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Abstract. This paper is intended as an investigation of the solvability of Cauchy
problem for doubly nonlinear evolution equation of the form dv(t)/dt + 9 (u(t))
F(@), v(t) € O (u(t)), 0 < t < T, where dp’ and 97 are subdifferential operators, and
Oyt depends on t explicitly. Our method of proof relies on chain rules for ¢-dependent
subdifferentials and an appropriate boundedness condition on d¢; however, it does
not require either a strong monotonicity condition or a boundedness condition on
0v. Moreover, an initial-boundary value problem for a nonlinear parabolic equation
arising from an approximation of Bean’s critical-state model for type-II supercon-
ductivity is also treated as an application of our abstract theory.

1. Introduction. Various types of doubly nonlinear evolution equations have been
studied by many authors (see, e.g., [5, 10, 3, 14, 16, 15, 11]), and their results were
applied to quasilinear parabolic equations arising from physics, biology, mechanics
and so on. This paper is concerned with doubly nonlinear evolution equations
governed by time-dependent subdifferential operators in reflexive Banach spaces.

Let V and V* be a real reflexive Banach space and its dual space, respectively,
and let H be a Hilbert space whose dual space H* is identified with itself H such
that V' is continuously and densely embedded in H. Then, we consider

D) + 0 u(e) (1), o(t) € d(u(t)), 0<t<T, (1)

where 8y ¢! and 1) denote subdifferential operators of proper lower semi-continuous
convex functionals ¢! and 1 defined on V and H, respectively, and f is a given func-
tion from (0,7) into V*. We here emphasize that ¢! depends on t explicitly, and
this is one of main features of our problem.

In this paper, we aim at constructing a solution of Cauchy problem for (1) with-
out imposing either a strong monotonicity condition (cf. [14]) or a boundedness
condition (cf. [10, 15]) on dxt. To this end, we employ the chain rules for subdif-
ferentials of t-dependent functionals developed in [2] and make use of an appropriate
boundedness condition on dy¢. In Section 2, our main result on (1) is stated and
proved.
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In Section 3, as an application of our abstract theory, we deal with the following
initial-boundary value problem arising from some macroscopic model for type-II
superconductivity:

%|u|"_2u($,t) — Au(x,t) = f(a,t), (x,t) € Q% (0,T),
(IBVP) %(x,t) = —g(x, t)|ul""2u(z, t), (z,t) € 8Q x (0,T),
|u|672u(1‘a0) = jO(z)a z €,

where 0 > 1, f: Q2 x (0,7) = R and g : 92 x (0,T) — R are given.

2. Doubly Nonlinear Evolution Equation. Let V and V* be a real reflexive
Banach space and its dual space, respectively, and let H be a Hilbert space whose
dual space H* is identified with itself H such that

VCH=H*CV* (2)

with densely defined and continuous canonical injections.
In this section, we discuss the existence of solutions for the following abstract
Cauchy problem:

(CP) 5 O T (w(®) 3 f(t), o(t) € Ouv(u(t), 0<t<T,

where Oy o and 09 denote subdifferential operators of proper lower semi-continuous
convex functionals ¢! : V' — [0, +o00] and ¢ : H — [0, +00], respectively, for every
te€0,T].

We here recall the definition of subdifferential operator. Let ®(X) be the set
of all proper lower-semicontinuous convex functionals ¢ from a reflexive Banach
space X into (—oo, +00], where “proper” means ¢ # +o0o. Then, the subdifferential
Ox,x+¢(u) of ¢ € ®(X) at u is given by

Oxx-9(u) = {£€X%o(v) —d(u) = (§,v—u)x Vve D(@)},

where (-,-)x denotes the duality pairing between X and X* and D(¢) := {u €
X;¢(u) < +00}. Hence we can define the subdifferential operator dx x+¢ : X —
2% u = Ox x-¢(u) with the domain D(dx, x~¢) := {u € D(¢);dx x-¢(u) # 0}.
For simplicity of notation, we shall write dx¢ and (,-) instead of Ox x~¢ and
(-,-)x, respectively, if no confusion can arise. It is well known that the graph of
every subdifferential operator 0x ¢ becomes maximal monotone in X x X*.

In particular, if X is a Hilbert space H whose dual space is identified with itself,
i.e., H= H*, then the subdifferential Oy ¢(u) of ¢ € (H) at u can be written by

Opd(u) = {£€H;p(v) —o(u) = (§,v—u)n YveD(@)},

since (-, )y coincides with the inner product (-,-)g of H; moreover, we can always
find a unique element of least norm in 9y @(u), which is called minimal section of
O é(u) and denoted by (O @)°(u), for every u € D(0pd).

We are concerned with strong solutions of (CP) defined below.
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Definition 1. A pair of functions (u,v) : [0,7] — V x V* is said to be a strong
solution of (CP) on [0,T7] if the following (i)-(iv) hold true:

(i) v is a V*-valued absolutely continuous function on [0, T7;

(ii) u(t) € D(9u) N DOy ') for ae. t € (0,T);

(iii) There exist sections v(t) € Oyt (u(t)) and g(t) € dv ' (u(t)) such that
dv

dt
(iv)  w(t) — vo strongly in V* and weakly in H as t — +0.

(t)+g)=0 in V* for ae. t € (0,T); (3)

Our basic assumptions are the following. Let p,q € (1,400) be fixed.

(Ap!) There exist functions o € W4(0,T), 3 € Wh1(0,T) and a constant
§ > 0 such that for every to € [0, 7] and zg € D(p™), we can take a
function x : I5(to) := [to — ,to + J] N [0,T] — V satistying:
{ [#(t) = wolv < o() — ato)| {e(x0) + 1}/
Pl ((t) < 9" (x0) +1B(t) — Bto)[ {" (x0) + 1} Vt € I5(to).
(A1) There exists a constant C; such that
lull, < Ci{e*(u) +1} Vu € D(¢"), Vt € [0,T].
(A2) There exists a constant C such that
€8, < Cof{pt(u) + 1} V[u,€] € vy, vt € [0,T].
(A3) There exists a non-decreasing function ¢; : R — R such that
' (au) < @' (u) + M (" (W){[0ra ()| + 1}, YA >0, Yu € D(g"),
Vt € [0,T], where Jy denotes the resolvent of 9y, i.e., Jy = (I + \og)~*
with the identity I in H, and Oy, is the Yosida approximation of 0.
(A4) V is compactly embedded in H.

Our main result is now stated as follows:

Theorem 1. Suppose that (Ap?), (A1)-(A4) are all satisfied with p,q € (1,+00).
Then, for every f € L?(0,T;H) N Wl’p/(O,T;V*) and vg € {(Og¥)°(ug);up €
D(¢%) N D(0uv)}, (CP) admits at least one strong solution (u,v) such that

u € L®0,T;V). veCu(0,T); HynWh>(0,T;V*), ge& L>*0,T;V"),

where g denotes the section of Oy ¢t (u(t)) given in (3) and Cy([0,T); H) denotes the
set of all continuous functions from [0,T] into H equipped with the weak topology
o(H,H).

Before describing the proof of Theorem 1, we recall a couple of useful properties
of the Legendre-Fenchel transform ¢* of ¢ € ®(X) defined by

¢*(u) = sup {{u,v) —op(v)} Vue X".
veX
It is well known that ¢* belongs to ®(X*), and the following identity holds:

¢*(f) = <f7 u> - (b(u) V[U, f] € aXd’a

which also implies u € dx~¢*(f), i.e., Ox-¢* = (Ox o)~ L.
Moreover, we give a remark on the assumption (A3).
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Remark 1. By virtue of (A3), we have the following:
(9, 0a(u)r > —li(@" (W) {|0ma(u) |3 + 1}

Yu € D(Ove'), Vg € Oy ' (u) N H. (4)
Indeed, from the definition of the Yosida approximation dgy, we see
1 1
(9,95YxA(u))r = X(gvu —Hu)g > X {"(u) — " (Jru)} .

Thus (A3) implies (4).
We now proceed to the proof of theorem 1.

Proof of Theorem 1. We introduce the following approximate problem for (CP).

o). A1) L Dy ua(0) + Ol (mr () > 1), 0<t<T,
ux(0) = o,

where ug € D(¢°) N D(Oy) satisfies vg = (Og1))°(uo); ¥ denotes the Moreau-

Yosida regularization of 1; fy € C1([0,T]; H) and f\ — f strongly in L?(0,T;V*)

and weakly in L2(0,T; H)N W' (0, T; V*); moreover, ¢, is the extension of ¢! on

H defined by

t .
" o u) i uwev,
o (u) = { +0o0 otherwise.
We here notice that ¢4, € ®(H) and D(¢") = D(pY;), Oyl (u) C dyv¢t(u) for all
u € V and t € [0,T]. Moreover, note that the mapping u — Au := Au + gy (u)
is Lipschitz continuous in H and satisfies
Nu—v% < (Au— Av,u—v)g VYu,v € H.

Hence in much the same way as in the proof of Theorem 2.8.1 of [13], we can verify
the existence of solutions uy € W2(0,T; H) for (CP),.

For simplicity, we write vy(t) and vg x instead of g (ux(t)) and dpipx(uo),
respectively; moreover, put g (t) := fa(t) — Adux(t)/dt — dvx(t)/dt € Ol (ux(t)).
Now we have the following a priori estimates.

Lemma 1. There exists a constant C' such that

T 2
)\/ N ) (5)
sup o' (ur(t)) < C. (6)
t€[0,T]
Proof of Lemma 1. Multiply (CP), by dux(t)/dt to get
dU)\ 2 dU)\ dU)\ dU)\ dU)\
Al—=(t —(t), —( t), — (1 = t), —(t
2o +(Rogo) +(ea0.50) = (ro5e)

for a.e. t € (0,7"). We here notice that

(r0.%20) = SO - (Ro.ue)

0 < (F0Go) .

and
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since vx(t) € Oua(ur(t)) and dyipy is monotone in H. Moreover, by (Apt),
Lemma 2.12 of [2] implies

Getntus0) - (0. %20) |
< [a(®)lga @) lv- {elr (ua()) + 139+ |B() {elr (ua(t)) + 1}
for a.e. ¢ € (0,7). Hence, by using (A2), we obtain

2 4q

Do)+ gty (un(r)

S|
d
< C{Ia(>|+lﬂ et +1) + GO0 - (B0 0)

for a.e. t € (0,T). Moreover, integrating both sides over (0,t) and using (A1) and
(A2), we have

t
,
0 H

T T
< so%<uo>+c{ / j6(r)dr + / B)ldr + sup |-

T€[0,T

T |df
E(T)

p/
1
dr + 1} + =l (ua(t))
V* 2

+0 [ (1ol + 1901+ 1} oh o

Thus Gronwall’s inequality yields (5) and (6). O
Lemma 2. There exists a constant C' such that
sup |loa(®)lg < C. (7)
te[0,T)

Proof of Lemma 2. Multiplying (CP), by vx(t), we have

A%l/u(w(t)) 1i|UA()|§1+(gA(t)70A(t))H < AOlEloa®]e (8)

2dt
for a.e. t € (0.T"). Moreover, by virtue of Remark 1 and (6), it follows that
(r@),vx@)r = —0(C) {|ua(®)|F + 1} (9)

Hence integrating (8) over (0,t) and applying Gronwall’s inequality, we get (7). O

Lemma 3. There exists a constant C such that

sup |lua(®)lv < G, (10)

te(0,T]

sup [gr(t)lv- < C, (11)
te[0,T]

T 2

d’l),\

—=(t dt < 12
|Gl w < e (12)
sup |J,\u,\( v < C, (13)
t€[0,T]

where Jy denotes the resolvent of Ou), that is, Jy := (I + \oy)~*
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Proof of Lemma 3. A priori estimates (10) and (11) follow immediately from
(A1), (A2) and (6). Moreover, by using (CP), and the a priori estimates (5) and
(11), we can verify (12), since fy is bounded in L?(0,T;V*). Finally, by virtue of
(A1) and (A3), we can deduce (13) from (6) and (7). O

From these a priori estimates, we can take a sequence A, in (0, 1] such that
An — 40 and the following lemmas hold.

Lemma 4. There exist u € L°(0,T;V) and v € C,([0,T]; H) N W12(0,T;V*)
such that

A dzz" —0 strongly in L*(0,T; H), (14)
Uy, — U weakly in L2(0, T;V), (15)

Iy, un, — u weakly in L*(0,T;V), (16)
Uy, — U weakly in L*(0,T; H) N W2(0,T; V*), (17)
strongly in C([0,T]; V™), (18)

o, (T) — v(T) weakly i H. (19)

Moreover, we have v(t) € dyp(u(t)) for a.e. t € (0,T). Furthermore, v(t) — vg
strongly in V* and weakly in H as t — +0.

Proof of Lemma 4. First, (14) and (15) are derived immediately from (5) and
(10), respectively. Moreover, we can deduce v € L*(0,T;V) from (10) (see the
proof of Lemma 4 of [1] for more details). Now (13) yields Jy, uy, — w weakly
in L2(0,T;V) for some w € L?(0,T;V). We then claim w = u. Indeed, by the
definition of dy )y, it follows from (7) that
sup |ux(t) — Jhux(t)|g =X sup |uoa(t)|lg < AC =0
te[0,T te[0,T
as A — 0. Thus we obtain w = u. Now (17) follows from (7) and (12). Moreover,
since vy is bounded in L®(0,7; H) N W2(0,T;V*), by (A4), Ascoli’s compact-
ness lemma ensures (18). Moreover, by (7), we can also verify v € L*(0,T; H);
hence, since L>(0,T; H)NC([0,T]; V*) C Cw([0,T]; H), we have v € C,,([0,T; H).
Furthermore, (7) and (18) also yield (19).
Now note that (16) and (18) imply

/ (o, (8), Jn un, ()t = / (o, (£), T, un,, (1))
0 0
T T
. /(v(t),u(t)>dt:/ (W (), u(®))mdt  (20)
0 0

as A, — 0, and (16) also yields
Iy, Un, — U weakly in L?(0,7T; H). (21)

Hence, by Lemma 1.3 of [4] and Proposition 1.1 of [12], it follows from (17), (20)
and (21) that v(t) € gy (u(t)) for a.e. t € (0,T).
Finally, we check the initial condition for v. By (12), it follows that
d’U)\n

v [ [

which together with (18) and the fact that vg x, — vo strongly in H implies

dr < CY2\A4,
V*

[oa,, (t) = vo,x,

v(t) — vo strongly in V* as ¢t — +0.
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Moreover, since v € C,, ([0, T]; H), we also deduce that v(t) — vy weakly in H. O
Finally, we prove the convergence of gy, in the following:
Lemma 5. There exists a function g € L*°(0,T;V*) such that
gr, — ¢ weakly in L*(0,T;V*). (22)
Mm(“eover, g)(t) = f(t) — dv(t)/dt € dy'(u(t)) for a.e. t € (0,T), and dv/dt €
L0, T; V*).

Proof of Lemma 5. By (11) and Lemma 4, there exists a function g € L2(0,T;V*)
such that (22) holds true and g = f — dv/dt; moreover, we can also verify g €
L*>(0,T;V*), which implies dv/dt € L>(0,T;V*). So it remains to show that
g(t) € Oyl (u(t)) for a.e. t € (0,7). Multiply g, (t) by ux, (t) and integrate this
over (0,7). We then see

/0 (g, (1), ux, (1)) dt

-/ (., ()t — A /OT (= 0.0) u

- /OT <d:}£” (t), Jx, ux, (t)> dt — /OT <d:}£” (t),un, (t) = Jx,ua, (t)> dt

r An 2 A g
| O, @)t = F s, (D + Gl

* . An An
—¢"(0x, (T) + 97 (vox,) = 5o, ()7 + 7|Uo,An|§{7
since the fact that vy, (t) € Opy(Jxa,ua,(t)) is equivalent to that Jy, ux,(t) €
O™ (va, (t)), where ¢* denotes the Legendre-Fenchel transform of ¢ € ®(H), i.e.,

*(u) = sup,ep{(u,w)g — Y(w)}. Here since vo x, € OgY(Jr,uo), vo,x, — Vo
and Jy,up — uo strongly in H, we get

1i;n sup ™ (vo,z, ) = Alimo(m’)\n, I, Uo)H — li/\m ir(l)fz/J(JAnuo) < ¢*(vg),
n—0 n n—

which together with the lower semi-continuity of ¥* implies ¥*(vo.x,) — ¥*(vo).
Hence, by virtue of Lemma 4, we can deduce

timsup [ (ga, (0 ur, (Ot < [ (70, uO)dt — " (o) + 0" ().
An—0 JO 0
We here notice that

P (o(T)) = 32€{<U(T),w> —¢(w)} = (¥lv)* (u(T)),

vo € Imyp(uo) C Ay (|v)(uo),
¥*(vo) = (vo, uo)rr — P (uo) = (vo, o) — P (ug) = (Y|v)"(vo),
where 1|y denotes the restriction of ¢ on V; moreover, we also observe u(t) €

Ov=(Yv)*(v(t)), since v(t) € O (u(t)) C dv (¢Y|v)(u(t)). Therefore, by Lemmas
2.10 and 2.11 of [2], we find that

=" (M) +¢*(w) < =) (0(T)) + (blv)"(vo)

_ /OT <%(t>,u(t)>dt.
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Thus Lemma 1.3 of [4] and Proposition 1.1 of [12] imply ¢(t) = f(t) — dv(t)/dt €
Ay t(t) for a.e. t € (0,T). O

3. Macroscopic Model for Type-II Superconductivity. In 1964, C. P. Bean [6]
proposed a macroscopic critical-state model for type-II superconductivity charac-
terized by the following correspondence between the electric field e and the current
density j:

®) ] il e 1 if |e| >0,
e b .
b 0,1 if |e| = 0.

Moreover, the following power approximation (B), is often used in place of (B):
(B), i=lel" e

with o € (1,400) enough close to 1, because of the strong nonlinearity of (B).

On the other hand, just as in [9], the dynamics of the electric field e(z,t) =
(0,0,u(z,t)) and the current density j(z,t) = (0,0,5(z,t)) in an infinitely long
cylindrical type-II superconductor € x (—oo,400) can be described by

0
5 (@ 1) = Aulz,t) = f(z,1), (2,¢) € 2 x(0,T), (23)
where ) denotes a bounded domain in R2. Furthermore, the current-voltage law
(B), is reduced into the following 2 dimensional form:

gz, t) = |u|"u(x,t), (x,t) € Qx(0,T). (24)

In this section, we apply the abstract theory developed in Section 2 to the initial-
boundary value problem (IBVP), which is obtained by imposing the following non-
linear boundary condition and an initial condition on (23) with (24):

Ju

%(z,t) = —g(z,t)j(z,t), (x,t) €90 x(0,T), (25)

under the following assumptions:
g € WHH(0,T; L>(09)),  g(x,t) = g0 >0, (x,t) € 92 x (0,T). (26)

To this end, we reduce (IBVP) into an abstract Cauchy problem in the form of (CP).
Put V := H'(Q) and H := L*(Q) equipped with the norms: |- |y := |V - |p2(q) +
| - |z2(00) and |- |[g = | - [z2(q), respectively. Then, since €2 is a bounded domain
in R? with smooth boundary 99, we observe that V is densely and continuously
embedded in H. Moreover, V is also continuously embedded in L"(92) for any
r € [1,400), and |- |y is equivalent to the norm || - |lv := |V - |p2(q) + | - [Lr(00)-
Now define ¢!, : V — [0, +00) and 1, : H — [0, +0o0] as follows:

B (u) = %/Q|Vu(x)|2d:c+%/6‘Qg(x,t)|u($)|adl" Yu eV,
1

VYo (u) = o 0 lu(z)|7dx  if uwe Lo(Q),

+00 otherwise.
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Then, we can easily see that ¢ € ®(V), ¢, € ®(H) and dv ¢, (u) coincides with
—Au equipped with the boundary condition (25) in the distribution sense. More-
over, Og,(u) is equivalent to |u(-)|”u(-) in H. Hence (IBVP) is rewritten as

dv ¢ . _
cpy, | GO NOEO)= S0, o) = ol 0<r<T,
v(0) = vp.

In order to apply Theorem 1 to (CP)_, we prepare the following lemma.

Lemma 6. Suppose that (26) is satisfied. Then, (A1)-(A4) and (Ap?) are satisfied
with @' and 1 replaced by ¢%. and 1,, respectively.

Proof of Lemma 6. For all u € V', we have, by (26),
1
o) = 5 [ Vu@Pde+ 2 [ ju@pdr = ol - 1),
2 Jo o Joo

where p := min{2,0} > 1. Hence (A1) holds with ¢! and p replaced by ¢! and p,
respectively. Moreover, for every [u,&] € Oy ¢l and w € V, we observe

(&w) = /QVu(:c) -Vw(z)dr + [999(x,t)|u|” u(x)w(x)dl

[Vulp2 (o) VL2 (o) + |9|L°°(6Q><(O,T))|u|z;(139)|w|LU(BQ)a

IN

which implies

€

Thus (A2) follows with ¢! = ¢! and ¢ = min{2,¢'} > 1.

Now let Jy and jy be the resolvents of Oy, and dg(c~1| - |7), respectively.
Then, (Jyu)(x) coincides with jy(u(x)) for a.e. x € Q, so |(Jau)(z)| < |u(z)| and
[(Jauw)(z + h) — (Jau)(z)] < |u(z + h) — u(x)| for a.e. x € Q (see the proof of
Corollary 16 of [8]). Hence it follows that

v < C{|Vulrzq) + IuIZZ(laQ)} Yu €V, Vt € [0,T].

dhm) = 3 [ ROw@P -+ [ g olE)a

L 2 1 x, t)|u(x)|”
3 [ IVu@Pds+ | gt oju@rar.

<

Therefore (A3) is satisfied with ¢! and ¢ replaced by ¢% and 1,, respectively.
Moreover, since €2 is bounded in R? and, 99 is smooth, (A4) also holds true.
Let to € [0,T] and ug € D(¢0) =V be fixed and define u(t) = ug. We then see

Su) = 6w+ [ {90~ gloto)Huo(e)7dr
o0
< 9l (uo) + 19 1) — g(-t0) L= (90)0 |uolTe a0
< B (uo) + g5 g, t) — g+ to) Lo a0y {BL (uo) + 1}

and |u(t) — ugly = 0. Hence (Ay') is satisfied with o' = ¢L, a = 0, =

o)

95" fg |079(-, T)| L (90)dT and an arbitrary number ¢ € [0, 4-00). O

Consequently, we have:
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Theorem 2. Suppose that (26) is satisfied and o € (1,400). Then, for ev-
ery jo € {v € L*(Q);3uy € HY(Q);|uo|”2up = v} and f € L*(Q x (0,7)) N
W00, T; (H'(Q))*) with p := min{2, o'}, there exists u : Q x (0,T) — R such that

u€ L>®(0,T; H(Q)),
lu|”~?u € C,([0,T]; L*(Q)) N W0, T; (H*(Q))*) N L>(0,T; L"(09Q))
for any r € [1,4+00),

<%|u|02u(.7t),w> /V’U,(ZL' t
+ [ gl Ol tule)ir = / (. u(z)da
o
Vw € HY(Q), for a.e. t € (0,T),
|u|” 2 u(-,t) — jo strongly in (H'())* and weakly in L*(Q) as t — +0.
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