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ABSTRACT. The comparison, uniqueness and existence of viscosity solutions to
the Cauchy-Dirichlet problem are proved for a degenerate parabolic equation of
the form u; = Asou, where Ao denotes the so-called infinity-Laplacian given
by Ascu = Zf\szl Uz, Uz Uz, @ - Our proof relies on a coercive regulariza-
tion of the equation, barrier function arguments and the stability of viscosity
solutions.

1. Introduction. Aronsson [2] introduces the so-called infinity-Laplacian A, given

by
NN, 0’
Bt = 32 22 @) 2 (1) () (1)
ij=1 """ ’ e

to investigate the existence of absolutely minimizing Lipschitz extensions (AMLE’s
for short) of functions g defined only on the boundary 9 of a domain Q in RV
into Q. Here the AMLE of g into  means a function u € Wh(Q) satisfying
that u = g on 9 and that for every open subset U of Q and ¢ € WhH(U), if
u—¢ € Wy™(U), then

|Dulpe vy < [D@|r= ().

More precisely, the following elliptic problem is proposed in [2] as an Euler equation
of the above variational problem for smooth AMLE’s:

Axu=0 inQ, wuw=g on . (2)

Aronsson [3] also reveals various properties of classical solutions of (2) in N = 2;
particularly, it is somewhat important that if « is a non-constant classical solution,
then |Vu| > 0 in §, which also implies that in general (2) does not admit classical
solutions (this fact is clearly described in [15, p. 55]).

Jensen [15] employs the notion of viscosity solutions as a weak solution of (2)
and proves the existence and uniqueness of AMLE’s under somewhat general as-
sumptions, and moreover, it is also shown that u is a viscosity solution of (2) if and
only if u is the AMLE of g.
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Furthermore, various problems related to elliptic equations associated with the
infinity Laplacian, e.g., the regularity of solutions, Harnack’s inequality, limit-
ing problems associated with p-Laplacian as p — 400, eigenvalue problem, L>°-
inequality of the Poincaré type, have been vigorously studied by many authors (see,
e.g., [4], [6], [5], [7], [10], [11], [12], [14], [17], [22]). On the other hand, to the best of
the authors’ knowledge, parabolic problems associated with the infinity-Laplacian
have not been studied yet except in [9], [21] and [16].

This paper is concerned with the following parabolic problem:

U = Asolt in Q:=Qx(0,7), (3)
U= on PQ, (4)

where Q is a bounded domain in RV with boundary 952, PQ denotes the parabolic
boundary of @ = 2x (0,T") and u; denotes the time-derivative of u = u(x,t) (see the
notation in the end of this section). The main purpose of this paper is to investigate
the comparison, uniqueness and existence of viscosity solutions u = u(z,t) of the
Cauchy-Dirichlet problem (3), (4).

Another type of parabolic equation associated with the infinity-Laplacian is also
studied by Juutinen and Kawohl in [16], where they treat the following;:

Aot
= ﬁ in Q. (5)
They investigate the existence and uniqueness of solutions of the Cauchy-Dirichlet
problem for (5) with initial-boundary data ¢, and moreover, they deal with the
Cauchy problem for the case = R as well. To prove the existence, they introduce
approximate problems of the form (ucs); = eAuc s + Acotic 5/(|Due s|* + 6) with
€,0 > 0, and establish boundary Holder estimates of their solutions by constructing
barrier functions.

To prove the existence for (3), (4), we introduce the following approximate prob-
lems with € > 0:

Ut

(ue)e = € (|Duc® + €) Auc + Ague  in Q (6)

and prove the existence of classical solutions u. for the Cauchy-Dirichlet problems
for (6) with initial-boundary data ¢. Moreover, as in [16], we employ barrier func-
tion arguments to establish a priori estimates for the solutions u.. Our proof of
establishing a priori estimates is inspired by [16].

In the next section, we state our main results on the comparison, uniqueness and
existence of viscosity solutions of the Cauchy-Dirichlet problem (3), (4). Section 3
is devoted to our proof of the existence result.

Notation: Throughout this paper, we use the following notation: @ = Q x (0,7,
SQ =00 % (0,T), BQ =2 x {0}, CQ =00 x {0}, PQ=SQUBQUCQ,

96 ? 2O
D; = , D=(D1,Da,...,Dpn), i = )
d)t axl ( 1 2 N) J a$ia$j

Soot’
and D? denotes the N x N matrix whose (4, j)-th element is D7;. Furthermore, we
also use the Einstein summation convention, where we sum over repeated Greek
indices. As for the definitions of function spaces such as C*!, H® and H**/? and
(semi-)norms, we refer the reader to [19, pp. 7-8]. Moreover, we denote by Lip(Q)
the class of Lipschitz continuous functions in @), and we simply denote by | - | the
sup-norm in the corresponding space if no confusion arises.
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2. Main Results. Before stating our main results, we give a couple of notation
and definitions to be used. Set

P(s,p,X) :=pip; Xij — 5, (5,p,X) €RxRY xSV,

where SV denotes the set of all symmetric N x N matrices. We are then concerned
with viscosity solutions of (3) given in the following.

Definition 1. Let Q be a domain in RY and let Q = Q x (0,7). A function
u € USC(Q) := {upper semicontinuous functions v : @ — R} is said to be a
viscosity subsolution in Q of (3) if

P(d)t(ja£)7D¢(ja£)7D2¢(i‘a£>) Z 0

for all (£,1) € Q and ¢ € C?1(Q) satisfying u — ¢ attains its local maximum at
(&,1).

A function u € LSC(Q) := {lower semicontinuous functions v : @ — R} is said
to be a wiscosity supersolution in @Q of (3) if

P(d)t(ja£)7D¢(ja£)7D2¢(i‘a£>) S 0

for all (2,1) € Q and ¢ € C*(Q) satisfying u — ¢ attains its local minimum at
(&, 1).

Moreover, u € C(Q) is said to be a wiscosity solution in @ of (3) if it is both a
viscosity subsolution and a viscosity supersolution in @ of (3).

Furthermore, viscosity solutions of the Cauchy-Dirichlet problem (3), (4) are
defined as follows:

Definition 2. A function v € USC(Q) (resp., LSC(Q)) is said to be a viscosity
subsolution (resp., supersolution) in @ of (3), (4) if u is a viscosity subsolution
(resp.,iupersolution) in @ of (3), u < ¢ (resp., u > ) on PQ. Furthermore,

u € C(Q) is a viscosity solution in @ of (3), (4) if it is both a viscosity subsolution
and a viscosity supersolution in @ of (3), (4).

Applying Theorem 8.2 and related remarks of [8], the comparison principle for
(3), (4) is immediately derived, and moreover, it also implies the continuous depen-
dence on initial-boundary data ¢ and the uniqueness of solutions.

Theorem 1 (Comparison and uniqueness). Let 2 be a bounded domain in RN with
boundary 0Q and let u € USC(Q) and v € LSC(Q) be a viscosity subsolution and
a viscosity supersolution in Q = Q x (0,T) of (3), respectively, such that u < v on
PQ. Then u < v in Q.

In particular, let 1, p2 € C(Q) and let uy and ug be viscosity solutions in Q of
(3), (4) with the initial-boundary data 1 and 2, respectively. Then it follows that

sup |u1(x,t) _u2($at)| < sup |‘P1($at) —(pg($,t)|, (7)
(w,t)eQ (z,t)EPQ

which also implies the uniqueness of solutions.

Proof of Theorem 1. Due to Theorem 8.2 of [8], the comparison part follows imme-
diately. Now, let u; and us be viscosity solutions of (3), (4) with the initial-boundary
data o1 and (s, respectively, and put w® (z,t) := us(z,t) £+ SUP(y pepq lp1 (@, 1) —
p2(z,t)]. Then the functions w™ and w™ become a viscosity subsolution and a
viscosity supersolution of (3), (4) with ¢ replaced by ¢; respectively. Thus we have

w” <wu <w' inQ,
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which implies (7). In particular, if ¢1 = @2 on PQ, then the uniqueness of solutions
follows. O

As for the existence of solution, we first introduce the following assumption.

For all z¢ € 09, there exists yo € RY such that |z — yo| = R
and {z € RY; |z — yo| < R} N Q = () for some positive constant R (8)
independent of xg.

This assumption is employed only for the construction of approximate solutions in
classical sense (see Theorem 4.4 of [19, Chap. VI, p. 560]). Now, our result reads:

Theorem 2 (Existence). Let Q be a bounded domain in RN with boundary 0 and

let @ = Q x (0,T). Suppose that (8) is satisfied. Then, for every ¢ € C(Q), the

Cauchy-Dirichlet problem (3), (4) admits a viscosity solution u € C(Q) in Q such
that

sup |u(x,t)| < sup [p(w, )] 9)
(z,t)EQ (z,t)EPQ

3. Proof of Theorem 2. In this section, we give a proof of Theorem 2, which is
concerned with the existence of viscosity solutions of the Cauchy-Dirichlet problem
(3), (4). Firstly we deal with the case ¢ € H?t®1+2/2(Q) for some o € (0,1). We
then introduce the following approximation of (3), (4) for each ¢ € (0, 1).

(ue)e = € (|Duc® + €) Auc + Asue  in - Q, (10)
Us = @ On PQ (11)
Define a5; € C*(RY) and P. € C(R x RN x SV) by

afj(p> :€(|p|2+€>51] +p1pj7 Za]:15275Na pGRN

and

PE(Svan) = a;(p)X”*S, (Svan)ERXRNXSN

Then (10) is rewritten into

P.((uo)¢(x,t), Duc(x,t), D*uc(z,t)) =0, (2,t) € Q.
Moreover, we observe that

e(lpl® + )€l < a5;(p)&i&s < {e(pl® +¢) + Ip*} €[
for all £ € R, and furthermore

’ das;
Opk
Thus, since ) satisfies (8), Theorem 4.4 of [19, Chap. VI, p. 560] ensures that

the Cauchy-Dirichlet problem (10), (11) admits a classical solution u. € C(Q) N
H?*te14e/2(Q) for each e € (0,1).

We now proceed to establish a priori estimates for classical solutions u. of the
Cauchy-Dirichlet problems (10), (11) for each & € (0,1). To derive the convergence
of u. as € — 40, thanks to the stability of viscosity solutions, it suffices to obtain a
Holder estimate for u. on @, which implies the precompactness of u. in C(Q). The
following lemma provides an L*>°-estimate for u..

(L+[p)® <C@+p)?*, i4k=1,2,....N.
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Lemma 1 (L>-estimate). Let Q be a bounded domain in RY with boundary 9
and let u € C(Q)NC*H(Q) be a classical solution in Q = Q2 x (0,T) of the Cauchy-

Dirichlet problem (10), (11) with ¢ € C(Q). Then we have

Proof of Lemma 1. The function wt(z,t) = |p|e (resp., w™(z,t) = —|p|eo) be-
comes a classical supersolution (resp., subsolution) in @ of (10), (11), so the clas-
sical comparison principle (see, e.g., Theorem 9.1 of [20, p. 213]) implies that
|uloo < [#loc- O

We have several steps to establish a Holder estimate for u. in Q. The first step
is concerned with a Lipschitz estimate for u.(x,-) at t = 0 (see Lemma 2), and the
second step yields a Lipschitz estimate at any ¢ € (0,7T) (see Lemma 3). In the third
step, we estimate a Holder constant of u.(-,t) on 9 (see Lemma 4). Hence these
three steps imply a boundary Holder estimate on PQ (see Lemma 5). Finally, we
derive a global Holder estimate for u. in @ from the boundary Holder estimate (see
Lemma 6). Our derivations of these estimates are due to the similar barrier function
argument as in [16], and we also employ the translation invariance of the equation
(10) to extend Lipschitz and Holder estimates established only on the boundary,
e.g.,t =0, 00, PQ, as in [18] (a similar argument using the translation invariance
of an equation is also found in [13, Corollary 2.11]).

Lemma 2 (Lipschitz estimate for u.(z, ) at ¢ = 0). Let Q be a bounded domain
in RN with boundary 0Q and let u € C(Q) N C*1(Q) be a classical solution in
Q=0 x (0,T) of the Cauchy-Dirichlet problem (10), (11) with ¢ € C*1(Q). Then
it follows that

lu(x,t) — @(x,0)| < Myt for allt € (0,T) and z € Q, (12)
where My := 2(|Dp|% + 1)|D%*¢|oc + |0t|co-
Proof of Lemma 2. Put w*(z,t) = ¢(x,0) £ Mt and observe that
P(w; (z,t), Dw™ (z,t), D*w™ (x,1))
— — My + a5, (Dg(, 0)) D2 o(x, 0)
< = My +e(|Dgl3, + €)[D? ¢l + |Dol3 | D*ploc <0
for all (x,t) € Q. Moreover, if (z,t) € PQ, then
wh(zt) = ¢(x,0)+ Mt

p(@,1) = [prloot + Mit > p(x,1).
We can also deduce that P(w; (z,t), Dw™ (x,t), D*>w™ (x,t)) > 0 for all (z,t) € Q

and w~ < ¢ on PQ. Therefore the classical comparison principle ensures that
w” <u <w?' in Q. Hence we obtain (12). O

Y

By using the translation invariance of the equations (10) and the above lemma,
we can obtain a Lipschitz estimate for u.(z,-) in (0,7).

Lemma 3 (Lipschitz estimate for uc(z,-) in (0,7')). Let Q be a bounded domain
in RN with boundary 0Q and let u € C(Q) N C*Y(Q) be a classical solution in
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Q= Q2 x (0,T) of the Cauchy-Dirichlet problem (10), (11) with ¢ € C*'(Q). Then
it follows that

lu(z,t) —u(z,s)| < Mylt—s|  forallt,s € (0,T) andx € Q,  (13)
where My = 2(|D¢l%, + 1)|D?*¢loo + [@t]oo-
Proof of Lemma 3. Let h € (=T, T) be fixed and set Q, = Q x (h,T + h). Putting

v(x,t) = u(z,t — h), we see that v remains to be a classical solution in Qp, of (10),
(11) with ¢ replaced by ¢(-,- — h). Hence, by Lemma 2, we infer that

[v(x,t) —u(z, t)| < Mi|h| for all (z,t) € B(Q N Qp).
Here we used the fact that ¢ = max{0, h} if (x,t) € B(QN Q). Thus we can derive
u < v+ Milh| on B(Q N Q). Moreover, if (z,t) € S(Q N Qp,), then we see that
(z,t) € SQ, which implies that
v(x,t) + Mi|h| = w(z,t—h)+ Mi|h|

= @(xz,t —h)+ M|h|

z pla,t) = u(,t).
Therefore, since u(x,t) < v(x,t) + Mi|h| for all (z,t) € P(Q N Qp) and v + My |h|
also becomes a classical supersolution in QNQ)y, of (10), it follows that u < v+ M |h|
in @ N Q. Repeating the above argument with v + Mj|h| replaced by v — M |h|,
we can deduce that v — Mylh| < u < v+ Milh| in Q N Qp, which also gives
lu(z,t) — u(z,t — h)| < Mylh| for all (z,t) € Q N Qp. Furthermore, from the
arbitrariness of h, we can verify (13). O

We next establish a Holder estimate for u.(-,¢) on 9.

Lemma 4 (Hélder estimate for u.(-,t) on Q). Let Q be a bounded domain in RN
with boundary 0Q and let o € (0,1) and R > 0 be fired. Let u € C(Q) N C%1(Q)
be a classical solution in @ = Q2 x (0,T) of the Cauchy-Dirichlet problem (10), (11)

with ¢ € C(Q) satisfying

|(10t|oo < o0
oz, t) —ply,t
and <(,0>31Q = s.up{| ( |z) y|°(‘ )

Then there exist constants eg = eo(N, o, R) > 0 and Mz = Ma(|¢|co, |¢t]oo, (P)5 0
N, a, R) > 0 such that if ¢ < gg then
[u(@,t) — p(xo,to)| < Ma(|lz — 20|* +10 — 1)
for all (zo,t0) € SQ, x € QN Br(xo) and t € (max{0,to — 1},10),
where Br(zo) := {z € RY; |z — x0| < R}.

In particular, the same conclusion also follows with Q N Br(xo) replaced by Q by
choosing R > 0 enough large.

Proof of Lemma 4. Let (x9,t9) € SQ and « € (0,1) be fixed and define
wh(z,t) = p(zo,t0) + K|z — 20|* + p(to — 1)

for all z € Br(zo) := {z € RV;|x — 29| < R} and all t < ¢, with positive constants
x and p which will be determined later. Observing that

ix,y € Qx#£y,te [O,T]} < oo.

wi(z,t) = —p, Diw"(z,t) = kalr — z0|* 2(x — 0)s,

ijuﬁ(z, t) = ka(a — 2)|z — x0|”‘74(:c —z0)i(x —x0); + Koz — x0|”‘725ij,
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we then see that
AswT (z,t) = zo|* (k) (a0 — 1) |z — x>~
Thus it follows that
—w (x,t) + afj(Der(z, t))DZ-ijJr (z,t)
=p+ (ka)® {e(a =2+ N)+a— 1} |z — zo)>**
+e*ka(a — 2+ N)|z — 20]|* 2.

Here taking € > 0 enough small such that

1
5(a—2+N)+a—1<§(a—1),

we have
—wf (z,t) + a5;(Dw™ (z,4)) Dfw* (x,1)
3
<p+ @(a — D]z — 202 * + ?ka(a — 24+ N)|z — 2|2
2
=p + kalr — x| 2 {(ﬁ%)(a — Dz — 20?2 +%(a -2+ N)}

2
<p+ Kalr — x| 2 {(ﬁ%)(a —DR* ? 4% a— 2+N)},

where we used the fact that |z — 2| < R. Note that

(k)

(a—DR* 24 *a—-2+N) <

provided that x > 1 and ¢ is enough small so that
o2
Z(a ~1)R* % 4+ e*a—-2+N)<O0.

Thus
—w (x,t) + af;(Dw™ (z, t))DZ-ijJr(z, t)

3
<p+ @(a — 1)R?* 2|z — 2|2

3
<p+ @(a — 1)R30‘_4.
Therefore taking x enough large such that 4p < (ka)3(1 — a)R3**~%, we conclude
that
7w;r(1., t) + a%(D’LU-i_(:C, t))D?j’LU+(:L', t) S 0

for all z € Br(zo) N Q and all ¢ < to.
We next prove that wt > u on P((Br(xo) N Q) x (to — 1,tp)) for the case that
to > 1. To do so, we divide our proof to the following three cases:

(i): Let « € (0BRr(z0))NQ and t < ty be fixed. From the fact that |z —x¢| = R,
we then see that

er(SC,t) = (P(xo,to) +rR™ + p(to - t) 2 (,O(SCo,to) +KkR™ > |<10|00 2 ’LL(SC,t),
provided that k > 2|¢|e/R.
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(ii): Let = € Br(zo) NOQ and t < ty be fixed. Since (x,t) = u(x,t), it follows
that

'LU+(.T,t) = (,D(ZC,t) - (P(.’L',t) + (10($Oat0) + "€|$ - -T0|a + p(tO - t) > U((E,t),

provided that & > ()5 o and p > |¢¢fec.
(iii): Let z € Br(xo) N and let ¢ =ty — 1 be fixed. Then

wh(x,t) = (w0, t0) + Kla — x0|™ 4+ p > @(x0,t0) + p > |Ploc > ulz, 1),

provided that p > 2|¢|eo-

Now as for the case where ty < 1, we use (Br(zo) N Q) x (0,%p) instead of the
cylinder used in the last case. Then it is easily seen that, for x € Br(zg) N Q and
t=0,

wt (x,0) = p(xo,to) + k|l — 20|* + pto > ¢(2,0) = u(x,0),

provided that k& > (p)3 o and p > |¢¢]oo-
Therefore the comparison principle ensures that

u<w" on Bg(re)NQ x max{0,ty — 1},%).

Repeating the same argument with the function w™ (x,t) := p(xo, to) — K|z — 20|~ —
p(to — t), we can also obtain w~ < u on Br(xo) N x [max{0,ty — 1},%o]. Conse-
quently, we can deduce that

lu(z,t) — @(x0, to)| < K|z —z0|™ + p(to — 1)
for all (xo,tp) € SQ and x € Br(xo) N Q and ¢t € [max{0,ty — 1}, to]. O
Thus Lemmas 2 and 4 imply the following:

Lemma 5 (Holder estimate on PQ). Let Q be a bounded domain in RN with
boundary 0 and let o € (0,1). Suppose that (8) is satisfied. Letu € C(Q)NC*(Q)
be a classical solution in Q@ = Q x (0,T) of the Cauchy-Dirichlet problem (10), (11)
with € € (0,0) and p € C>1(Q). Then it follows that

[u(@,t) — p(xo,to)] < Ms (|o — zo|™ + [t — to]) (14)
for all (xq,t0) € PQ and (z,t) € Q,
where Ms = My + My + (gp)ia()?
Proof of Lemma 5. For the case: (x,t9) € SQ, by virtue of Lemmas 3 and 4,

lu(z,t) —p(zo,t0)] < [u(x,t) —ulw,to)| + |u(z, to) — @(x0, to)]
S M1|t07t|+M2|SC07£C|a.

For the case: (xq,tp) € BQ, that is, to = 0, by Lemma 2, we also have
lu(z, t) — p(zo, to)| < [ulz,t) — (z,0)] + |¢(x,0) — ¢(x0,0)|
< Mit+ (@) leo — 2l
Hence (14) follows. O

A

Now, we extend the above Holder estimate on the parabolic boundary PQ into
the parabolic domain @ in the following lemma, which is derived from Theorem 6
of [18], but for the completeness we give a proof.
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Lemma 6 (Global Holder estimate). Let Q be a bounded domain in RN with bound-
ary 0 and let o € (0,1). Suppose that (8) is satisfied. Let u € C(Q) N C*1(Q)
be a classical solution in Q@ = Q x (0,T) of the Cauchy-Dirichlet problem (10), (11)
with € € (0,20) and ¢ € C*Y(Q). Then it follows that

u(z,t) —uly, )| < My (Je —y|* + [t = s|) for all (z,1),(y,s) € Q, (15)

where Ms = My + My + <<p>§5022

Proof of Lemma 6. Let h := (hy, ht) € RY x R be fixed and let Q + h := {(z,t) €
RN+ (. — hy, t — hy) € Q}. Moreover, put v(z,t) = u(z — hy,t — hy). We then find
that v still remains to be a classical solution in @+ h of (10), (11) with ¢ replaced by
@(-—hg,-—ht). Then, by Lemma 5, we can assure that, for (z,t) € P{QN(Q+h)},
[v(z,t) — u(x,t)] < Mslh|a,1, where |hlo,1 = |hg|* + |he]; hence, v — Ms|h|o1 <
u < v+ Ms|hlo1 on P{Q N (Q + h)}. Furthermore, since v + Msz|h|q,1 also become
classical solutions in @ N (Q + k) of (10), the classical comparison theorem ensures
that v — M3|hla1 < u < v+ Mslh|e,1 in Q@ N (Q + h). From the arbitrariness of h,
we can verify (15). O

By virtue of the global Holder estimate for w. in Lemma 6 and Ascoli-Arzela’s
compactness theorem, taking a sequence €,, — +0, we can deduce that

ue, — v uniformly on Q (16)
as €, — +0. We also note that
P.(s,p,X) — P(s,p,X) as e — +0, forall (s,p,X) € R x RN x V.

Therefore the stability of viscosity solutions (see, e.g., Section 6 of [8]) ensures that
the limit u becomes a viscosity solution of (3), (4).

Secondly we proceed to the case ¢ € C(Q). By virtue of Weierstrass’s approxi-
mation theorem (see, e.g., 1.29 Corollary of [1, p. 10]), we can take an approximate
sequence ¢, € H>tol+a/2 (Q) such that ¢,, — ¢ uniformly on Q. Hence, due to
the last case, there exists a viscosity solution w, of (3), (4) with ¢ replaced by ..
Moreover, by Theorem 1,

sup |un('r’t) - um(xat” < sup |(Pn('r’t) - (Pm(xat” —0
(z,t)EQ (z,t)EPQ

as n,m — +o0o. Thus (u,) forms a Cauchy sequence in C(Q), so u, — u uniformly
on (). Therefore, from the stability of viscosity solution, u also becomes a viscosity

solution of (3), (4) with the initial data ¢ € C(Q). Furthermore, as in Lemma 1,
(9) follows immediately. This completes our proof of Theorem 2.

REFERENCES

[1] A.R. Adams, “Sobolev Spaces,” Academic Press, 1978.

[2] G. Aronsson, Eztension of functions satisfying Lipschitz conditions, Ark. Mat., 6 (1967),
551-561.

[3] G. Aronsson, On the partial differential equation u2uzq + 22Uz Uy Ugy +u§uyy = 0, Ark. Mat.,
7 (1968), 395-425.

[4] G. Aronsson and M. Crandall and P. Juutinen, A tour of the theory of absolutely minimizing
functions, Bull. Amer. Math. Soc., 41 (2004), 439-505.

[5] T. Bhattacharya, An elementary proof of the Harnack inequality for mnon-negative infinity-
superharmonic functions, Electron. J. Differential Equations, 2001 (2001), 1-8.

[6] T. Bhattacharya, A note on non-negative singular infinity-harmonic functions in the half-
space, Rev. Mat. Complut., 18 (2005), 377-385.



DEGENERATE PARABOLIC EQUATION WITH THE INFINITY-LAPLACIAN 27

[7] M.G. Crandall and L.C. Evans and R.F. Gariepy, Optimal Lipschitz extensions and the in-
finity Laplacian, Calc. Var. Partial Differential Equations, 13 (2001), 123-139.

[8] M.G. Crandall and H. Ishii and P.L. Lions, User’s guide to viscosity solutions of second order
partial differential equations, Bull. Amer. Math. Soc., 27 (1992), 1-67.

[9] M.G. Crandall and P-Y. Wang, Another way to say caloric, J. Evol. Equ., 3 (2003), 653-672.

[10] L.C. Evans and Y. Yu, Various properties of solutions of the infinity-Laplacian equation,
Comm. Partial Differential Equations, 30 (2005), 1401-1428.

[11] N. Fukagai and M. Ito and K. Narukawa, Limit as p — oo of p-Laplace eigenvalue problems
and L°-inequality of the Poincaré type, Differential Integral Equations, 12 (1999), 183-206.

[12] T. Gaspari, Infinity Laplacian in infinite dimensions, Calc. Var. Partial Differential Equa-
tions, 21 (2004), 243-257.

[13] Y. Giga and S. Goto and H. Ishii and M.-H. Sato, Comparison principle and convezity pre-
serving properties for singular degenerate parabolic equations on unbounded domains, Indiana
Univ. Math. J., 40 (1991), 443-470.

[14] T. Ishibashi and S. Koike, On fully nonlinear PDEs derived from variational problems of LP
norms, SIAM J. Math. Anal., 33 (2001), 545-569.

[15] R. Jensen, Uniqueness of Lipschitz extensions: minimizing the sup morm of the gradient,
Arch. Rational Mech. Anal., 123 (1993), 51-74.

[16] P. Juutinen and B. Kawohl, On the evolution governed by the infinity Laplacian, Math. Ann.,
335 (2006), 819-851.

[17] P. Juutinen and P. Lindqvist and J.J. Manfredi, The oco-eigenvalue problem, Arch. Ra-
tion. Mech. Anal., 148 (1999), 89-105.

[18] B. Kawohl and N. Kutev, Comparison principle and Lipschitz regularity for viscosity solutions
of some classes of nonlinear partial differential equations, Funkcial. Ekvac., 43 (2000), 241
253.

[19] O.A. Ladyzenskaja and V.A. Solonnikov and N.N. Uralceva, “Linear and Quasilinear Equa-
tions of Parabolic Type,” Translated from the Russian by S. Smith. Translations of Mathe-
matical Monographs, Vol. 23, American Mathematical Society, Providence, RI, 1967.

[20] G.M. Lieberman, “Second order Parabolic Differential Equations,” World Scientific Publishing
Co., Inc., River Edge, NJ, 1996.

[21] M. (A)tani7 L°-energy method and its applications, Nonlinear partial differential equations
and their applications, GAKUTO Internat. Ser. Math. Sci. Appl., Gakkotosho, Tokyo, 20
(2004), 505-516.

[22] O. Savin, C' regularity for infinity harmonic functions in two dimensions, Arch. Ra-
tion. Mech. Anal., 176 (2005), 351-361.

Received September 2006; revised January 2007.

E-mail address: g-akagi@sic.shibaura-it.ac.jp



