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Abstract. In this paper, the asymptotic behavior of solutions for some quasilinear
parabolic equation associated with p-Laplacian as p — +oo will be discussed by in-
vestigating the convergence of the functional corresponding to p-Laplacian. Moreover
some abstract theory of Mosco convergence of functionals as well as evolution equations
governed by subdifferentials is also employed.
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1 Introduction

Several authors have already studied the convergence of the solutions for the following
initial-boundary value problem as well as generalized ones as p — 4oc.

gj(gj,t) ~ Ajula,t) = f(z,t),  (n.0) € Qx (0,T),
®), 9§ w(z,t) =0, (z,t) € 8 x (0,T),
u(z,0) = up(x), x € €,

where A, denotes the so-called p-Laplacian given by A,u := V - (|[Vu[P~2Vu) and Q
denotes a domain in RY with smooth boundary 9. Their works were motivated by
a couple of physical topics, e.g., sandpile growth [3, 11|, Bean’s critical-state model for
type-11 superconductivity [6, 12, 13], river networks [11] and so on.

In order to investigate the asymptotic behavior of the solutions for (P)p as p — 400,
we point out the variational structure of p-Laplacian in L*(Q), i.e. define ¢, : L*(Q) —
[0, +00] as follows:

1/ _ 1
— | |Vu(x)Pdx if ueW,?(Q),
P Y A (@)
400 otherwise;

then the subdifferential J72(q)pp(u) of ¢, at u in L?*(Q) coincides with —A,u equipped
with the homogeneous Dirichlet boundary condition u|gsg = 0 in the sense of distribution
(the definition of subdifferentials will be given in Section 3).

Moreover it is well known that (P), is reduced to the following Cauchy problem.

N W 0) + Opzpplut) = £(1) i Q) 0<t<T,
u(0) = up.

According to [3] and [6], the strong solutions u, of (1) converge to us as p — +oo and
the limit u., becomes the unique strong solution of the following Cauchy problem.

Y1)+ Opsenpnlu) 2 1) i LA, 0<t<T,
u(0) = o,

where ¢, : L*(€2) — [0, +00] is given by

Poo(u) = .
+00 otherwise

{O if uekK,

with

K = {u € Hy(Q);|Vu(x)| <1 forae z€ Q} :



Then one may conjecture that ¢, converges to ¢, in a sense as p — +00; however rigorous
proof of this conjecture has not been provided yet.

In this paper, we prove that ¢, converges to ¢ in the sense of Mosco as p — +00.
Moreover by employing the abstract theory of Mosco convergence of functionals as well
as evolution equations governed by subdifferentials developed by Attouch (see e.g. [5]),
we also discuss the convergence of the solutions for (1) as p — +o00. Furthermore we deal
with a couple of other types of quasilinear parabolic equations as well.

2 Mosco Convergence of ¢, as p — +00

From now on, we denote by W(X) the set of all proper lower semi-continuous convex
functionals ¢ from a Hilbert space X into (—oo,4o00], where “proper” means that ¢ #
+00. Now Mosco convergence is defined in the following

Definition 2.1. Let (p,) be a sequence in V(X)) and let ¢ € V(X). Then ¢, — ¢ on X
in the sense of Mosco as n — 400 if the following (i) and (ii) are all satisfied:

(i) For allu € D(p), there ezists a sequence (uy,) in X such that u, — u
strongly in X and o, (u,) — o(u).
(ii) Let (ux) be a sequence in X such that up — u weakly in X as k — +o0o0 and

let (ng) be a subsequence of (n). Then llimjnf On, (ug) > p(u).

Our main result is then stated as follows.

Theorem 2.2. Suppose that §) is bounded and let (p,) be a sequence in (1,+00) such
that p, — +00 as n — +oo. Then it follows that

Do — Poo on L*(Q) in the sense of Mosco as p, — +0oo.

Proof We first prove that

(2) { Yu € D(ps), I(un) C LA(Q);

u, — u strongly in L*(Q) and ¢, (u,) — @oo(u) as n — +o0.

Let u € D(ps) = K and set u, := u for all n € N. Then since K C Wy (Q) for all
n € N, it follows immediately that

1
0< o) = - [ [Vulx)prdr

IN

1
—|Q] = 0= p(u) asp, — +oo.
Pn

Hence (2) holds.



We next show that
V(uy) C L*(Q) satisfying uy — u weakly in L?(Q) as k — +o0,
() V(i) © (n), Tminf oy, () = poc(u).
For the case where u € D(¢) = K, it is easily seen that

liminf g, (ux) > 0= po(u).

k—+o00
For the case where u ¢ K, we give a proof by contradiction. To do this, suppose that

(ug) C L*(Q), 3(ng) C (n); up, — u weakly in L*(Q2) as k — +o0,
lliminf Ppn,, (Ur) < Poo(u) = Fo00.

Then by taking a subsequence (k') of (k), we can deduce
Ppn, (up) < C VE' € N,

which implies

1/p’nk/ l/p" ,
<K) |Vuk/(x)|pnk/dx> < {pnk,(ppnk/ (uk,)} k

< (pnklc)l/pnk/ — 1 as k' — +o0.

For simplicity of notation, we write p and u, for p, , and uy respectively. Moreover it
follows that

1/q 1/p
q P (p—a)/(pq)
(/Q|Vup(x)| dq:) < (/Q|Vup(:l:)| d:c) Q|

— Q7 as p— +oo,

which implies that (Vu,) is bounded in (L4(2))". Thus for each ¢ € (1,+00), we can
take a subsequence (p,) of (p) such that

Vu,, — Vu  weakly in (LI(Q))".

Moreover we can derive u € H}(Q) from the case where ¢ = 2. In the rest of this proof,
we drop ¢ in p,. Furthermore it follows that

1/q o 1/q
([ Ivu@raz) " < min ([ [Tu(0)de )
1/p
< liminf (/ |vup(x)|z>dx> |Q|(p—q)/(pq)
Q

p—Foo

< (pC) 7|0~/ (Pa) — |1/,

lim
p—Foo
Hence letting ¢ — 400, we conclude that

[Vu(z)] < 1 forae z€Q,



which contradicts the fact that u ¢ K; therefore (3) holds true. [Q.E.D.]

Remark 2.3. Theorem 2.2 is still valid if ¢, and ¢ are replaced by the following 1,
and 1), respectively:

Up(u) = { 219/Q|Vu(m)|pd:p+/mj(u(m))dr if we WW(Q), jlu() € LY(oQ),
+00

otherwise

and

400 otherwise,

boo(u) = { AQj(U(x))dF if ue K, ju() e LY(o9),

where j € U(R) and K is given by

K = {u € L*(Q);|Vu(r)| <1 forae x€ Q}

We here note that ¢, and ¢ belong to W(L*(Q2)) and Or2(q)¥,(u) coincides with —A,u
equipped with the following boundary condition:

ou

_ p—2-7
(4) [Vulp 2>

(x) € Orj(u(zx)), x€ 0N

in the distribution sense.

3 Asymptotic Behavior of Solutions as p — +o0

In order to investigate the convergence of the solutions for (P), as p — +o0, we first deal
with the following abstract Cauchy problem denoted by CPy(¢p, f,ug) in a Hilbert space
H.

W) L Oeu(®) 5 F(t) in H, 0<t<T
— u in
CPH(SOa f7 UO) dt " 7 ’
u(0) = wo,

where g denotes the subdifferential of ¢ € W(H), f € L'(0,T; H) and ug € H.
We here review the definition of subdifferentials. Let X be a Hilbert space and let
¢ € U(X). The subdifferential Ox@(u) of ¢ at u in X is then defined as follows:

Ox¢(u) = {£€ X;0(v) —od(u) = (§,v—u)x Vve D(@)},

where (-, ) x denotes the inner product of X and D(¢) is the effective domain of ¢ given
by

D(¢) = {ue€ X;¢p(u) < +oo}.



Moreover the domain D(0x¢) of Ox¢ is defined by
D(0x¢) = {u€ D();0xo(u) # 0}.
Now solutions of CPg (¢, f,uo) are defined as follows.

Definition 3.1. A functionu € C([0,T); H) is said to be a strong solution of CP g (g, f,uo),
if the following (1)-(iii) are all satisfied:

(i) w is an H-valued absolutely continuous function on [0, T).
(i1) u(t) € D(Ouyp) for a.e. t € (0,T)
and there exists a section g(t) € Ogp(u(t)) such that
du

E(t) +g(t)=f(t)in H forae te(0,T).

(i) w(0) = uo.

Moreover a function u € C([0,T]; H) is said to be a weak solution of CPy(p, f,ug) if
there exist sequences (f,) C L'(0,T; H), (upn) C H and (u,) C C([0,T); H) such that
uy, 18 the strong solution of CPy (@, fu,uon), fn — f strongly in L'(0,T; H) and u, — u
strongly in C([0,T]; H).

It is well known that CPy(¢p, f,uo) has a unique strong (resp. unique weak) solution

if ug € D(p) and f € L*(0,T;H) (resp. uy € (cp)H and f € LY(0,T;H)) (see e.g.
Brézis [7], [8], Kenmochi [10]).

We next discuss the convergence of the solutions u,, for CPy (¢, fn, to,) when ¢, — ¢
on H in the sense of Mosco, f,, — f strongly in L*(0,T; H) and ug, — ug strongly in H
as n — 4o00. To this end, we employ the following theorem, whose proof can be found
in [4] and [5].

Theorem 3.2. Let ¢,,p € Y(H) be such that

©n — @ on H in the sense of Mosco as n — +oc.

Moreover let f,, f € L*(0,T; H) be such that

fo—f strongly in L*(0,T; H)

and let ug,, € D((pn)H and uy € (cp)H be such that

Ugn — Ug strongly in H.

Then the weak solutions u, of CP g (¢n, fn, ton) converge to u asn — 400 in the following
sense:

Up — U strongly in C([0,T]; H),

du,, d :
Y i strongly in L*(0,T; H).

t— —
Vi dt dt



Moreover the limit u is the unique weak solution of CPy(p, f,uo).
In particular, if o,(up,) — @(ug) < +00 as n — +oo, then the limit u becomes the
strong solution of CPy (e, f,ug) and
du,, du

_n - ; 2 .
el strongly in L=(0,T; H).

We are now concerned with solutions of (P), defined as follows.

Definition 3.3. A function u € C([0,T]; L*(Q)) is said to be a strong solution of (P)
if the following (1)-(iil) are all satisfied:

p7

(i) wis an L*(Q)-valued absolutely continuous function on [0,T).
(i) w(t) € WyP(Q) for a.e. t € (0,T) and the following equality holds:
ou

A E(m,t)v(x)dx + /Q |VulP2Vu(z,t) - Vo(r)dr = /Qf(x,t)v(m)dm

for allv e C(Q) and a.e. t € (0,T).
(iii) w(0) = wuo.

Moreover a function u € C([0,T]; L*(Q)) is said to be a weak solution of (P), if there
exist sequences (f,) C L*(0,T; L*(Q)), (uon) C L*(Q) and (u,) € C([0,T); L*()) such
that u,, is the strong solution of (P)p with uy and f replaced by uo, and f, respectively,
fn — [ strongly in L*(0,T; L*(Q)) and u,, — u strongly in C([0,T]; L*(2)).

Then (P)p is reduced to CPp2(q)(¢p, f,u0). Hence we deal with CP 2 (vp, f, uo)
instead of (P), in the rest of this section. We now discuss the convergence of the solutions

uy, for CP 120y (¢p, fps top) when f, — f strongly in L*(0, T'; L*(Q2)) and ug, — ug strongly
in L?(Q) as p — +o0o. On account of Theorems 2.2 and 3.2, we have the following

Theorem 3.4. Suppose that Q is bounded and let (p,) be a sequence in [2,400) such
that p, — 400 as n — ~+oo. Moreover let f,, f € L*(0,T; L*(Q)), up, € L*(Q) and
ug € K be such that

fo— f strongly in L*(0,T; L*(Q)),
Up,n — U strongly in LQ(Q).

Then the weak solutions u, of CPr2q)(@p,, fns o) converge to u as n — 400 in the
following sense:

Up — U strongly in C([0,T]; L*()),
duy, d .
Vil strongly in L*(0,T; L*(12)).
dt dt
Moreover the limit u is the unique weak solution of CP r2q)(¢s, f, uo).

In particular, if (1/pn) Jo |Vugn(z)|Prde — 0 as n — 400, then the limit u becomes
the strong solution of CPr2q) (¢, f,u0) and

dun du . 2 .72
- — 7 strongly in L=(0,T; L*(2)).



Proof By Theorem 2.2, we have already known that ¢,, — @o on L?(2) in the sense
of Mosco as p, — +00. Hence Theorem 3.2 completes the proof. [Q.E.D.]

Remark 3.5. (1) In [6], they prove the strong convergence of strong solutions u, for
CPr2(0)(¢p, f,u0) in C([0,T); L*(Q)) when f € L*(0,T; L*(2)) and uo € K. On the other
hand, noting that

1

1
/ |Vug(z)Pde < = —0 asp— +oo,
pJa p

we find that ¢,(uy) — poo(up) as p — +00; hence we can derive the strong convergence
of u, in WH2(0,T; L*(2)) from Theorem 2.2. From this observation, our approach would
have the advantage over previous studies.

(2) On account of Remark 2.3, the same conclusion as in Theorem 3.4 can be drawn
for (P), with the boundary condition (4), which is transcribed as CPrz(q) (¢, f, uo). For
this case, CPr2(q)(¥s0, f, o) corresponds to the limiting problem of CP p2(q)(vp, f,uo) as
p — +00.

4 Applications to Other Equations
Our argument in the proofs of Theorems 2.2 and 3.4 is also valid for other types of

quasilinear parabolic equations; in this section, we give a couple of examples. First we
deal with the following parabolic system.

éz)ltl(x,t) + V x {|V x ulP 2V x u(x,t)} = f(z,1), (x,t) € Q2 x (0,7T),

®), V- u(z,t) =0, (xz,t) € Q2 x (0,7),
u(x,t) =0, (x,t) € 02 x (0,7,
11(13,0) = u0<l’), T € ),

where u : 2 x (0,7) — R3? and Q denotes a simply connected bounded domain in R?
with smooth boundary 9€2. In [13], H-M. Yin et al have already studied the asymptotic
behavior of solutions for (P)p with another type of boundary condition as p — +oc.
Their work is motivated by Bean’s critical-state model for type-II superconductivity and
its approximation.
To reformulate (P),,, we introduce
3 2 Ao o (@)
LP(Q) = (L7(Q)°, 1<p<+oo, Ly(Q):=Cg,(Q) ",
H'(Q) = (H'(Q), H,(Q):=Cr@" 7,

where C32,(Q) := {u € (C5°(©))% V - u = 0}, with norms

1/p
- (/Q|u(x)|pdx) C Julee ) = lulia,



8uj
8@

9 1/2
L2(0)> ’

where u := (uy, us, uz). Solutions of (P)p are defined in the following

|u|H(1)’U(Q) = |ulm) = <|u|i2(n)+ >
ij=1.2.3

Definition 4.1. A function u € C([0,T];L2(Q)) is said to be a strong solution of (P)
if the following (1)-(iil) are all satisfied:

p7

(i) wis an L2(Q)-valued absolutely continuous function on [0, T).
(i) u(t) € Hy,(Q), V xu(t) € L(Q) for a.e. t € (0,T)
and the following equality holds:

Ju
- . v P2y v
ey (x,t) - v(z)dx + /Q |V X ul x u(z,t) X v(x)dx

= /Qf(x,t) -v(x)dr for all v.e C3,(Q2) and a.e. t € (0,T).
(iii) u(0) = uo.

Moreover a function u € C([0,T]; LZ(2)) is said to be a weak solution of (P), if there
exist sequences (f,) C L'(0,T;L2(Q)), (wp,) C L2(Q) and (u,) C C([0,T]; L2(2)) such
that u,, is the strong solution of (P)p with £ and vy replaced by £, and uy, respectively,
f, — f strongly in L'(0,T;L2(2)) and v, — u strongly in C([0,T]; L2(%)).

Now define the functional @, on L2(Q) as follows.

1

7/ IV x u(z)Pdz if uweH) (Q), V xueLr(Q),

Pp(u) = pJa ’
400 otherwise.

Then by Theorem 6.1 of [9, Chap.7], we find

(5) |u|H1(Q) < Clv X u|L2(Q) Yu € H(l)p(Q).

Hence it is easily seen that ®, € ¥(LZ(Q2)) and (P), is equivalent to CPprz(q)(Pp, f, up).
Furthermore define
K = {u € Hy,(Q); |V xu(z) <1 forae. z¢€ Q}
and
0 if uek,
Poo(u) =
+00 if ueLZ(Q)\K.

Then we also find that ®,, € ¥(L2(2)). Now repeating the same argument as in the
proof of Theorem 2.2, we can derive the following

Theorem 4.2. Let (p,,) be a sequence in [2,+00) such that p, — +00 asn — +o0o. Then
we have

@, — O, on L2(Q) in the sense of Mosco as p, — +oc.



Proof Just as in the proof of Theorem 2.2, we can immediately verify

(6) Vu € D(®,,), I(u,) C L2(Q);
u,, — u strongly in L2(Q) and @, (u,) — ®(u) as n — +oo.

Hence to complete the proof, it suffices to show that
. V(ug) C L2(Q) satisfying ui, — u weakly in L2(Q) as k — +oo,
(7) V(ng) C (n), 1}11_12{.15 P, (ug) > Poo(u).
For the case where u € D(®.) = K, it is obvious that liminfy ., ®,, (ux) >0 =
® . (u); for the case where u ¢ K, conversely suppose that
J(ug) € L2(Q), 3(ng) C (n); v — u weakly in L2(Q) as k — +oo,
l;ir_l,lﬁ?of Py, (ug) < Poo(u) = +o0.
Then we can extract a subsequence (k') of (k) such that

q)p"k, (uk/) < C Vk' € N.

For simplicity of notation, we write p and u,, for p, , and up respectively. Hence we have

(/Q |V x up(x)]pd:c)l/p

IN

{p(bp(up)}l/p

< (pC)?P =1 asp— +oo,

which implies

1/q 1/p
</Q |V x up(x)|qdm) < </Q IV x up(m)|pdx> ||/ ()

— QY% asp — 4o0.
Therefore for each ¢ € [2,400), we can extract a subsequence (p,) of (p) such that
V xu, —Vxu weakly in LI((2).

Moreover, by (5), we can also obtain u € Hg,(Q). From now on, we drop ¢ in p,.
Furthermore it follows that

. /g o . 1/q
(/Q |V x u(z)] d:z;) < liminf (/ﬂ |V x u,(z)] dx)

p—to0

1/p
< liminf (/ |V x up(x)|1’dx) |Q|(P—Q)/(pQ)
Q

p—+00

< (pC) 7|00/ a) — |1/,

lim
p—+oo
Hence passing to the limit ¢ — +o00, we deduce that

IV xu(z)] < 1 forae ze,



which implies u € K. However this contradicts our assumption that u ¢ K. Hence (7)
holds true. [Q.E.D.]

Therefore by Theorems 3.2 and 4.2, we obtain the following

Theorem 4.3. Let (p,) be a sequence in [2,4+00) such that p, — 400 as n — +o0.
Moreover let £,,f € L*(0,T; L2(2)), ug, € L2(Q) and uy € K be such that

f, — f strongly in L*(0,T; L2(Q)),

g, — Ug strongly in L2(€2).

Then the weak solutions u,, of CPLg(Q)((I)pn,fn,uom) converge to u as n — 400 in the
following sense:

u, —u strongly in C(]0,T]; L2(Q)),
duy, du
—

t—— t—
dt dt

strongly in L*(0,T; L2()).
Moreover the limit u is the unique weak solution of CPrz ) (P, f, up).

In particular, if (1/p,) Jq |V X g, (z)Prde — 0 as n — 400, then the limit u becomes
a strong solution of CPy2q)(Pu, f,1g) and

du,, du

au n L*(0,T; L2()).
e strongly in L=(0,T; L;(£2))

Furthermore we can also investigate the convergence of the solutions for the following
parabolic equations:

(P); ?:(x,t) — Alu(x,t) = f(z,t), (x,t) € Qx(0,T),

where A} is defined by

Tu(x) = . L ’ w(z) [P 2Vu(x
sjuta) = V{0 ) wur v |

for some function v : Q x (0,7) — R. This generalization is motivated by some macro-
scopic model for type-II superconductivity (see [1] and [2] for more details).

Moreover the porous medium equation (PM) = also falls within the scope of our ap-
proach.

ou

P,

(z,t) — Alu|™ 2u(z,t) = f(x,t), (z,t) € Qx (0,T).

In [1], the asymptotic behavior of the solutions for (PM), as m — +o0o is discussed.
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