∣∣∣
df

dτ
(τ)

∣∣∣∣∣

p′

V ∗
dτ ≤ R,

|u0|Lq(Ω) < δ, |u0|L2(Ω) +
{
max

(
1,

1

T

) ∥∥∥|f(·)|p
′

V ∗

∥∥∥
1,T

}1/p

< δR,

then (NHE) has a weak solution u on [0, T ] satisfying (5. 2) with T0 replaced by T .

Theorem 5.3 (Akagi-Ôtani [2]) Assume (5. 1) holds and p > q. Then, for all u0 ∈
W 1,p

0 (Ω) and f ∈ W 1,p′(0, T ; W−1,p′(Ω)), (NHE) has a weak solution u on [0, T ] satisfying
(5. 2) with T0 replaced by T .



5.2 The Case: u0 ∈ L2(Ω)

As for the case where u0 ∈ L2(Ω), we employ Theorems 4.5, 4.7 and 4.8.

Lemma 5.4 Assume that

2N/(N + 2) ≤ p < N, q < (N + 2)p/N.(5. 3)

Then (A1), (A2), (A3), (A6) and (A7) hold true with ϕ1 = ϕp, ϕ2 = ψq and C1 = C2 = 0.

Proof of Lemma 5.4. Since ϕp(u) = |u|pV /p, (A1) with C1 = C2 = 0 and C3 = p
follows at once. Moreover, just as in [2], we can also verify (A3) with ϕ1 and ϕ2 replaced
by ϕp and ψq, respectively.

Let [u, η] ∈ ∂V ψq be fixed. Then since r(q − 1) < r(p∗ − 1) = p∗, where r denotes the
Hölder conjugate of the Sobolev critical exponent p∗, i.e., r := (p∗)′, we find that

〈η, φ〉 =
∫

Ω
|u|q−2u(x)φ(x)dx ≤ |u|q−1

Lr(q−1) |φ|Lp∗ ∀φ ∈ V.

Now, if r(q − 1) > 2, then

|u|Lr(q−1) ≤ C|u|θH |u|
(1−θ)
V , θ :=

(
1

r(q − 1)
− 1

p∗

)
/

(
1

2
− 1

p∗

)
,(5. 4)

which implies |η|p
′

V ∗ ≤ C|u|θ(q−1)p′

H ϕp(u)(1−θ)(q−1)p′/p. Since q < (N + 2)p/N , it is easily
seen that

(1 − θ)(q − 1) < p − 1 = p/p′.(5. 5)

Hence, for any ε > 0, there exists a constant Cε such that |η|p
′

V ∗ ≤ εϕp(u) + Cε`6(|u|H),
where `6(·) is given by

`6(x) = xσθ(q−1)p′ , 1/σ + (1 − θ)(q − 1)p′/p = 1.(5. 6)

Hence (A7) is satisfied with `5, ϕ1 and ϕ2 replaced by `6, ϕp and ψq, respectively. On the

other hand, if r(q − 1) ≤ 2, then |η|p
′

V ∗ ≤ C|u|p
′(q−1)

H .
Let µ ∈ R and let un be such that

∫ T

0
ϕp(un(t))dt + sup

t∈[0,T ]
|un(t)|H +

∫ T

0

∣∣∣∣∣
dun

dt
(t)

∣∣∣∣∣
V ∗

dt ≤ µ.

Then since V is compactly embedded in Lq(Ω), Theorem 5 of [11] ensures that {un}
becomes precompact in Lp(0, T ; Lq(Ω)).

For the case where q > 2, note that
∣∣∣|s|q−2s − |s′|q−2s′

∣∣∣ ≤ (q − 1)
(
|s|q−2 + |s′|q−2

)
|s − s′|

for all s, s′ ∈ R. Hence, if r(q − 1) > 2, then recalling (5. 4), we obtain
∥∥∥|un|q−2un − |u|q−2u

∥∥∥
Lp′ (0,T ;V ∗)

≤ Cµ,α

(
‖un‖(1−θ)(q−2)

Lp(0,T ;V ) + ‖u‖(1−θ)(q−2)
Lp(0,T ;V )

)
‖un − u‖α

Lp(0,T ;H)‖un − u‖(1−θ)
Lp(0,T ;V ),



where Cµ,α denotes a constant depending on µ, q, θ, α and supt∈[0,T ] |u(t)|H but not on n
and t, and α ∈ (0, θ] is given by α + (1 − θ)(q − 2) + (1 − θ) ≤ p/p′. On the other hand,
if r(q − 1) ≤ 2, then we have

∥∥∥|un|q−2un − |u|q−2u
∥∥∥

Lp′ (0,T ;V ∗)

≤ C
(
‖un‖q−2

L∞(0,T ;H) + ‖u‖q−2
L∞(0,T ;H)

)
‖un − u‖1/p

L∞(0,T ;H)‖un − u‖1/p′

L1(0,T ;H).

Now since q > 2 and {un} is precompact in Lp(0, T ; H); therefore we can verify that
{|un|q−2un} becomes precompact in Lp′(0, T ; V ∗).

For the case where q ≤ 2, we note that un belongs to C([0, T ]; Lq(Ω)); hence we can
easily derive the precompactness of {|un|q−2un} in Lp′(0, T ; V ∗). Consequently, (A2) is
satisfied with ϕ1 and ϕ2 replaced by ϕp and ψq, respectively.

Moreover, it is easily seen that (A6) is satisfied with ϕ1 replaced by ϕp.

Theorem 5.5 Suppose that (5. 3) is satisfied. Then for all u0 ∈ L2(Ω) and f ∈
Lρ(0, T ; W−1,p′(Ω)) with ρ > p′, there exists a number T0 = T0(|u0|L2 , ‖f‖Lρ(0,T ;W−1,p′ )) ∈
(0, T ] such that (NHE) has a weak solution u on [0, T0] satisfying :

u ∈ Lp(0, T0; W
1,p
0 (Ω)) ∩ C([0, T0]; L

2(Ω)) ∩ W 1,p′(0, T0; W
−1,p′(Ω)).(5. 7)

Proof of Theorem 5.5 Lemma 5.4 and Theorem 4.5 ensure the existence of weak
solutions for (NHE) on [0, T0] for some T0 > 0.

Theorem 5.6 Suppose that (5. 3) is satisfied and p < q. Then there exists a positive
number δ independent of T such that if u0 ∈ L2(Ω) and f ∈ Lρ(0, T ; W−1,p′(Ω)) satisfy

|u0|L2(Ω) +
∥∥∥|f(·)|p

′

V ∗

∥∥∥
1/p

1,T
< δ,(5. 8)

then (NHE) has a weak solution u on [0, T ] satisfying (5. 7) with T0 replaced by T .

Proof of Theorem 5.6 We claim that (5. 6) implies `6(x) = o(xp) as x → 0; indeed,
since p < q, it follows that σθ(q − 1)p′ > p, where θ is given in (5. 4). Moreover, we also
note that p′(q − 1) > σp′θ(q − 1). Furthermore, it is obvious that ϕp(0) = 0. Hence, by
Theorem 4.8, (NHE) admits a weak solution on [0, T ] for u0 and f satisfying (5. 8).

Theorem 5.7 Assume (5. 1) and q < p. Then for all u0 ∈ L2(Ω) and f ∈ Lρ(0, T ; W−1,p′(Ω))
with ρ > p′, (NHE) has a weak solution u on [0, T ] satisfying (5. 7) with T0 replaced by
T .

Proof of Theorem 5.7 We here employ Theorem 4.7 to derive the global existence of
weak solutions on [0, T ] for (NHE). To this end, it suffices to show that (A8) holds with
ϕ1 and ϕ2 replaced by ϕp and ψq, respectively. Let [u, ξ] ∈ ∂V ϕp and η = ∂V ψq(u) be
fixed. Since q < p, it then follows that

〈ξ − η, u〉 =
∫

Ω
|∇u(x)|pdx −

∫

Ω
|u(x)|qdx ≥ 1

2

∫

Ω
|∇u(x)|pdx − C,

which implies the desired conclusion.

Remark 5.8 We can also discuss the case where p ≥ N by establishing further a priori
estimates for t(dun/dt) and tϕ1(un(t)) and using Gagliardo-Nirenberg’s inequality in the
proof of Theorem 4.5.
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