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Abstract. In this manuscript, existence of strong solutions to the
Cauchy problem for a doubly-nonlinear parabolic equation posed in Rd

is proved based on Colli’s result [16], which extends the celebrated Colli-
Visintin theory to Banach space settings, as well as the localized Minty’s
trick, which can also cover a wide class of PDEs in unbounded domains
and which may enable us to overcome difficulties in identification of
weak limits arising from the lack of compact embeddings due to the
unboundedness of domains.

1. Introduction

In this paper, we shall consider the following Cauchy problem for a doubly-
nonlinear parabolic equation posed in Rd:

|∂tu|p−2∂tu−∆mu = f in Rd × (0,∞), (1.1)

u(·, 0) = u0 in Rd, (1.2)

where 1 < m, p <∞, ∆m stands for the so-called m-Laplacian given by

∆mu := div
(
|∇u|m−2∇u

)
and f = f(x, t) and u0 = u0(x) are given data. To the author’s best knowl-
edge, existence of (strong) solutions to the initial-boundary value problem
for (1.1) posed in bounded domains was first proved by Pierluigi Colli [16] for
nondifferentiable f (cf. see [12, 11] for differentiable f). In [16], an abstract
theory is established for a doubly-nonlinear evolution equation of the form,

A

(
du

dt
(t)

)
+B(u(t)) 3 f(t) in W, 0 < t < T, (1.3)

where A : W → W ∗ and B : D(B) ⊂ W → W ∗ are (possibly multi-valued)
maximal monotone operators from a real Banach space W , reflexive and
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strictly convex, to its dual space W ∗, and moreover, it is an extension of
the celebrated Colli-Visintin theory [17] in the Hilbert space setting. The
doubly-nonlinear evolution equation (1.3) has been vigorously studied by
many authors from various points of views (see, e.g., [27, 31, 4, 22, 24, 26,
25, 29, 2, 7, 3, 23]). The doubly-nonlinear parabolic equation (1.1) was also
studied by several authors, but there are fewer results than those on (1.3).

According to [30, §3.4.2], Equation (1.1) with m = 2 is called a dual
filtration equation associated with the nonlinear diffusion equation,

∂tρ = ∆
(
|ρ|p′−2ρ

)
in Rd × (0,∞), (1.4)

where p′ denotes the Hölder conjugate of p, that is, p′ = p/(p− 1). Indeed,
the solution u of (1.1) corresponds to the Newton potential of the density
ρ, that is, u = (−∆)−1ρ, when d ≥ 3. Such a dual equation appears in the
study of uniqueness of distributional solutions to (1.4).

As for the bounded domain case, Hynd and Lindgren [18] proved that
every nontrivial weak solution to the Cauchy-Dirichlet problem for (1.1) with
m = p posed in an arbitrary bounded domain Ω decreases the p-Rayleigh
quotient,

R(u(t)) =
‖∇u(t)‖pLp(Ω)

‖u(t)‖pLp(Ω)

,

along its evolution, and moreover, an appropriately rescaled solution con-
verges to a limit. In addition, if the limit is nontrivial, it is a ground state
of the eigenvalue problem for the Dirichlet p-Laplacian, equivalently, an op-
timizer of the Poincaré inequality in W 1,p

0 (Ω). They also applied such an
observation to the study of the infinity-Laplace operator (see also [19]).

On the other hand, existence of solutions for the Cauchy problem (1.1),
(1.2) in Rd may still be open to question. Indeed, in the abstract theory
established in [16] (as well as in [17]), a compact embedding D(B) ↪→W is
assumed and plays a crucial role, and therefore, it cannot be directly applied
to the Cauchy problem (1.1), (1.2) posed in Rd; indeed, as we shall see, in
the present setting, the above-mentioned (abstract) embedding corresponds
to the following:

D1,m
p (Rd) ↪→ Lp(Rd),

which is still continuous but no longer compact due to the unboundedness
of the domain. Here D1,m

p (Rd) denotes the function space defined by

D1,m
p (Rd) := C∞

c (Rd)
∥ · ∥

D
1,m
p

equipped with the norm ‖ · ‖
D1,m

p
given by

‖w‖
D1,m

p
:= ‖∇w‖Lm(Rd) + ‖w‖Lp(Rd) for w ∈ C∞

c (Rd).

The main purpose of this paper is to prove existence of (strong) solutions
to the Cauchy problem (1.1), (1.2) by developing a localized Minty’s trick
(see [9, §2]) for the doubly-nonlinear parabolic equation (1.1). Throughout
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this paper, we are concerned with strong solutions to the Cauchy problem
(1.1), (1.2) in the following sense:

Definition 1.1 (Strong solution). Let T > 0, u0 ∈ D1,m
p (Rd) and f ∈

Lp′(0, T ;Lp′(Rd)). A function u ∈ C([0, T ];Lp(Rd)) is called a strong solu-
tion on [0, T ] to the Cauchy problem (1.1), (1.2), if the following (i)–(iii)
hold true:

(i) u belongs to W 1,p(0, T ;Lp(Rd)) ∩ C([0, T ];D1,m
p (Rd))

and ∆mu lies on Lp′(0, T ;Lp′(Rd)),
(ii) it holds that

|∂tu|p−2∂tu−∆mu = f a.e. in Rd × (0, T ),

(iii) it further holds that

u(·, t) → u0 strongly in D1,m
p (Rd) as t→ 0+.

The main result of this paper reads,

Theorem 1.2. Let T > 0 and let 1 < m, p < ∞ be such that p < m∗ :=
dm/(d − m)+. For any f ∈ Lp′(0, T ;Lp′(Rd)) and u0 ∈ D1,m

p (Rd), the
Cauchy problem (1.1), (1.2) admits a strong solution u = u(x, t) on [0, T ]
in the sense of Definition 1.1 such that the following maximal regularity
estimate holds :∫ T

0

∥∥|∂tu(·, t)|p−2∂tu(·, t)
∥∥p′
Lp′ (Rd)

dt+

∫ T

0
‖∆mu(·, t)‖p

′

Lp′ (Rd)
dt

≤ C

(
‖∇u0‖mLm(Rd) +

∫ T

0
‖f(·, t)‖p

′

Lp′ (Rd)
dt

)
(1.5)

for some constant C ≥ 0 depending only on m, p.

This paper consists of four sections. The next section is devoted to re-
calling some preliminary facts which will be used to prove the main result
of the present paper. In Section 3, we give a proof of Theorem 1.2. In
Section 4, we shall provide concluding remarks. Moreover, in Appendix §A,
we also present a proof of a chain-rule formula for subdifferentials in re-
flexive Banach spaces (see Proposition 2.2 below) based only on a classical
subdifferential calculus for the convenience of the reader.

2. Preliminaries

Let us first briefly review an abstract theory established in [16] concerning
the Cauchy problem for the doubly-nonlinear evolution equation (1.3). Let
W andW ∗ be a reflexive and strictly convex Banach space and its dual space,
respectively. Let A : W → W ∗ and B : D(B) ⊂ W → W ∗ be (possibly
multi-valued) maximal monotone operators. Moreover, we introduce the
following assumptions for 1 < p < +∞:
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(A1) There exist positive constants C1, C2, C3 such that

C1‖w‖pW ≤ 〈z, w〉W + C2 for [w, z] ∈ G(A),

‖z‖p
′

W ∗ ≤ C3(‖w‖pW + 1) for [w, z] ∈ G(A),

where 〈·, ·〉W denotes the duality pairing between W and W ∗ and
G(A) ⊂W ×W ∗ stands for the graph of A.

(A2) B = ∂ψ is the subdifferential operator of a proper lower-semicontinuous
convex functional ψ :W → (−∞,+∞].

(A3) There exists a reflexive Banach space V densely and compactly
embedded in W such that D(ψ) ⊂ V and

‖w‖pW + ψ(w) → ∞,

whenever w ∈ D(ψ) and ‖w‖V → +∞.

Here we also recall the effective domain D(ψ) := {w ∈W : ψ(w) < +∞}
as well as the subdifferential operator ∂ψ :W → 2W

∗
defined by

∂ψ(w) := {ξ ∈W ∗ : ψ(v)− ψ(w) ≥ 〈ξ, v − w〉W for v ∈ D(ψ)}

for w ∈ D(ψ) with domain D(∂ψ) := {w ∈ D(ψ) : ∂ψ(w) 6= ∅}. Then we
recall

Theorem 2.1 ([16, Theorem 1]). Under the assumptions (A1)–(A3) with

some 1 < p < +∞, for every f ∈ Lp′(0, T ;W ∗) and u0 ∈ D(ψ) there exists
a triplet

u ∈W 1,p(0, T ;W ) ∩ L∞(0, T ;V ), v, w ∈ Lp′(0, T ;W ∗)

such that

w(t) + v(t) = f(t), w(t) ∈ A(u′(t)), v(t) ∈ B(u(t)) for a.e. t ∈ (0, T ),

u(0) = u0,

where u′ := (d/dt)u.

The following chain-rule formula is used in [16] for proving the theorem
above and also plays a crucial role in the present paper to derive a priori
estimates as well as to identify weak limits of nonlinear terms.

Proposition 2.2 (Chain-rule formula for subdifferentials [16]). Let B be a
reflexive Banach space and let B∗ be its dual space. Let φ : B → (−∞,+∞]
be a proper lower semicontinuous convex functional and denote by ∂φ : B →
2B

∗
the subdifferential operator of φ. Let 1 < p < +∞, let I be an open

interval, and let u ∈ W 1,p(I;B) be such that u(t) ∈ D(∂φ) for a.e. t ∈
I. Suppose that there exists g ∈ Lp′(I;B∗) such that g(t) ∈ ∂φ(u(t)) for
a.e. t ∈ I. Then the function t 7→ φ(u(t)) is absolutely continuous on Ī, and
moreover, it holds that

d

dt
φ(u(t)) =

〈
ξ,

du

dt
(t)

〉
B

for any ξ ∈ ∂φ(u(t)) and a.e. t ∈ I. (2.1)
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For the convenience of the reader, we shall give a proof of this proposition
in Appendix §A. We close this section with recalling the so-called Minty’s
trick for maximal monotone operators (see, e.g., [15, Lemma 1.3]).

Proposition 2.3 (Minty’s trick). Let A be a (possibly multi-valued) maxi-
mal monotone operator from a Banach space B into its dual space B∗. Let
un ∈ D(A) and ξn ∈ A(un) be such that un → u weakly in B, ξn → ξ weakly
star in B∗ and

lim sup
n→∞

〈ξn, un〉B ≤ 〈ξ, u〉B

for some u ∈ B and ξ ∈ B∗. Then u ∈ D(A) and ξ ∈ A(u). Moreover,

lim
n→∞

〈ξn, un〉B = 〈ξ, u〉B.

3. Proof of Theorem 1.2

We divide a proof of Theorem 1.2 into four steps, each of which corre-
sponds to the following subsections. In what follows, we denote by BR the
open ball centered at the origin of radius R > 0 and fix T > 0 arbitrarily.

3.1. Approximation. For each n ∈ N, we consider the following Cauchy-
Dirichlet problem as an approximation of the Cauchy problem (1.1), (1.2):

|∂tun|p−2∂tun −∆mun = f in Bn × (0, T ), (3.1)

un = 0 on ∂Bn × (0, T ), (3.2)

un(·, 0) = u0,n in Bn, (3.3)

where u0,n ∈ C∞
c (Rd) is a smooth approximation of u0 such that

suppu0,n ⊂ Bn, u0,n → u0 in D1,m
p (Rd),

that is, u0,n → u0 in Lp(Rd) and ∇u0,n → ∇u0 in Lm(Rd;Rd), as n →
∞. Then thanks to Colli’s abstract theory (see Theorem 2.1), the Cauchy-
Dirichlet problem (3.1)–(3.3) admits a strong solution on [0, T ],

un ∈W 1,p(0, T ;Lp(Bn)) ∩ L∞(0, T ;W 1,m
0 (Bn)).

Indeed, we set

W = Lp(Bn), V =W 1,m
0 (Bn),

A(w) = |w|p−2w for w ∈ Lp(Bn),

ψ(w) =

{
1
m

∫
Bn

|∇w(x)|m dx if w ∈W 1,m
0 (Bn),

+∞ otherwise.

Then B(w) = ∂ψ(w) coincides with −∆mw for w ∈ D(∂ψ) = {w ∈
W 1,m

0 (Bn) : ∆mw ∈ Lp′(Bn)}. Moreover, one can easily check all the as-
sumptions (A1)–(A3) of Theorem 2.1, provided that p < m∗, which is used

to check the compact embedding V ↪→W (i.e., W 1,m
0 (Bn) ↪→ Lp(Bn)).
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3.2. A priori estimates. In this subsection, we derive a priori estimates
for the approximate solutions (un) uniformly for n→ +∞ in a simple energy
method with the use of the chain-rule formula in Proposition 2.2. Here and
henceforth, we shall denote by un again the zero extension of un obtained
above onto the whole Rd when no confusion can arise.

Testing (3.1) by ∂tun, we have

‖∂tun(t)‖pLp(Bn)
+ 〈−∆mun(t), ∂tun(t)〉Lp(Bn)

= 〈f(t), ∂tun(t)〉Lp(Bn)

≤ ‖f(t)‖Lp′ (Bn)
‖∂tun(t)‖Lp(Bn) (3.4)

for a.e. t ∈ (0, T ). Here we employ Proposition 2.2 to observe that the
function t 7→ 1

m‖∇un(t)‖mLm(Bn)
is absolutely continuous on [0, T ] and

〈−∆mun(t), ∂tun(t)〉Lp(Bn) = 〈∂ψ(un(t)), ∂tun(t)〉Lp(Bn)

=
d

dt
ψ(un(t))

=
d

dt

(
1

m
‖∇un(t)‖mLm(Bn)

)
for a.e. t ∈ (0, T ). Here we emphasize that the above facts are not trivial,
since the functional ψ is not Fréchet differentiable in Lp(Bn) (although the

restriction of ψ onto W 1,m
0 (Bn) is Fréchet differentiable in W 1,m

0 (Bn)) and
un is differentiable in time in the strong topology of Lp(Bn) (but not in

W 1,m
0 (Bn)), and therefore, the chain-rule for subdifferentials in reflexive

Banach spaces (see Proposition 2.2) plays an essential role.
Therefore integrating both sides of (3.4) over (0, t) (and using Young’s

inequality as well), we infer that

1

p′

∫ t

0
‖∂tun(s)‖pLp(Bn)

ds+
1

m
‖∇un(t)‖mLm(Bn)

≤ 1

p′

∫ t

0
‖f(s)‖p

′

Lp′ (Bn)
ds+

1

m
‖∇u0,n‖mLm(Bn)

(3.5)

for any t ∈ [0, T ]. Thus we obtain the boundedness of the approximate solu-
tions (un) inW

1,p(0, T ;Lp(Rd)) as well as that of (∇un) in L∞(0, T ;Lm(Rd;Rd))
for n ∈ N. Indeed, we find that

un(t) = u0,n +

∫ t

0
∂tun(s) ds in Lp(Rd) for t ≥ 0,

whence it follows that

‖un(t)‖Lp(Rd) ≤ ‖u0,n‖Lp(Rd) +

∫ t

0
‖∂tun(s)‖Lp(Rd) ds for t ≥ 0.
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Hence we infer from the boundedness of (∂tun) in L
p(0, T ;Lp(Rd)) (see (3.5))

that

sup
t∈[0,T ]

‖un(t)‖Lp(Rd) ≤ C.

Moreover, we have∫ T

0

∥∥|∂tun(s)|p−2∂tun(s)
∥∥p′
Lp′ (Rd)

ds =

∫ T

0
‖∂tun(s)‖pLp(Rd)

ds ≤ C,

which along with (3.1) implies∫ T

0

∥∥−∆mun(s)
∥∥p′
Lp′ (Rd)

ds ≤ C.

Here −∆mun is given by

−∆mun =

{
−∆mun in Bn × (0, T ),

f in (Rd \Bn)× (0, T ).

Then we see that

|∂tun|p−2∂tun +
(
−∆mun

)
= f a.e. in Rd × (0, T ). (3.6)

3.3. Convergence. From the a priori estimates obtained so far, we can
immediately derive, up to a (not relabeled) subsequence, that

un → u weakly in W 1,p(0, T ;Lp(Rd)), (3.7)

∇un → ∇u weakly star in L∞(0, T ;Lm(Rd;Rd)), (3.8)

|∂tun|p−2∂tun → χ weakly in Lp′(0, T ;Lp′(Rd)), (3.9)

−∆mun → ξ weakly in Lp′(0, T ;Lp′(Rd)) (3.10)

for some u ∈ W 1,p(0, T ;Lp(Rd)) ∩ L∞(0, T ;D1,m
p (Rd)) as well as χ, ξ ∈

Lp′(0, T ;Lp′(Rd)). Moreover, we derive from (3.6) that

χ+ ξ = f in Lp′(0, T ;Lp′(Rd)). (3.11)

It still remains to identify the weak limits of nonlinear terms, i.e., χ and
ξ, as well as to check the initial condition along with the regularity u ∈
C([0, T ];D1,m

p (Rd)). There arises a significant difference from the bounded
domain case (say, in Ω ⊂ Rd as in [16]), where the strong compactness of (un)

in C([0, T ];Lp(Ω)) can be proved from the compact embedding W 1,m
0 (Ω) ↪→

Lp(Ω) with the aid of the Aubin-Lions-Simon lemma, and therefore, the
weak limits can be identified via standard Minty’s trick. On the other hand,
in the whole domain case (i.e., Ω = Rd), due to the lack of compactness of the

embedding D1,m
p (Rd) ↪→ Lp(Rd), we cannot derive the strong compactness

of (un) in C([0, T ];L
p(Rd)). Instead, we can still verify that, for any R > 0,

up to a (not relabeled) subsequence,

un → u strongly in C([0, T ];Lp(BR) ∩ Lm(BR)) (3.12)
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by using the Aubin-Lions-Simon lemma (see [28, Theorem 3]), sinceW 1,m(BR)
is compactly embedded in Lq(BR) for 1 ≤ q < m∗ and 0 < R < ∞. It also
leads us to obtain, up to a (not relabeled) subsequence of (n),

un → u a.e. in Rd × (0, T ) (3.13)

thanks to a diagonal argument. However, these facts are still insufficient
to identify the weak limits immediately. Indeed, both χ and ξ cannot be
identified only from the pointwise convergence (3.13) as well as the weak
convergences. To be more precise, χ is the weak limit of the power nonlin-
earity of the time-derivative ∂tun, and moreover, roughly speaking, ξ is the
weak limit of the m-Laplacian, which includes the gradient ∇un. Here we
stress that the pointwise convergence has been proved for un itself, but not
for their derivatives, ∂tun and ∇un.

Before closing this subsection, let us check the initial condition from the
facts obtained so far. Recalling (3.3) and using (3.12), for each R > 0 we
find in particular that un(0) → u(0) strongly in Lp(BR) by taking a (not
relabeled) subsequence of (n). Moreover, using the fact that un(0) = u0,n →
u0 strongly in Lp(Rd), we infer via a diagonal argument that

u(0) = u0 a.e. in Rd. (3.14)

Moreover, we may prove that

un(t) → u(t) weakly in Lp(Rd) for t ≥ 0. (3.15)

Indeed, we see from (3.7) and (3.14) that

un(t)− u(t) = un(t)− u0,n − (u(t)− u0) + u0,n − u0

=

∫ t

0
(∂tun(s)− ∂tu(s)) ds+ u0,n − u0

→ 0 weakly in Lp(Rd) for t ≥ 0.

3.4. Identification of weak limits via localized Minty’s trick. To
overcome the difficulty mentioned above, we shall employ an idea of the
localized Minty’s trick developed in [9] for doubly-nonlinear diffusion equa-
tions. To do so, we fix R > 0 and localize the equation onto the ball BR

by multiplying both sides of (3.1) for n > R by a smooth cut-off (in space)
function ρ ≥ 0 whose support is the closure of BR. Then it follows that

ρ|∂tun|p−2∂tun − ρ∆mun = ρf in BR × (0, T ).

Here and henceforth, we also denote by un again the restriction of un onto
BR when no confusion can arise. We next test it by ϕ ∈ X := W 1,m(BR).
We here note that neither un nor ϕ may vanish on the boundary ∂BR.
However, since ρ vanishes on ∂BR (hence so does ρϕ), we can observe that∫

BR

ρ|∂tun|p−2(∂tun)ϕ dx
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=

∫
BR

ρ (∆mun)ϕ dx+

∫
BR

ρfϕ dx

= −
∫
BR

|∇un|m−2∇un · ∇(ϕρ) dx+

∫
BR

ρfϕ dx

= −
∫
BR

|∇un|m−2∇un · (∇ϕ)ρ dx

−
∫
BR

|∇un|m−2∇un · (∇ρ)ϕ dx+

∫
BR

ρfϕ dx

=: −〈A(un), ϕ〉X + 〈F (un), ϕ〉Lm(BR) +

∫
BR

ρfϕ dx,

where A : X → X∗ and F : X → Lm′
(BR) ⊂ X∗ are defined by

〈A(w), v〉X =

∫
BR

|∇w|m−2∇w · (∇v)ρ dx for v ∈ X,

〈F (w), v〉Lm(BR) = −
∫
BR

|∇w|m−2∇w · (∇ρ)v dx for v ∈ Lm(BR)

for w ∈ X. Namely, un solves the following auxiliary evolution equation,

ρ|∂tun|p−2∂tun +A(un) = F (un) + ρf in X∗, 0 < t < T. (3.16)

Here we also note that A : X → X∗ is maximal monotone, since it is
obviously monotone and continuous (see [13, Chap. II, Theorem 1.3]). We
shall achieve the identification of the weak limit ξ of −∆mun (see (3.10)) by
identifying weak limits of A(un) and F (un) above.

To this end, we first find that A(un) is bounded in L∞(0, T ;X∗), and
therefore, there exists ζ ∈ L∞(0, T ;X∗) such that, up to a (not relabeled)
subsequence,

A(un) → ζ weakly star in L∞(0, T ;X∗),

which in particular implies∫ T

0
〈A(un), ϕ〉X dt→

∫ T

0
〈ζ, ϕ〉X dt

for ϕ ∈ W 1,m(BR). On the other hand, by virtue of the boundedness of

(∇un) in L∞(0, T ;Lm(Rd;Rd)), there exists η ∈ L∞(0, T ;Lm′
(Rd;Rd)) such

that

|∇un|m−2∇un → η weakly star in L∞(0, T ;Lm′
(Rd;Rd)),

up to a (not relabeled) subsequence. Hence we can also derive from (3.9)
and (3.16) that∫ T

0
〈A(un), ϕ〉X dt =

∫ T

0
〈ρf − ρ|∂tun|p−2∂tun + F (un), ϕ〉X dt

→
∫ T

0

∫
BR

ρfϕ dx dt−
∫ T

0

∫
BR

ρχϕ dx dt
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−
∫ T

0

∫
BR

η · (∇ρ)ϕ dx dt

for ϕ ∈W 1,m(BR). Thus we have∫ T

0
〈ζ, ϕ〉X dt =

∫ T

0

∫
BR

ρfϕ dx dt−
∫ T

0

∫
BR

ρχϕ dx dt

−
∫ T

0

∫
BR

η · (∇ρ)ϕ dx dt (3.17)

for ϕ ∈W 1,m(BR).
Now, in order to apply Proposition 2.3 to identify the weak limit ζ of

A(un), we calculate∫ T

0
〈A(un), un〉X dt

(3.16)
=

∫ T

0

∫
BR

ρfun dx dt−
∫ T

0

∫
BR

ρ|∂tun|p−2(∂tun)un dx dt

+

∫ T

0
〈F (un), un〉Lm(BR) dt.

Hence (3.12) yields∫ T

0
〈F (un), un〉Lm(BR) dt = −

∫ T

0

∫
BR

|∇un|m−2∇un · (∇ρ)un dx dt

→ −
∫ T

0

∫
BR

η · (∇ρ)u dx dt

and ∫ T

0

∫
BR

ρ|∂tun|p−2(∂tun)un dx dt→
∫ T

0

∫
BR

ρχu dx dt.

Therefore we see that∫ T

0
〈A(un), un〉X dt

→
∫ T

0

∫
BR

ρfu dx dt−
∫ T

0

∫
BR

ρχu dx dt

−
∫ T

0

∫
BR

η · (∇ρ)u dx dt

(3.17)
=

∫ T

0
〈ζ, u〉X dt.

Thus applying Minty’s trick to the maximal monotone operator A : X → X∗

(see Proposition 2.3), we conclude that

u ∈ D(A), ζ = A(u),
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that is, ∫ T

0
〈ζ, ϕ〉X dt =

∫ T

0
〈A(u), ϕ〉X dt

=

∫ T

0

∫
BR

|∇u|p−2∇u · (∇ϕ)ρ dx dt

for ϕ ∈W 1,m(BR) (see also [20, Proposition 1.1]). Moreover, we also obtain∫ T

0
〈A(un), un〉X dt→

∫ T

0
〈A(u), u〉X dt, (3.18)

whence it follows that∫ T

0

∫
BR

|∇un −∇u|m ρ dx dt→ 0

from the uniform convexity of the weighted Lm norm with 1 < m < ∞.
Moreover, this also helps us to obtain

η = |∇u|m−2∇u;
thus the weak limit of F (un) has been identified as well.

Now, let φ ∈ C∞
c (Rd × (0, T )) be fixed and take R > 0 large enough

that suppφ(·, t) ⊂ BR/2 for all t ∈ (0, T ). Moreover, (re)take ρ ∈ C∞
c (Rd)

satisfying

ρ ≥ 0, ρ ≡ 1 on BR/2, supp ρ = BR.

Then noting that ρφ = φ in suppφ, we infer from (3.10) that

lim
n→∞

∫ T

0
〈−∆mun, ρφ〉W 1,m

0 (Bn)
dt = lim

n→∞

∫ T

0
〈−∆mun, φ〉Lp(BR/2) dt

= lim
n→∞

∫ T

0
〈−∆mun, φ〉Lp(Rd) dt

=

∫ T

0
〈ξ, φ〉Lp(Rd) dt

and

lim
n→∞

∫ T

0
〈−∆mun, ρφ〉W 1,m

0 (Bn)
dt

= lim
n→∞

∫ T

0
〈A(un), φ〉X dt− lim

n→∞

∫ T

0
〈F (un), φ〉Lm(BR) dt

=

∫ T

0
〈A(u), φ〉X dt−

∫ T

0
〈F (u), φ〉Lm(BR) dt

=

∫ T

0

∫
BR

|∇u|m−2∇u · (∇φ)ρ dx dt

+

∫ T

0

∫
BR

|∇u|m−2∇u · (∇ρ)φ dx dt
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=

∫ T

0

∫
Rd

|∇u|m−2∇u · ∇φ dx dt.

Here we also used the fact that ∇ρ ≡ 0 on suppφ. Thus from the arbitrari-
ness of φ ∈ C∞

c (Rd × (0, T )), the weak limit ξ turns out to fulfill

ξ(t) = −∆mu(t) in Lp′(Rd) for a.e. t ∈ (0, T ). (3.19)

We next check u ∈ C([0, T ];D1,m
p (Rd)). Since u belongs to C([0, T ];Lp(Rd))

as well as L∞(0, T ;D1,m
p (Rd)), we find that t 7→ u(t) is weakly continuous

on [0, T ] with values in D1,m
p (Rd) (see [21]). Furthermore, we set

B = Lp(Rd), φ(w) =

{
1
m

∫
Rd |∇w|m dx if w ∈ D1,m

p (Rd),

∞ otherwise.
(3.20)

Then ∂φ(w) coincides with −∆mw in Lp′(Rd) for

w ∈ D(∂φ) = {w ∈ D1,m
p (Rd) : ∆mw ∈ Lp′(Rd)},

and moreover, all the assumptions for Proposition 2.2 can be checked easily.
Thus recalling that−∆mu = ξ ∈ Lp′(0, T ;Lp′(Rd)) and u ∈W 1,p(0, T ;Lp(Rd))
and exploiting Proposition 2.2, we can deduce that the function t 7→ ‖∇u(t)‖Lm(Rd)

is (absolutely) continuous on [0, T ], and therefore, from the uniform convex-
ity of ‖ · ‖

D1,m
p (Rd)

, we conclude that

u ∈ C([0, T ];D1,m
p (Rd)),

which in particular yields

u(t) → u0 strongly in D1,m
p (Rd) as t→ 0+.

We finally identify the weak limit χ of |∂tun|p−2∂tun. To this end, testing
(3.1) by ∂tun, by a simple calculation, we have∫ T

0

∫
Rd

|∂tun|p−2(∂tun)∂tun dx dt

=

∫ T

0
〈∆mun, ∂tun〉Lp(Bn) dt+

∫ T

0
〈f, ∂tun〉Lp(Bn) dt

= −
∫ T

0

d

dt

(
1

m

∫
Bn

|∇un|m dx

)
dt+

∫ T

0
〈f, ∂tun〉Lp(Bn) dt

= − 1

m

∫
Rd

|∇un(T )|m dx+
1

m

∫
Rd

|∇u0,n|m dx

+

∫ T

0
〈f, ∂tun〉Lp(Rd) dt,

where un has been extended by zero onto Rd \ Bn with the same notation
in the last line. It further yields

lim sup
n→∞

∫ T

0

∫
Rd

|∂tun|p−2(∂tun)∂tun dx dt
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≤ − 1

m

∫
Rd

|∇u(T )|m dx+
1

m

∫
Rd

|∇u0|m dx+

∫ T

0

∫
Rd

f∂tu dx dt.

Here we used (3.15) as well as the weak lower-semicontinuity of φ defined
by (3.20) in Lp(Rd). Employing Proposition 2.2 again, we note that

d

dt

(
1

m

∫
Rd

|∇u(t)|m dx

)
= 〈−∆mu(t), ∂tu(t)〉Lp(Rd) for a.e. t ∈ (0, T ).

Integrating both sides over (0, T ) and recalling (3.14), we infer that

1

m

∫
Rd

|∇u(T )|m dx− 1

m

∫
Rd

|∇u0|m dx

=

∫ T

0
〈−∆mu(t), ∂tu(t)〉Lp(Rd) dt. (3.21)

Therefore one has

lim sup
n→∞

∫ T

0

∫
Rd

|∂tun|p dx dt

≤
∫ T

0
〈∆mu+ f, ∂tu〉Lp(Rd) dt =

∫ T

0

∫
Rd

χ∂tu dx dt.

Hence thanks to Proposition 2.3 along with the maximal monotonicity of
the operator w 7→ |w|p−2w in Lp(Rd × (0, T )) × Lp′(Rd × (0, T )), we can
conclude that

χ = |∂tu|p−2∂tu a.e. in Rd × (0, T ),

and as a by-product,

lim
n→∞

∫ T

0

∫
Rd

|∂tun|p dx dt =
∫ T

0

∫
Rd

|∂tu|p dx dt,

which along with the uniform convexity of the weighted Lp norm gives

∂tun → ∂tu strongly in Lp(0, T ;Lp(Rd)).

Therefore we also obtain

|∂tun|p−2∂tun → |∂tu|p−2∂tu strongly in Lp′(0, T ;Lp′(Rd)),

which may be of independent interest.
Thus u turns out to be a strong solution on [0, T ] of the Cauchy problem

(1.1), (1.2) in the sense of Definition 1.1. The maximal regularity estimate
(1.5) follows immediately by testing (1.1) with ∂tu and using the chain-rule
formula in Proposition 2.2 again. This completes the proof. □

4. Concluding remarks

We close this paper with the following concluding remarks on possible
extensions as well as open questions: Theorem 1.2 can be extended to more
general settings, for instance, one may consider the inclusion,

β(∂tu)−∆mu 3 f in Rd × (0, T )
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instead of (1.1). Here the power nonlinearity of the time-derivative in (1.1)
was replaced by a maximal monotone graph β in R×R with D(β) = R under
a p-growth condition, that is, there exist positive constants c1, c2 such that

c1|s|p ≤ bs and |b|p′ ≤ c2|s|p for s ∈ R and b ∈ β(s).

As we saw in §3.4, the localized Minty’s trick enables us to overcome diffi-
culties arising from the lack of compact embeddings due to the unbounded-
ness of domains. It can also be applied to the periodic problem (see [8]), for
which we may add a lower order term to the equation, a variable exponent
setting (see [5]) and a Musielak-Orlicz setting (see [6]). It is further appli-
cable to other PDEs with nonlinear (possibly degenerate) elliptic operators
in divergence form. On the other hand, another noncompact setting where
p = m∗ is a different story and still remains open.

Finally, we exhibit several open questions. It may also be interesting
to discuss smoothing effect of solutions to the doubly-nonlinear parabolic
equation (1.1). To be more precise, our question is whether a strong so-
lution can be constructed for more general initial data. Furthermore, it
is also challenging to prove existence of solutions to the Cauchy problem
(1.1), (1.2) for growing initial data; indeed, the (linear) diffusion equation

admits a solution for initial data growing (at most like e|x|
2
) at infinity, and

moreover, nonlinear diffusion equations such as the porous medium and fast
diffusion equations (even doubly-nonlinear diffusion equations) do so (see [9]
and references therein). On the other hand, it is rather delicate to estab-
lish local energy estimates for the doubly-nonlinear parabolic equation (1.1)
concerned in the present paper. The uniqueness of solutions is also widely
open; however, it is noteworthy that doubly-nonlinear parabolic equations
such as (1.1) may violate the uniqueness of solutions, depending on bound-
ary conditions as well as on reaction terms (if exist). See [16, pp.186,187]
for a celebrated counter example on the Cauchy-Neumann problem, which
admits homogeneous (in space) nontrivial solutions for the zero initial and
Neumann data. The uniqueness of solutions for the Cauchy problem (1.1),
(1.2) as well as for the Cauchy-Dirichlet problem posed in bounded domains
may still be open, unless either p or m is equal to 2 (i.e., “single” nonlinear
cases). We further refer the reader to [1], which presents a counter example
of the uniqueness of solutions to the Cauchy-Dirichlet problem for (1.1) with
reaction terms posed in bounded domains.

Appendix A. Proof of Chain-rule formula

In this appendix, for the convenience of the reader, we exhibit a proof of
Proposition 2.2, which is concerned with a chain-rule formula for subdiffer-
entials in a reflexive Banach space B, based on the classical subdifferential
calculus (see [14, 13]) only (cf. see also [10], where the proposition is proved
in the frame of the metric gradient flow theory). In what follows, I denotes
a non-empty open interval of R, e.g., I = (0, T ). Of course, the case where
B = H is a Hilbert space is well understood (see, e.g., Brézis [14, Lemma
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3.3]). On the other hand, concerning non-Hilbertian settings, one has to
compensate the lack of Fréchet differentiability of the Moreau-Yosida regu-
larization φλ of a convex functional φ : B → (−∞,+∞] in order to prove
the absolute continuity of the function t 7→ φ(u(t)) for u ∈ W 1,p(0, T ;B)
with 1 < p < ∞. Indeed, in general, even Gâteaux differentiable functions
can violate chain-rule formulae (even in the Rd case).

Proof of Proposition 2.2. We prove the absolute continuity of the function
t 7→ φ(u(t)) on Ī. As in the Hilbertian case, let φλ : B → R be the
Moreau-Yosida regularization of φ (see, e.g., [13] in reflexive Banach spaces);
however, φλ is no longer Fréchet differentiable in B, and therefore, it is still
unclear whether the chain-rule formula holds for φλ or not. On the other
hand, in the Hilbert space setting, the proof of the assertion (see [14, Lemma
3.3]) starts with the chain-rule formula for the Moreau-Yosida regularization.

Let us begin with the case where u ∈ C1(Ī;B). Since φλ is Gâteaux
differentiable in B (see [13]), we may observe that

φλ(u(t+ h))− φλ(u(t))

h

=
φλ(u(t) + u′(t)h)− φλ(u(t))

h
+
φλ(u(t+ h))− φλ(u(t) + u′(t)h)

h
→

〈
dφλ(u(t)), u

′(t)
〉
B

for all t ∈ I. Here u′ stands for the derivative (d/dt)u of u and dφλ denotes
the Gâteaux derivative of φλ. Indeed, we note that

φλ(u(t+ h))− φλ(u(t) + u′(t)h)

≤ 〈dφλ(u(t+ h)), u(t+ h)− u(t)− u′(t)h〉
≤ ‖dφλ(u(t+ h))‖B∗‖u(t+ h)− u(t)− u′(t)h‖B.

Similarly,

φλ(u(t+ h))− φλ(u(t) + u′(t)h)

≥ −‖dφλ(u(t) + u′(t)h)‖B∗‖u(t+ h)− u(t)− u′(t)h‖B.

Hence dividing both sides by h 6= 0 and taking a limit h→ 0 and using the
boundedness of the operator dφλ = (∂φ)λ, which is the Yosida approxima-
tion of ∂φ, we deduce that

lim
h→0

∥∥∥∥φλ(u(t+ h))− φλ(u(t) + u′(t)h)

h

∥∥∥∥
B

= 0 for all t ∈ I.

Here we used the fact that

lim
h→0

∥∥∥∥u(t+ h)− u(t)

h
− u′(t)

∥∥∥∥
B

= 0 for all t ∈ I
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from the assumption u ∈ C1(Ī;B). Thus we have proved that the function
t 7→ φλ(u(t)) is differentiable everywhere in (0, T ) and satisfies

d

dt
φλ(u(t)) =

〈
dφλ(u(t)), u

′(t)
〉
B

for all t ∈ I.

Hence integrating both sides over (s, t), we obtain

φλ(u(t))− φλ(u(s)) =

∫ t

s
〈dφλ(u(σ)), u′(σ)〉B dσ (A.1)

for any s, t ∈ Ī. We next consider the case where u ∈W 1,p(I;B). Choosing
a sequence (un) in C1(Ī;B) such that un → u strongly in W 1,p(I;B), we
observe that

φλ(un(t))− φλ(un(s)) =

∫ t

s
〈dφλ(un(σ)), u′n(σ)〉B dσ

for any s, t ∈ Ī. Since un → u in C(Ī;B) as well, φλ is continuous in B and
dφλ : B → B∗ is demicontinuous (see [15, Lemma 1.3]), we can verify that
(A.1) holds true again for any s, t ∈ Ī with the aid of Vitali’s convergence
theorem (indeed, we note that dφλ : B → B∗ is bounded; see [15, Lemma
1.3]).

Next, pass to the limit as λ → 0+. Noting that φλ(u(t)) → φ(u(t)) and
using the fact that

‖dφλ(u(σ))‖B∗ = ‖(∂φ)λ(u(σ))‖B∗ ≤ ‖g(σ)‖B∗ ∈ Lp′(I),

we can deduce that

|φ(u(t))− φ(u(s))| ≤
∫ t

s
ρ(σ) dσ

for any s, t ∈ Ī satisfying s < t. Here ρ(σ) = ‖g(σ)‖B∗‖u′(σ)‖B ∈ L1(I).
Therefore, t 7→ φ(t) turns out to be absolutely continuous on Ī.

The rest of proof (for deriving the identity (2.1)) runs as in the Hilbertian
case (see [14, Lemma 3.3]); however, we give a proof for completeness. Let
t ∈ I be such that u and φ(u(·)) are differentiable at t and u(t) ∈ D(∂φ)
and let ξ ∈ ∂φ(u(t)). Indeed, the set of such t ∈ I has full measure in I,
since u ∈W 1,p(I;B) and B is reflexive. For h > 0, we see that

〈ξ, u(t+ h)− u(t)〉B ≤ φ(u(t+ h))− φ(u(t))

from the definition of subdifferential. Dividing both sides by h and passing
to the limit as h→ 0+, we infer that

〈ξ, u′(t)〉B ≤ d

dt
φ(u(t)).

Repeating the same argument as above with h < 0, we can also derive the
inverse inequality. Thus (2.1) follows. This completes the proof. □



DOUBLY-NONLINEAR PARABOLIC EQUATION IN Rd 17

References

[1] G. Akagi, On some doubly nonlinear parabolic equations, “Current advances in nonlin-
ear analysis and related topics”, GAKUTO International Series, Mathematical Sciences
and Applications, Gakko-Tosho, vol.32, 2010, pp.239–254.

[2] G. Akagi, Doubly nonlinear evolution equations with non-monotone perturbations in
reflexive Banach spaces, J. Evol. Eq. 11 (2011), 1–41.

[3] G. Akagi, Global attractors for doubly nonlinear evolution equations with non-
monotone perturbations, J. Diff. Eq. 250 (2011), 1850–1875.
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[10] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space
of probability measures, Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel,
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