
DISCRETE AND CONTINUOUS Website: www.aimSciences.org
DYNAMICAL SYSTEMS
SUPPLEMENT 2007 pp. 18–27

ON A CERTAIN DEGENERATE PARABOLIC EQUATION

ASSOCIATED WITH THE INFINITY-LAPLACIAN

Goro Akagi and Kazumasa Suzuki

Department of Machinery and Control Systems,
School of Systems Engineering, Shibaura Institute of Technology,
307, Fukasaku, Minuma-ku, Saitama-shi, Saitama 337-8570, Japan

and
Daiwa Institute of Research,

15-6 Fuyuki, Koto-ku, Tokyo 135-8460, Japan

Abstract. The comparison, uniqueness and existence of viscosity solutions to
the Cauchy-Dirichlet problem are proved for a degenerate parabolic equation of
the form ut = ∆∞u, where ∆∞ denotes the so-called infinity-Laplacian given

by ∆∞u =
PN

i,j=1
uxi

uxj
uxixj

. Our proof relies on a coercive regulariza-

tion of the equation, barrier function arguments and the stability of viscosity
solutions.

1. Introduction. Aronsson [2] introduces the so-called infinity-Laplacian ∆∞ given
by

∆∞φ(x) =

N
∑

i,j=1

∂φ

∂xi
(x)

∂φ

∂xj
(x)

∂2φ

∂xi∂xj
(x) (1)

to investigate the existence of absolutely minimizing Lipschitz extensions (AMLE’s
for short) of functions g defined only on the boundary ∂Ω of a domain Ω in R

N

into Ω. Here the AMLE of g into Ω means a function u ∈ W 1,∞(Ω) satisfying
that u = g on ∂Ω and that for every open subset U of Ω and φ ∈ W 1,∞(U), if

u − φ ∈ W 1,∞
0 (U), then

|Du|L∞(U) ≤ |Dφ|L∞(U).

More precisely, the following elliptic problem is proposed in [2] as an Euler equation
of the above variational problem for smooth AMLE’s:

∆∞u = 0 in Ω, u = g on ∂Ω. (2)

Aronsson [3] also reveals various properties of classical solutions of (2) in N = 2;
particularly, it is somewhat important that if u is a non-constant classical solution,
then |∇u| > 0 in Ω, which also implies that in general (2) does not admit classical
solutions (this fact is clearly described in [15, p. 55]).

Jensen [15] employs the notion of viscosity solutions as a weak solution of (2)
and proves the existence and uniqueness of AMLE’s under somewhat general as-
sumptions, and moreover, it is also shown that u is a viscosity solution of (2) if and
only if u is the AMLE of g.
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Furthermore, various problems related to elliptic equations associated with the
infinity Laplacian, e.g., the regularity of solutions, Harnack’s inequality, limit-
ing problems associated with p-Laplacian as p → +∞, eigenvalue problem, L∞-
inequality of the Poincaré type, have been vigorously studied by many authors (see,
e.g., [4], [6], [5], [7], [10], [11], [12], [14], [17], [22]). On the other hand, to the best of
the authors’ knowledge, parabolic problems associated with the infinity-Laplacian
have not been studied yet except in [9], [21] and [16].

This paper is concerned with the following parabolic problem:

ut = ∆∞u in Q := Ω × (0, T ), (3)

u = ϕ on PQ, (4)

where Ω is a bounded domain in R
N with boundary ∂Ω, PQ denotes the parabolic

boundary of Q = Ω×(0, T ) and ut denotes the time-derivative of u = u(x, t) (see the
notation in the end of this section). The main purpose of this paper is to investigate
the comparison, uniqueness and existence of viscosity solutions u = u(x, t) of the
Cauchy-Dirichlet problem (3), (4).

Another type of parabolic equation associated with the infinity-Laplacian is also
studied by Juutinen and Kawohl in [16], where they treat the following:

ut =
∆∞u

|Du|2
in Q. (5)

They investigate the existence and uniqueness of solutions of the Cauchy-Dirichlet
problem for (5) with initial-boundary data ϕ, and moreover, they deal with the
Cauchy problem for the case Ω = R

N as well. To prove the existence, they introduce
approximate problems of the form (uε,δ)t = ε∆uε,δ + ∆∞uε,δ/(|Duε,δ|2 + δ) with
ε, δ > 0, and establish boundary Hölder estimates of their solutions by constructing
barrier functions.

To prove the existence for (3), (4), we introduce the following approximate prob-
lems with ε > 0:

(uε)t = ε
(

|Duε|
2 + ε

)

∆uε + ∆∞uε in Q (6)

and prove the existence of classical solutions uε for the Cauchy-Dirichlet problems
for (6) with initial-boundary data ϕ. Moreover, as in [16], we employ barrier func-
tion arguments to establish a priori estimates for the solutions uε. Our proof of
establishing a priori estimates is inspired by [16].

In the next section, we state our main results on the comparison, uniqueness and
existence of viscosity solutions of the Cauchy-Dirichlet problem (3), (4). Section 3
is devoted to our proof of the existence result.

Notation: Throughout this paper, we use the following notation: Q = Ω × (0, T ),
SQ = ∂Ω × (0, T ), BQ = Ω × {0}, CQ = ∂Ω × {0}, PQ = SQ ∪ BQ ∪ CQ,

φt =
∂φ

∂t
, Di =

∂

∂xi
, D = (D1, D2, . . . , DN ), D2

ij =
∂2

∂xi∂xj
,

and D2 denotes the N ×N matrix whose (i, j)-th element is D2
ij . Furthermore, we

also use the Einstein summation convention, where we sum over repeated Greek
indices. As for the definitions of function spaces such as C2,1, Hα and Hℓ,ℓ/2 and
(semi-)norms, we refer the reader to [19, pp. 7-8]. Moreover, we denote by Lip(Q)
the class of Lipschitz continuous functions in Q, and we simply denote by | · |∞ the
sup-norm in the corresponding space if no confusion arises.
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2. Main Results. Before stating our main results, we give a couple of notation
and definitions to be used. Set

P (s, p, X) := pipjXij − s, (s, p, X) ∈ R × R
N × S

N ,

where S
N denotes the set of all symmetric N ×N matrices. We are then concerned

with viscosity solutions of (3) given in the following.

Definition 1. Let Ω be a domain in R
N and let Q = Ω × (0, T ). A function

u ∈ USC(Q) := {upper semicontinuous functions u : Q → R} is said to be a
viscosity subsolution in Q of (3) if

P (φt(x̂, t̂), Dφ(x̂, t̂), D2φ(x̂, t̂)) ≥ 0

for all (x̂, t̂) ∈ Q and φ ∈ C2,1(Q) satisfying u − φ attains its local maximum at
(x̂, t̂).

A function u ∈ LSC(Q) := {lower semicontinuous functions u : Q → R} is said
to be a viscosity supersolution in Q of (3) if

P (φt(x̂, t̂), Dφ(x̂, t̂), D2φ(x̂, t̂)) ≤ 0

for all (x̂, t̂) ∈ Q and φ ∈ C2,1(Q) satisfying u − φ attains its local minimum at
(x̂, t̂).

Moreover, u ∈ C(Q) is said to be a viscosity solution in Q of (3) if it is both a
viscosity subsolution and a viscosity supersolution in Q of (3).

Furthermore, viscosity solutions of the Cauchy-Dirichlet problem (3), (4) are
defined as follows:

Definition 2. A function u ∈ USC(Q) (resp., LSC(Q)) is said to be a viscosity
subsolution (resp., supersolution) in Q of (3), (4) if u is a viscosity subsolution
(resp., supersolution) in Q of (3), u ≤ ϕ (resp., u ≥ ϕ) on PQ. Furthermore,
u ∈ C(Q) is a viscosity solution in Q of (3), (4) if it is both a viscosity subsolution
and a viscosity supersolution in Q of (3), (4).

Applying Theorem 8.2 and related remarks of [8], the comparison principle for
(3), (4) is immediately derived, and moreover, it also implies the continuous depen-
dence on initial-boundary data ϕ and the uniqueness of solutions.

Theorem 1 (Comparison and uniqueness). Let Ω be a bounded domain in R
N with

boundary ∂Ω and let u ∈ USC(Q) and v ∈ LSC(Q) be a viscosity subsolution and

a viscosity supersolution in Q = Ω × (0, T ) of (3), respectively, such that u ≤ v on

PQ. Then u ≤ v in Q.

In particular, let ϕ1, ϕ2 ∈ C(Q) and let u1 and u2 be viscosity solutions in Q of

(3), (4) with the initial-boundary data ϕ1 and ϕ2, respectively. Then it follows that

sup
(x,t)∈Q

|u1(x, t) − u2(x, t)| ≤ sup
(x,t)∈PQ

|ϕ1(x, t) − ϕ2(x, t)|, (7)

which also implies the uniqueness of solutions.

Proof of Theorem 1. Due to Theorem 8.2 of [8], the comparison part follows imme-
diately. Now, let u1 and u2 be viscosity solutions of (3), (4) with the initial-boundary
data ϕ1 and ϕ2, respectively, and put w±(x, t) := u2(x, t) ± sup(x,t)∈PQ |ϕ1(x, t) −

ϕ2(x, t)|. Then the functions w− and w+ become a viscosity subsolution and a
viscosity supersolution of (3), (4) with ϕ replaced by ϕ1 respectively. Thus we have

w− ≤ u1 ≤ w+ in Q,
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which implies (7). In particular, if ϕ1 = ϕ2 on PQ, then the uniqueness of solutions
follows.

As for the existence of solution, we first introduce the following assumption.

For all x0 ∈ ∂Ω, there exists y0 ∈ R
N such that |x0 − y0| = R

and {x ∈ R
N ; |x − y0| < R} ∩ Ω = ∅ for some positive constant R

independent of x0.







(8)

This assumption is employed only for the construction of approximate solutions in
classical sense (see Theorem 4.4 of [19, Chap. VI, p. 560]). Now, our result reads:

Theorem 2 (Existence). Let Ω be a bounded domain in R
N with boundary ∂Ω and

let Q = Ω × (0, T ). Suppose that (8) is satisfied. Then, for every ϕ ∈ C(Q), the

Cauchy-Dirichlet problem (3), (4) admits a viscosity solution u ∈ C(Q) in Q such

that

sup
(x,t)∈Q

|u(x, t)| ≤ sup
(x,t)∈PQ

|ϕ(x, t)|. (9)

3. Proof of Theorem 2. In this section, we give a proof of Theorem 2, which is
concerned with the existence of viscosity solutions of the Cauchy-Dirichlet problem
(3), (4). Firstly we deal with the case ϕ ∈ H2+α,1+α/2(Q) for some α ∈ (0, 1). We
then introduce the following approximation of (3), (4) for each ε ∈ (0, 1).

(uε)t = ε
(

|Duε|
2 + ε

)

∆uε + ∆∞uε in Q, (10)

uε = ϕ on PQ. (11)

Define aε
ij ∈ C∞(RN ) and Pε ∈ C(R × R

N × S
N ) by

aε
ij(p) := ε(|p|2 + ε)δij + pipj, i, j = 1, 2, . . . , N, p ∈ R

N

and

Pε(s, p, X) := aε
ij(p)Xij − s, (s, p, X) ∈ R × R

N × S
N .

Then (10) is rewritten into

Pε((uε)t(x, t), Duε(x, t), D2uε(x, t)) = 0, (x, t) ∈ Q.

Moreover, we observe that

ε(|p|2 + ε)|ξ|2 ≤ aε
ij(p)ξiξj ≤

{

ε(|p|2 + ε) + |p|2
}

|ξ|2

for all ξ ∈ R
N , and furthermore

∣

∣

∣

∣

∂aε
ij

∂pk

∣

∣

∣

∣

(1 + |p|)3 ≤ C(1 + |p|)4, i, j, k = 1, 2, . . . , N.

Thus, since Ω satisfies (8), Theorem 4.4 of [19, Chap. VI, p. 560] ensures that
the Cauchy-Dirichlet problem (10), (11) admits a classical solution uε ∈ C(Q) ∩
H2+α,1+α/2(Q) for each ε ∈ (0, 1).

We now proceed to establish a priori estimates for classical solutions uε of the
Cauchy-Dirichlet problems (10), (11) for each ε ∈ (0, 1). To derive the convergence
of uε as ε → +0, thanks to the stability of viscosity solutions, it suffices to obtain a
Hölder estimate for uε on Q, which implies the precompactness of uε in C(Q). The
following lemma provides an L∞-estimate for uε.
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Lemma 1 (L∞-estimate). Let Ω be a bounded domain in R
N with boundary ∂Ω

and let u ∈ C(Q)∩C2,1(Q) be a classical solution in Q = Ω× (0, T ) of the Cauchy-

Dirichlet problem (10), (11) with ϕ ∈ C(Q). Then we have

|u|∞ ≤ |ϕ|∞.

Proof of Lemma 1. The function w+(x, t) ≡ |ϕ|∞ (resp., w−(x, t) ≡ −|ϕ|∞) be-
comes a classical supersolution (resp., subsolution) in Q of (10), (11), so the clas-
sical comparison principle (see, e.g., Theorem 9.1 of [20, p. 213]) implies that
|u|∞ ≤ |ϕ|∞.

We have several steps to establish a Hölder estimate for uε in Q. The first step
is concerned with a Lipschitz estimate for uε(x, ·) at t = 0 (see Lemma 2), and the
second step yields a Lipschitz estimate at any t ∈ (0, T ) (see Lemma 3). In the third
step, we estimate a Hölder constant of uε(·, t) on ∂Ω (see Lemma 4). Hence these
three steps imply a boundary Hölder estimate on PQ (see Lemma 5). Finally, we
derive a global Hölder estimate for uε in Q from the boundary Hölder estimate (see
Lemma 6). Our derivations of these estimates are due to the similar barrier function
argument as in [16], and we also employ the translation invariance of the equation
(10) to extend Lipschitz and Hölder estimates established only on the boundary,
e.g., t = 0, ∂Ω, PQ, as in [18] (a similar argument using the translation invariance
of an equation is also found in [13, Corollary 2.11]).

Lemma 2 (Lipschitz estimate for uε(x, ·) at t = 0). Let Ω be a bounded domain

in R
N with boundary ∂Ω and let u ∈ C(Q) ∩ C2,1(Q) be a classical solution in

Q = Ω× (0, T ) of the Cauchy-Dirichlet problem (10), (11) with ϕ ∈ C2,1(Q). Then

it follows that

|u(x, t) − ϕ(x, 0)| ≤ M1t for all t ∈ (0, T ) and x ∈ Ω, (12)

where M1 := 2(|Dϕ|2∞ + 1)|D2ϕ|∞ + |ϕt|∞.

Proof of Lemma 2. Put w±(x, t) = ϕ(x, 0) ± M1t and observe that

P (w+
t (x, t), Dw+(x, t), D2w+(x, t))

= − M1 + aε
ij(Dϕ(x, 0))D2

ijϕ(x, 0)

≤− M1 + ε(|Dϕ|2∞ + ε)|D2ϕ|∞ + |Dϕ|2∞|D2ϕ|∞ ≤ 0

for all (x, t) ∈ Q. Moreover, if (x, t) ∈ PQ, then

w+(x, t) = ϕ(x, 0) + M1t

= ϕ(x, t) − ϕ(x, t) + ϕ(x, 0) + M1t

≥ ϕ(x, t) − |ϕt|∞t + M1t ≥ ϕ(x, t).

We can also deduce that P (w−
t (x, t), Dw−(x, t), D2w−(x, t)) ≥ 0 for all (x, t) ∈ Q

and w− ≤ ϕ on PQ. Therefore the classical comparison principle ensures that
w− ≤ u ≤ w+ in Q. Hence we obtain (12).

By using the translation invariance of the equations (10) and the above lemma,
we can obtain a Lipschitz estimate for uε(x, ·) in (0, T ).

Lemma 3 (Lipschitz estimate for uε(x, ·) in (0, T )). Let Ω be a bounded domain

in R
N with boundary ∂Ω and let u ∈ C(Q) ∩ C2,1(Q) be a classical solution in
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Q = Ω× (0, T ) of the Cauchy-Dirichlet problem (10), (11) with ϕ ∈ C2,1(Q). Then

it follows that

|u(x, t) − u(x, s)| ≤ M1|t − s| for all t, s ∈ (0, T ) and x ∈ Ω, (13)

where M1 = 2(|Dϕ|2∞ + 1)|D2ϕ|∞ + |ϕt|∞.

Proof of Lemma 3. Let h ∈ (−T, T ) be fixed and set Qh = Ω× (h, T + h). Putting
v(x, t) = u(x, t − h), we see that v remains to be a classical solution in Qh of (10),
(11) with ϕ replaced by ϕ(·, · − h). Hence, by Lemma 2, we infer that

|v(x, t) − u(x, t)| ≤ M1|h| for all (x, t) ∈ B(Q ∩ Qh).

Here we used the fact that t = max{0, h} if (x, t) ∈ B(Q∩Qh). Thus we can derive
u ≤ v + M1|h| on B(Q ∩ Qh). Moreover, if (x, t) ∈ S(Q ∩ Qh), then we see that
(x, t) ∈ SQ, which implies that

v(x, t) + M1|h| = u(x, t − h) + M1|h|

= ϕ(x, t − h) + M1|h|

≥ ϕ(x, t) = u(x, t).

Therefore, since u(x, t) ≤ v(x, t) + M1|h| for all (x, t) ∈ P(Q ∩ Qh) and v + M1|h|
also becomes a classical supersolution in Q∩Qh of (10), it follows that u ≤ v+M1|h|
in Q ∩ Qh. Repeating the above argument with v + M1|h| replaced by v − M1|h|,
we can deduce that v − M1|h| ≤ u ≤ v + M1|h| in Q ∩ Qh, which also gives
|u(x, t) − u(x, t − h)| ≤ M1|h| for all (x, t) ∈ Q ∩ Qh. Furthermore, from the
arbitrariness of h, we can verify (13).

We next establish a Hölder estimate for uε(·, t) on ∂Ω.

Lemma 4 (Hölder estimate for uε(·, t) on ∂Ω). Let Ω be a bounded domain in R
N

with boundary ∂Ω and let α ∈ (0, 1) and R > 0 be fixed. Let u ∈ C(Q) ∩ C2,1(Q)
be a classical solution in Q = Ω× (0, T ) of the Cauchy-Dirichlet problem (10), (11)
with ϕ ∈ C(Q) satisfying

|ϕt|∞ < ∞

and 〈ϕ〉αx,Q := sup

{

|ϕ(x, t) − ϕ(y, t)|

|x − y|α
; x, y ∈ Ω, x 6= y, t ∈ [0, T ]

}

< ∞.

Then there exist constants ε0 = ε0(N, α, R) > 0 and M2 = M2(|ϕ|∞, |ϕt|∞, 〈ϕ〉αx,Q,

N, α, R) ≥ 0 such that if ε < ε0 then

|u(x, t) − ϕ(x0, t0)| ≤ M2(|x − x0|
α + t0 − t)

for all (x0, t0) ∈ SQ, x ∈ Ω ∩ BR(x0) and t ∈ (max{0, t0 − 1}, t0),

where BR(x0) := {x ∈ R
N ; |x − x0| < R}.

In particular, the same conclusion also follows with Ω ∩ BR(x0) replaced by Ω by

choosing R > 0 enough large.

Proof of Lemma 4. Let (x0, t0) ∈ SQ and α ∈ (0, 1) be fixed and define

w+(x, t) = ϕ(x0, t0) + κ|x − x0|
α + ρ(t0 − t)

for all x ∈ BR(x0) := {x ∈ R
N ; |x− x0| < R} and all t < t0 with positive constants

κ and ρ which will be determined later. Observing that

w+
t (x, t) = −ρ, Diw

+(x, t) = κα|x − x0|
α−2(x − x0)i,

D2
ijw

+(x, t) = κα(α − 2)|x − x0|
α−4(x − x0)i(x − x0)j + κα|x − x0|

α−2δij ,
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we then see that

∆∞w+(x, t) = x0|
4(κα)3(α − 1)|x − x0|

3α−4.

Thus it follows that

−w+
t (x, t) + aε

ij(Dw+(x, t))D2
ijw

+(x, t)

=ρ + (κα)3 {ε(α − 2 + N) + α − 1} |x − x0|
3α−4

+ ε2κα(α − 2 + N)|x − x0|
α−2.

Here taking ε > 0 enough small such that

ε(α − 2 + N) + α − 1 <
1

2
(α − 1),

we have

−w+
t (x, t) + aε

ij(Dw+(x, t))D2
ijw

+(x, t)

<ρ +
(κα)3

2
(α − 1)|x − x0|

3α−4 + ε2κα(α − 2 + N)|x − x0|
α−2

=ρ + κα|x − x0|
α−2

{

(κα)2

2
(α − 1)|x − x0|

2α−2 + ε2(α − 2 + N)

}

≤ρ + κα|x − x0|
α−2

{

(κα)2

2
(α − 1)R2α−2 + ε2(α − 2 + N)

}

,

where we used the fact that |x − x0| < R. Note that

(κα)2

2
(α − 1)R2α−2 + ε2(α − 2 + N) ≤

(κα)2

4
(α − 1)R2α−2,

provided that κ ≥ 1 and ε is enough small so that

α2

4
(α − 1)R2α−2 + ε2(α − 2 + N) ≤ 0.

Thus

−w+
t (x, t) + aε

ij(Dw+(x, t))D2
ijw

+(x, t)

≤ρ +
(κα)3

4
(α − 1)R2α−2|x − x0|

α−2

≤ρ +
(κα)3

4
(α − 1)R3α−4.

Therefore taking κ enough large such that 4ρ ≤ (κα)3(1 − α)R3α−4, we conclude
that

−w+
t (x, t) + aε

ij(Dw+(x, t))D2
ijw

+(x, t) ≤ 0

for all x ∈ BR(x0) ∩ Ω and all t < t0.
We next prove that w+ ≥ u on P((BR(x0) ∩ Ω) × (t0 − 1, t0)) for the case that

t0 > 1. To do so, we divide our proof to the following three cases:

(i): Let x ∈ (∂BR(x0))∩Ω and t < t0 be fixed. From the fact that |x−x0| = R,
we then see that

w+(x, t) = ϕ(x0, t0) + κRα + ρ(t0 − t) ≥ ϕ(x0, t0) + κRα ≥ |ϕ|∞ ≥ u(x, t),

provided that κ ≥ 2|ϕ|∞/Rα.
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(ii): Let x ∈ BR(x0) ∩ ∂Ω and t < t0 be fixed. Since ϕ(x, t) = u(x, t), it follows
that

w+(x, t) = ϕ(x, t) − ϕ(x, t) + ϕ(x0, t0) + κ|x − x0|
α + ρ(t0 − t) ≥ u(x, t),

provided that κ ≥ 〈ϕ〉αx,Q and ρ ≥ |ϕt|∞.

(iii): Let x ∈ BR(x0) ∩ Ω and let t = t0 − 1 be fixed. Then

w+(x, t) = ϕ(x0, t0) + κ|x − x0|
α + ρ ≥ ϕ(x0, t0) + ρ ≥ |ϕ|∞ ≥ u(x, t),

provided that ρ ≥ 2|ϕ|∞.

Now as for the case where t0 < 1, we use (BR(x0) ∩ Ω) × (0, t0) instead of the
cylinder used in the last case. Then it is easily seen that, for x ∈ BR(x0) ∩ Ω and
t = 0,

w+(x, 0) = ϕ(x0, t0) + κ|x − x0|
α + ρt0 ≥ ϕ(x, 0) = u(x, 0),

provided that κ ≥ 〈ϕ〉αx,Q and ρ ≥ |ϕt|∞.
Therefore the comparison principle ensures that

u ≤ w+ on BR(x0) ∩ Ω × [max{0, t0 − 1}, t0].

Repeating the same argument with the function w−(x, t) := ϕ(x0, t0)−κ|x−x0|α−

ρ(t0 − t), we can also obtain w− ≤ u on BR(x0) ∩ Ω × [max{0, t0 − 1}, t0]. Conse-
quently, we can deduce that

|u(x, t) − ϕ(x0, t0)| ≤ κ|x − x0|
α + ρ(t0 − t)

for all (x0, t0) ∈ SQ and x ∈ BR(x0) ∩ Ω and t ∈ [max{0, t0 − 1}, t0].

Thus Lemmas 2 and 4 imply the following:

Lemma 5 (Hölder estimate on PQ). Let Ω be a bounded domain in R
N with

boundary ∂Ω and let α ∈ (0, 1). Suppose that (8) is satisfied. Let u ∈ C(Q)∩C2,1(Q)
be a classical solution in Q = Ω× (0, T ) of the Cauchy-Dirichlet problem (10), (11)
with ε ∈ (0, ε0) and ϕ ∈ C2,1(Q). Then it follows that

|u(x, t) − ϕ(x0, t0)| ≤ M3 (|x − x0|
α + |t − t0|) (14)

for all (x0, t0) ∈ PQ and (x, t) ∈ Q,

where M3 = M1 + M2 + 〈ϕ〉
(α)
x,Q.

Proof of Lemma 5. For the case: (x0, t0) ∈ SQ, by virtue of Lemmas 3 and 4,

|u(x, t) − ϕ(x0, t0)| ≤ |u(x, t) − u(x, t0)| + |u(x, t0) − ϕ(x0, t0)|

≤ M1|t0 − t| + M2|x0 − x|α.

For the case: (x0, t0) ∈ BQ, that is, t0 = 0, by Lemma 2, we also have

|u(x, t) − ϕ(x0, t0)| ≤ |u(x, t) − ϕ(x, 0)| + |ϕ(x, 0) − ϕ(x0, 0)|

≤ M1t + 〈ϕ〉
(α)
x,Q|x0 − x|α.

Hence (14) follows.

Now, we extend the above Hölder estimate on the parabolic boundary PQ into
the parabolic domain Q in the following lemma, which is derived from Theorem 6
of [18], but for the completeness we give a proof.
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Lemma 6 (Global Hölder estimate). Let Ω be a bounded domain in R
N with bound-

ary ∂Ω and let α ∈ (0, 1). Suppose that (8) is satisfied. Let u ∈ C(Q) ∩ C2,1(Q)
be a classical solution in Q = Ω× (0, T ) of the Cauchy-Dirichlet problem (10), (11)
with ε ∈ (0, ε0) and ϕ ∈ C2,1(Q). Then it follows that

|u(x, t) − u(y, s)| ≤ M3 (|x − y|α + |t − s|) for all (x, t), (y, s) ∈ Q, (15)

where M3 = M1 + M2 + 〈ϕ〉
(α)
x,Q.

Proof of Lemma 6. Let h := (hx, ht) ∈ R
N × R be fixed and let Q + h := {(x, t) ∈

R
N+1; (x−hx, t−ht) ∈ Q}. Moreover, put v(x, t) = u(x−hx, t−ht). We then find

that v still remains to be a classical solution in Q+h of (10), (11) with ϕ replaced by
ϕ(·−hx, ·−ht). Then, by Lemma 5, we can assure that, for (x, t) ∈ P{Q∩(Q+h)},
|v(x, t) − u(x, t)| ≤ M3|h|α,1, where |h|α,1 := |hx|α + |ht|; hence, v − M3|h|α,1 ≤
u ≤ v + M3|h|α,1 on P{Q∩ (Q + h)}. Furthermore, since v ±M3|h|α,1 also become
classical solutions in Q ∩ (Q + h) of (10), the classical comparison theorem ensures
that v − M3|h|α,1 ≤ u ≤ v + M3|h|α,1 in Q ∩ (Q + h). From the arbitrariness of h,
we can verify (15).

By virtue of the global Hölder estimate for uε in Lemma 6 and Ascoli-Arzela’s
compactness theorem, taking a sequence εn → +0, we can deduce that

uεn
→ u uniformly on Q (16)

as εn → +0. We also note that

Pε(s, p, X) → P (s, p, X) as ε → +0, for all (s, p, X) ∈ R × R
N × SN .

Therefore the stability of viscosity solutions (see, e.g., Section 6 of [8]) ensures that
the limit u becomes a viscosity solution of (3), (4).

Secondly we proceed to the case ϕ ∈ C(Q). By virtue of Weierstrass’s approxi-
mation theorem (see, e.g., 1.29 Corollary of [1, p. 10]), we can take an approximate
sequence ϕn ∈ H2+α,1+α/2(Q) such that ϕn → ϕ uniformly on Q. Hence, due to
the last case, there exists a viscosity solution un of (3), (4) with ϕ replaced by ϕn.
Moreover, by Theorem 1,

sup
(x,t)∈Q

|un(x, t) − um(x, t)| ≤ sup
(x,t)∈PQ

|ϕn(x, t) − ϕm(x, t)| → 0

as n, m → +∞. Thus (un) forms a Cauchy sequence in C(Q), so un → u uniformly
on Q. Therefore, from the stability of viscosity solution, u also becomes a viscosity
solution of (3), (4) with the initial data ϕ ∈ C(Q). Furthermore, as in Lemma 1,
(9) follows immediately. This completes our proof of Theorem 2.
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