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FOR POROUS MEDIUM EQUATIONS
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Abstract. The existence of energy solutions to the Cauchy-Neumann problem
for the porous medium equation of the form vt − ∆(|v|m−2v) = αv with m ≥
2 and α ∈ R is proved, by reducing the equation to an evolution equation
involving two subdifferential operators and exploiting subdifferential calculus

recently developed by the author.

1. Introduction. Let us consider the existence of solutions u = u(x, t) to the
Cauchy-Neumann problem (CNP) for the porous medium equation,

∂v

∂t
− ∆u = αv, u = |v|m−2v, (x, t) ∈ Ω × (0, T ),

∂u

∂n
= 0, (x, t) ∈ ∂Ω × (0, T ),

v(·, 0) = v0, x ∈ Ω,

where α ∈ R, m ≥ 2, T > 0, Ω is a bounded domain of RN with smooth boundary
∂Ω and N ∈ N.

As for Cauchy-Dirichlet problems, two major nonlinear semigroup approaches
are widely used to treat porous medium type equations such as

∂v

∂t
− ∆u = 0, u ∈ β(v), (x, t) ∈ Ω × (0, T ) (1)

with a maximal monotone graph β in R × R. One is an “L1-framework” based on
the m-accretive operator theory. Brézis and Strauss [6] proved the m-accretivity
in X := L1(Ω) of the operator A : X → X given by Au := −∆β(u) equipped
with the homogeneous Dirichlet boundary condition. Hence due to an abstract
theory of Crandall and Liggett, the operator A generates a continuous contraction
semigroup S(t) in X, and moreover, S(t)v0 is the unique generalized solution of the
Cauchy-Dirichlet problem for (1).

The other is an ‘’H−1-framework” based on the subdifferential operator the-
ory. Let X := H−1(Ω) be a Hilbert space with the inner product (u, v)H−1(Ω) :=
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〈u, (−∆)−1v〉H1
0 (Ω) and define a function φ : X → (−∞,∞] by

φ(v) :=
{ ∫

Ω
j(v(x))dx if v ∈ L1(Ω) and j(v(·)) ∈ L1(Ω),

+∞ otherwise,

where j is a primitive function of β, i.e., β = ∂Rj. Then the subdifferential operator
∂Xφ : X → X satisfies a representation formula, f ∈ ∂Xφ(u) if and only if f(·) ∈
−∆β(u(·)). Hence the Cauchy-Dirichlet problem for (1) is reduced to the Cauchy
problem for an evolution equation governed by the subdifferential operator ∂Xφ in
the Hilbert space X, and one can prove the well-posedness for the Cauchy problem
by using a general theory due to Brézis (see [5]).

These two approaches have been developed to cover the initial-boundary value
problems for (1) with other boundary conditions. Alikakos and Rostamian [3] found
that the operator A still generates a continuous contraction semigroup in L1(Ω)
even for the Neumann boundary condition, and Bénilan et al [4] also dealt with a
wider class of nonlinear boundary conditions. As for the subdifferential approach,
Damlamian [7] and Damlamian-Kenmochi [8] developed an “(H1)∗-framework” for
the Robin boundary condition with n0 > 0,

∂u

∂n
+ n0u = 0 on ∂Ω × (0, T ), (2)

and their results enable us to treat (1) with (2) for any maximal monotone graph
β (see also [11]). The (H1)∗-framework is also applied to the Neumann boundary
condition by Damlamian [7] (in case β is Lipschitz continuous) and by Kubo-Lu [10]
(in case β(v) = −1/v), however, some restrictions are always imposed on β, and
there seems to be no contribution of subdifferential approach which can cover the
Cauchy-Neumann problem for the porous medium equation (i.e., β(u) = |u|m−2u).

Table 1. Comparison of frameworks for the PM-type equation (1)

Framework Base space X Boundary condition Nonlinearity of β

L1 L1(Ω) D, N, R any for “D”

H−1 H−1(Ω) D any

(H1)∗ (H1(Ω))∗ R any

N restricted
(D = Dirichlet, N = Neumann, R = Robin)

In studies of the asymptotic behavior of solutions for (CNP), energy identities
(or inequalities) play crucial roles. However, the semigroup approaches described
above have not been designed so well that one can directly obtain energy inequalities
sufficient for the analysis.

The purpose of this paper is to prove the existence of weak solutions for (CNP)
and derive energy inequalities even for α 6= 0 by performing subdifferential cal-
culus. We particularly exploit techniques recently developed by the author [1, 2]
for nonlinear evolution equations involving two subdifferential operators in reflexive
Banach spaces.

2. Reduction to an evolution equation. Set V = H1(Ω) with the norm

| · |V :=
(
| · |2L2 + |∇ · |2L2

)1/2
,
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and put H = L2(Ω) with the norm | · |H and the inner product (·, ·)H . Then

V ↪→ H ≡ H∗ ↪→ V ∗

with compact densely defined canonical injections. Here, H is identified with its
dual space. Define a mapping A from V into V ∗ by

〈Av,w〉V =
∫

Ω

∇v(x) · ∇w(x)dx for v, w ∈ V.

Let us introduce the following Cauchy problem for an evolution equation as a weak
form of (CNP),

dv

dt
(t) +A(|v|m−2v(t)) = αv(t) in V ∗, 0 < t < T, (3)

v(0) = v0. (4)

Furthermore, define functionals ϕ : V → [0,∞) and ψ : H → [0,∞) by

ϕ(u) =
1
2

∫
Ω

|∇u(x)|2 dx for u ∈ V,

ψ(u) =
1
m′

∫
Ω

|u(x)|m
′
dx for u ∈ H,

where m′ := m/(m− 1), and ∂V ϕ : V → V ∗ and ∂Hψ : H → H are given by

∂V ϕ(u) := {g ∈ V ∗; ϕ(v) − ϕ(u) ≥ 〈g, v − u〉V for all v ∈ V } ,
∂Hψ(u) := {g ∈ H; ψ(v) − ψ(u) ≥ (g, v − u)H for all v ∈ H} .

Then ∂V ϕ(u) and ∂Hψ(u) coincide with Au and |u|m′−2u(·) respectively (here and
henceforth, we write |r|qr = |r|q+1sgn(r) for r ∈ R and q > −1). Therefore by
setting u := |v|m−2v (hence, v = |u|m′−2u), we can equivalently rewrite the Cauchy
problem (3), (4) to

dv

dt
(t) + ∂V ϕ(u(t)) = αv(t) in V ∗, 0 < t < T, (5)

v(t) = ∂Hψ(u(t)), 0 < t < T, (6)

v(0) = v0. (7)

We shall treat (5)–(7) to discuss the existence of solutions for (CNP).

3. Main result. Define a function J : H1(Ω) → R by

J(u) :=
1
2

∫
Ω

|∇u(x)|2dx− α

m′

∫
Ω

|u(x)|m
′
dx for u ∈ H1(Ω).

We denote by Cw([0, T ];H1(Ω)) the set of all H1(Ω)-valued weakly continuous func-
tions on [0, T ]. We are concerned with solutions of (CNP) given as follows.

Definition 3.1. A pair of functions (u, v) : [0, T ] → H1(Ω) × Lm(Ω) is said to be
a weak solution of (CNP) on [0, T ] if the following (i)-(iii) hold true:

(i) u ∈ C([0, T ];Lm′
(Ω)) ∩ Cw([0, T ];H1(Ω)) and

v ∈ C([0, T ];Lm(Ω)) ∩W 1,∞(0, T ; (H1(Ω))∗);
(ii) (5) and (6) hold for a.e. t ∈ (0, T );
(iii) v(0) = v0.

A weak solution (u, v) on [0, T ] is particularly said to be an energy solution of (CNP)
on [0, T ] if the following (iv), (v) are satisfied:
(iv) |u|(m′−2)/2u = |v|(m−2)/2v ∈ L2(0, T ;H1(Ω)) ∩W 1,2(0, T ;L2(Ω));
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(v) J(u(·)) and |v(·)|2L2(Ω) are differentiable for a.e. t ∈ (0, T ), and the following
two energy inequalities hold for a.e. t ∈ (0, T ):

cm

∣∣∣∣ ddτ |v|(m−2)/2v(t)
∣∣∣∣2
L2(Ω)

+
d

dt
J(u(t)) ≤ 0, (8)

1
2
d

dt
|v(t)|2L2(Ω) + cm

∣∣∣∇(
|u|(m

′−2)/2u
)

(t)
∣∣∣2
L2(Ω)

≤ α|v(t)|2L2(Ω) (9)

with cm := 4/(mm′) > 0.

Our main result reads,

Theorem 3.2. Let m ∈ [2,∞) and T > 0 be fixed. Then for every v0 ∈ Lm(Ω)
satisfying u0 := |v0|m−2v0 ∈ H1(Ω), the Cauchy-Neumann problem (CNP) admits
a unique energy solution (u, v) on [0, T ].

To prove this theorem, we first recall the notion of the Legendre-Fenchel trans-
form of convex functions. The Legendre-Fenchel transform ψ∗ : H → [0,∞] of ψ is
defined as follows:

ψ∗(v) := sup
u∈H

{(v, u)H − ψ(u)} for v ∈ H.

We note that ∂Hψ
∗ = (∂Hψ)−1, i.e., ∂Hψ

∗(v) = |v|m−2v, and for any [u, v] ∈ ∂Hψ,

ψ∗(v) =
1
m
|u|m

′

Lm′ (Ω)
=
m′

m
ψ(u), |v|(m−2)/2v = |u|(m

′−2)/2u. (10)

We next prepare the following proposition.

Proposition 1. There exists a constant C ≥ 0 such that

|u|2V ≤ C
(
ϕ(u) + ψ(u)2/m′

)
for all u ∈ V, (11)

|∂V ϕ(u)|2V ∗ ≤ Cϕ(u) for all u ∈ V. (12)

Proof. By Gagliardo-Nirenberg’s inequality,

|u|H ≤ |u|θV |u|1−θ
Lm′ (Ω)

for u ∈ V

with some θ ∈ (0, 1). Hence

|u|2V ≤ 1
2
|u|2V + C|u|2

Lm′ (Ω)
+ |∇u|2H for u ∈ V.

Thus (11) follows from the definitions of ϕ and ψ. Moreover, (12) is well known as
the boundedness of −∆ : H1(Ω) → (H1(Ω))∗ equipped with ∂u/∂n = 0 on ∂Ω.

4. Proof of Theorem 3.2.

4.1. Uniqueness. Let (u, v) and (û, v̂) be weak solutions of (CNP) on [0, T ] with
an initial data v0 ∈ V ∗. Subtract (3) with v from that with v̂. Then

d

dt
(v(t) − v̂(t)) +A

(
|v|p−2v(t) − |v̂|p−2v̂(t)

)
= α(v(t) − v̂(t)).

Since 〈v(t), 1〉V = 〈v̂(t), 1〉V = 〈v0, 1〉V eαt for all t ∈ [0, T ], it follows that v(t) −
v̂(t) ∈ V ∗

0 := {w ∈ V ∗; 〈w, 1〉V = 0}. Hence multiplying this by F (v(t)− v̂(t)) with
F := A−1 defined on V ∗

0 , we have
1
2
d

dt
|∇F (v(t) − v̂(t))|2H +

〈
A

(
|v|p−2v(t) − |v̂|p−2v̂(t)

)
, F (v(t) − v̂(t))

〉
V

= α|∇F (v(t) − v̂(t))|2H .
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Here we used the fact that〈
d

dt
(v(t) − v̂(t)) , F (v(t) − v̂(t))

〉
V

=
〈
A ◦ F (v(t) − v̂(t)),

d

dt
F (v(t) − v̂(t))

〉
V

=
1
2
d

dt
|∇F (v(t) − v̂(t))|2H .

Moreover, we notice that〈
A

(
|v|p−2v(t) − |v̂|p−2v̂(t)

)
, F (v(t) − v̂(t))

〉
V

=
(
|v|p−2v(t) − |v̂|p−2v̂(t), v(t) − v̂(t)

)
H

≥ 0.

Thus
1
2
d

dt
|∇F (v(t) − v̂(t))|2H ≤ α|∇F (v(t) − v̂(t))|2H .

Hence integrating both sides over (0, t) and applying Gronwall’s inequality, we have

|∇F (v(t) − v̂(t))|2H ≤ e2|α|t|∇F (v(0) − v̂(0))|2H = 0 for all t ∈ [0, T ],

which implies v = v̂. Thus every weak solution of (CNP) is unique.

4.2. Approximation. To prove the existence part, let us introduce the following
approximate problems of (5)–(7) for ε, λ ∈ (0, 1]:

d

dt
[εuε

λ(t) + vε
λ(t)] + ∂H ϕ̃λ(uε

λ(t)) = αvε
λ(t) in H, 0 < t < T, (13)

vε
λ(t) = ∂Hψ(uε

λ(t)), 0 < t < T, (14)

εuε
λ(0) + vε

λ(0) = εu0 + v0, (15)

where ϕ̃ denotes the extension by infinity of ϕ onto H given by

ϕ̃(u) =

{
ϕ(u) for u ∈ V,

∞ for u ∈ H \ V

and ∂H ϕ̃λ denotes the Yosida approximation of ∂H ϕ̃. For abbreviation, we write
uλ and vλ instead of uε

λ and vε
λ, respectively, if no confusion arises. Put

xλ(t) := εuλ(t) + vλ(t) for t ∈ [0, T ].

Then (13) is written of the form

dxλ

dt
(t) + ∂H ϕ̃λ(uλ(t)) = αvλ(t) in H, 0 < t < T. (16)

Here we note that uλ(t) = (εI + ∂Hψ)−1xλ(t) and vλ(t) = xλ(t) − εuλ(t). Hence
since ∂H ϕ̃λ and (εI + ∂Hψ)−1 are Lipschitz continuous in H, the Cauchy problem
for (16) admits a unique strong solution xλ ∈ C1([0, T ];H) on [0, T ]. Furthermore,
uλ, vλ ∈W 1,∞(0, T ;H).

4.3. Estimates. Here and henceforth, we denote by CT (respectively, Cε,T ) a con-
stant independent of ε, λ (respectively, λ) and it may vary from line to line.

Let us recall the following inequality:

(a− b)
(
|a|p−2a− |b|p−2b

)
≥ cp

∣∣∣|a|(p−2)/2a− |b|(p−2)/2b
∣∣∣2 for a, b ∈ R (17)
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with cp := 4/(pp′) > 0 for p ∈ (1,∞). Let Jλ be the resolvent of ∂H ϕ̃, i.e.,
Jλ := (I + λ∂H ϕ̃)−1. Then it follows that

(∂Hψ(u), ∂H ϕ̃λ(u))H ≥ (∂Hψ(Jλu), ∂H ϕ̃λ(u))H

≥ cm

∣∣∣∇(
|Jλu|(m

′−2)/2Jλu(·)
)∣∣∣2

H
for u ∈ V (18)

with cm := 4/(mm′) > 0 (see also Appendix of [1]). Hence multiplying (13) by
vλ(t) and integrating this over (0, t), we get

εψ(uλ(t)) +
1
2
|vλ(t)|2H + cm

∫ t

0

|∇Φε
λ(τ)|2Hdτ

≤ εψ(u0) +
1
2
|v0|2H + α

∫ t

0

|vλ(τ)|2H dτ, (19)

where Φε
λ(τ) := |Jλu

ε
λ|(m

′−2)/2Jλu
ε
λ(·, τ). By Gronwall’s inequality,

1
2
|vε

λ(t)|2H + cm

∫ t

0

|∇Φε
λ(τ)|2Hdτ ≤

(
εψ(u0) +

1
2
|v0|2H

)
e2|α|t

for all t ∈ [0, T ] and ε, λ ∈ (0, 1]. (20)

Multiplying (13) by uλ(t), we derive

ε

2
d

dt
|uλ(t)|2H +

d

dt
ψ∗(vλ(t)) + ϕ̃λ(uλ(t)) ≤ α(vλ(t), uλ(t))H = αmψ∗(vλ(t))

for a.e. t ∈ (0, T ). Integrate both sides over (0, t) and apply Gronwall’s inequality.
It then follows that

1
m
|vλ(t)|mLm = ψ∗(vλ(t)) ≤

(ε
2
|u0|2H + ψ∗(v0)

)
e|α|mt

for all t ∈ [0, T ] and ε, λ ∈ (0, 1], (21)

which also implies

sup
t∈[0,T ]

ε|uλ(t)|2H +
∫ T

0

ϕ̃λ(uλ(t)) dt ≤ CT . (22)

Since uλ(·, t) = |vλ|m−2vλ(·, t), it follows from (17) that

(vλ(t+ h) − vλ(t), uλ(t+ h) − uλ(t))H

≥ cm

∣∣∣|vλ|(m−2)/2vλ(t+ h) − |vλ|(m−2)/2vλ(t)
∣∣∣2
H

for a.e. t ∈ (0, T ) and h ≥ 0. Thus |vλ|(m−2)/2vλ ∈W 1,2(0, T ;H) and

cm

∣∣∣∣ ddt |vλ|(m−2)/2vλ(t)
∣∣∣∣2
H

≤
(
dvλ

dt
(t),

duλ

dt
(t)

)
H

for a.e. t ∈ (0, T ).

Therefore multiply (13) by duλ(t)/dt to obtain

ε

∣∣∣∣duλ

dt
(t)

∣∣∣∣2
H

+ cm

∣∣∣∣ ddt |vλ|(m−2)/2vλ(t)
∣∣∣∣2
H

+
d

dt
ϕ̃λ(uλ(t))

≤α
(
vλ(t),

duλ

dt
(t)

)
H

≤Cε,T |vλ(t)|2H +
ε

2

∣∣∣∣duλ

dt
(t)

∣∣∣∣2
H

. (23)
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Moreover, by integrating both sides over (0, t) and using (20), we get

ε

2

∫ t

0

∣∣∣∣duλ

dτ
(τ)

∣∣∣∣2
H

dτ + cm

∫ t

0

∣∣∣∣ ddτ |vλ|(m−2)/2vλ(τ)
∣∣∣∣2
H

dτ + ϕ̃λ(uλ(t) ≤ Cε,T (24)

for all t ∈ [0, T ].
Since (18) implies ψ(Jλu) ≤ ψ(u) = (m/m′)ψ∗(v) with v = ∂Hψ(u) for all

λ ∈ (0, 1] and u ∈ V (see also [2]), it follows from (11) and (12) that

sup
t∈[0,1]

|Jλuλ(t)|V + sup
t∈[0,T ]

|∂H ϕ̃λ(uλ(t))|V ∗ ≤ Cε,T . (25)

Moreover, by (16)

sup
t∈[0,T ]

|xλ(t)|H ≤ CT , sup
t∈[0,T ]

∣∣∣∣dxλ

dt
(t)

∣∣∣∣
V ∗

≤ Cε,T . (26)

4.4. Convergence as λ → +0. From these a priori estimates, we can derive the
following convergences by taking a sequence λn → +0.

vλn → v weakly star in L∞(0, T ;Lm(Ω)), (27)

uλn → u weakly star in L∞(0, T ;H), (28)

Jλnuλn(·) → û weakly star in L∞(0, T ;V ), (29)

∂H ϕ̃λn(uλn(·)) → g weakly star in L∞(0, T ;V ∗), (30)

xλn → x weakly star in W 1,∞(0, T ;V ∗), (31)

which also gives x = εu + v. We note that ∂H ϕ̃λn(uλn(t)) ∈ ∂V ϕ(Jλnuλn(t)) and
∂V ϕ : V → V ∗ is bounded and linear. Hence g(t) = ∂V ϕ(u(t)) for a.e. t ∈ (0, T ).

Since H is compactly embedded in V ∗, by Ascoli’s compactness theorem (see,
e.g., [12]), we can deduce from (26) that

xλn → x strongly in C([0, T ];V ∗), (32)

which also implies x(0) = εu0 + v0. Since the resolvent Jλ is non-expansive in H,
it follows from (24) that∫ T

0

∣∣∣∣ ddtJλuλ(t)
∣∣∣∣2
H

dt ≤
∫ T

0

∣∣∣∣duλ

dt
(t)

∣∣∣∣2
H

dt ≤ Cε,T .

Hence, by (25), it also holds that

Jλnuλn(·) → û strongly in C([0, T ];H). (33)

Moreover, noting that

|uλ(t) − Jλuλ(t)|2H ≤ 2λϕ̃λ(uλ(t)) ≤ 2λCε,T for all t ∈ [0, T ],

we also obtain u = û and

uλn → u strongly in C([0, T ];H). (34)

Thus the demiclosedness of ∂Hψ in H × H ensures that v(t) = ∂Hψ(u(t)) for all
t ∈ [0, T ]. Since ∂Hψ is continuous from Lm′

(Ω) into Lm(Ω), we particularly observe

vλn → v strongly in L2(0, T ;H), (35)
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which will be used to derive an energy inequality. Therefore u solves

d

dt
[εuε(t) + vε(t)] + ∂V ϕ(uε(t)) = αvε(t) in V ∗, 0 < t < T, (36)

vε(t) = ∂Hψ(uε(t)), 0 < t < T, (37)

εuε(0) + vε(0) = εu0 + v0. (38)

Let us derive energy inequalities for (uε, vε). From (23) and the fact that(
vε

λ(t),
duε

λ

dt
(t)

)
H

=
d

dt
ψ(uε

λ(t)) for a.e. t ∈ (0, T ), (39)

we have

ε

∫ t

0

∣∣∣∣duε
λ

dτ
(τ)

∣∣∣∣2
H

dτ + cm

∫ t

0

∣∣∣∣ ddτ |vε
λ|(m−2)/2vε

λ(τ)
∣∣∣∣2
H

dτ + ϕ̃λ(uε
λ(t)) − αψ(uε

λ(t))

≤ ϕ̃λ(u0) − αψ(u0) (40)

for all t ∈ (0, T ). Here, by the definition of subdifferentials, (21) and (34) yield

lim sup
n→∞

ψ(uε
λn

(t)) ≤ ψ(uε(t)) + lim
n→∞

|vε
λn

(t)|H |uε
λn

(t) − uε(t)|H = ψ(uε(t))

for all t ∈ [0, T ]. Thus since ψ is lower semicontinuous in H, we have

ψ(uε
λn

(t)) → ψ(uε(t)) for all t ∈ [0, T ]. (41)

Moreover, (24) yields

|vε
λn

|(m−2)/2vε
λn

→ χε weakly in W 1,2(0, T ;H) (42)

with some χε ∈ W 1,2(0, T ;H). From the demiclosedness of maximal monotone
operators and (10), we can verify that χε(t) = |uε|(m′−2)/2uε(t) = |vε|(m−2)/2vε(t)
for a.e. t ∈ (0, T ). Thus passing to the limit in (40) as λ→ +0, we infer that

ε

∫ t

0

∣∣∣∣duε

dτ
(τ)

∣∣∣∣2
H

dτ + cm

∫ t

0

∣∣∣∣ ddτ |vε|(m−2)/2vε(τ)
∣∣∣∣2
H

dτ

+ ϕ(uε(t)) − αψ(uε(t)) ≤ ϕ(u0) − αψ(u0) (43)

for all t ∈ [0, T ]. Here we used (41) and the weak lower semicontinuity of ϕ and
norms. Furthermore, by (19) and (35),

εψ(uε(t)) +
1
2
|vε(t)|2H + cm

∫ t

0

∣∣∣∇(
|uε|(m

′−2)/2uε
)

(τ)
∣∣∣2
H
dτ

≤ εψ(u0) +
1
2
|v0|2H + α

∫ t

0

|vε(τ)|2H dτ for all t ∈ [0, T ]. (44)

4.5. Convergence as ε→ +0. We next derive convergences of (uε, vε) by passing
to the limit as ε→ +0. To do so, we first derive from (21) and (22) that

sup
t∈[0,T ]

{
|vε(t)|mLm + ψ(uε(t)) + ε|uε(t)|2H

}
≤ CT . (45)

Moreover, combining (43) with this fact, we obtain

ε

∫ t

0

∣∣∣∣duε

dτ
(τ)

∣∣∣∣2
H

dτ + cm

∫ t

0

∣∣∣∣ ddτ |vε|(m−2)/2vε(τ)
∣∣∣∣2
H

dτ + ϕ(uε(t)) ≤ CT (46)
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for all t ∈ [0, T ] and ε ∈ (0, 1]. Therefore by Proposition 1 and (36),

sup
t∈[0,T ]

{
|uε(t)|V + |∂V ϕ(uε(t))|V ∗ +

∣∣∣∣dxε

dt
(t)

∣∣∣∣
V ∗

+ |xε(t)|H
}

≤ CT . (47)

Then we can take a sequence εn → +0 such that

εn
duεn

dt
→ 0 strongly in L2(0, T ;H), (48)

vεn → v weakly star in L∞(0, T ;Lm(Ω)), (49)

uεn → u weakly star in L∞(0, T ;V ), (50)

εnu
εn → 0 strongly in C([0, T ];H), (51)

∂V ϕ(uεn(·)) → g weakly star in L∞(0, T ;V ∗), (52)

xεn → v weakly star in W 1,∞(0, T ;V ∗), (53)

strongly in C([0, T ];V ∗). (54)

Hence we also have

vεn → v strongly in C([0, T ];V ∗), (55)

which gives v(t) = ∂Hψ(u(t)) for a.e. t ∈ (0, T ) (see Proposition 1.1 of [9]). More-
over, we can also verify that g(t) = ∂V ϕ(u(t)) for a.e. t ∈ (0, T ). Therefore u
becomes a strong solution of (5)–(7) on [0, T ].

Finally, we establish energy inequalities. Since v ∈ W 1,2(0, T ;V ∗) and u ∈
L2(0, T ;V ), the function t 7→ ψ∗(v(t)) is absolutely continuous on [0, T ]. Note that

ψ∗(v(t)) =
1
m
|v(t)|mLm(Ω) =

1
m
|u(t)|m

′

Lm′ (Ω)
for all t ∈ [0, T ]

and recall that Lm′
(Ω) and Lm(Ω) are uniformly convex. Hence we deduce that

u ∈ C([0, T ];Lm′
(Ω)) and v ∈ C([0, T ];Lm(Ω)). On the other hand, it follows from

(50) and (55) that∫ T

0

ψ(uεn(t)) dt ≤
∫ T

0

ψ(u(t))dt+
∫ T

0

〈vεn(t), uεn(t) − u(t)〉V dt

→
∫ T

0

ψ(u(t))dt.

From the uniform convexity of Lm′
(0, T ;Lm′

(Ω)) and Lm(0, T ;Lm(Ω)), we obtain

uεn → u strongly in Lm′
(0, T ;Lm′

(Ω)), (56)

vεn → v strongly in Lm(0, T ;Lm(Ω)). (57)

Then since u ∈ C([0, T ];Lm′
(Ω)), it follows that uεn(t) → u(t) strongly in Lm′

(Ω)
for all [0, T ], which gives

ψ(uεn(t)) → ψ(u(t)) for each t ∈ [0, T ]. (58)

Moreover, since ϕ is lower semicontinuous in the topology of Lm′
(Ω), we deduce

lim inf
n→∞

ϕ(uεn(t)) ≥ ϕ(u(t)) for each t ∈ [0, T ]. (59)

Furthermore, we observe that

sup
t∈[0,T ]

∣∣∣|vεn |(m−2)/2vεn(t)
∣∣∣2
H

= sup
t∈[0,T ]

|vεn(t)|mLm(Ω) ≤ CT .
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Hence since H is compactly embedded in V ∗, we get, by (46)

|vεn |(m−2)/2vεn → χ weakly in W 1,2(0, T ;H), (60)

|vεn |(m−2)/2vεn → χ strongly in C([0, T ];V ∗). (61)

Recalling (10) and (50), we deduce that χ(t) = |v|(m−2)/2v(t) for a.e. t ∈ (0, T ).
Passing to the limit in (43) and (44) as ε→ 0 and recalling the uniqueness of weak
solution for (CNP), we can verify

cm

∫ t

s

∣∣∣∣ ddτ |v|(m−2)/2v(τ)
∣∣∣∣2
H

dτ + ϕ(u(t)) − αψ(u(t)) ≤ ϕ(u(s)) − αψ(u(s)),

1
2
|v(t)|2H + cm

∫ t

s

∣∣∣∇(
|u|(m

′−2)/2u
)

(τ)
∣∣∣2
H
dτ ≤ 1

2
|v(s)|2H + α

∫ t

s

|v(τ)|2H dτ

for all t, s ∈ [0, T ] with s ≤ t. Dividing both sides of each inequality by t − s and
letting s→ t− 0, we obtain (8) and (9) for a.e. t ∈ (0, T ).

Remark 1. (i) We can prove the same conclusion as in Theorem 3.2 with H1(Ω)
replaced by H1

0 (Ω) also for the Cauchy-Dirichlet problem in a similar way.
(ii) Our approach presented here can be applied to proving the existence of weak

solutions for doubly nonlinear parabolic equation of the form
∂v

∂t
− ∆pu = αv, u = |v|m−2v, (x, t) ∈ Ω × (0, T ),

and moreover, we can also deal with the case that v0 ∈ Lm(Ω) and the fast
diffusion case, m ∈ (1, 2). These attempts will appear in a forthcoming paper.
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[6] H. Brézis and W.A. Strauss, Semi-linear second-order elliptic equations in L1,

J. Math. Soc. Japan, 25 (1973), 565–590.
[7] A. Damlamian, Some results on the multi-phase Stefan problem, Comm. Partial Differential

Equations, 2 (1977), 1017–1044.
[8] A. Damlamian and N. Kenmochi, Evolution equations associated with non-isothermal phase

separation: subdifferential approach, Ann. Mat. Pura Appl., 176 (1999), 167–190.
[9] N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math., 22 (1975),

304–331.
[10] M. Kubo and Q. Lu, Nonlinear degenerate parabolic equations with Neumann boundary con-

dition, J. Math. Anal. Appl., 307 (2005), 232–244.
[11] G. Marinoschi, A free boundary problem describing the saturated-unsaturated flow in a porous

medium. II. Existence of the free boundary in the 3D case, Abstr. Appl. Anal., 2005 (2005),
813–854.

[12] J. Simon, Compact sets in the space Lp(0, T ; B), Ann. Math. Pura. Appl., 146 (1987), 65–96.

Received August 2008; revised February 2009.
E-mail address: g-akagi@sic.shibaura-it.ac.jp


