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Abstract. This paper is intended as an investigation of the solvability of Cauchy
problem for doubly nonlinear evolution equation of the form dv(t)/dt + ∂ϕt(u(t)) ∋

f(t), v(t) ∈ ∂ψ(u(t)), 0 < t < T , where ∂ϕt and ∂ψ are subdifferential operators, and
∂ϕt depends on t explicitly. Our method of proof relies on chain rules for t-dependent
subdifferentials and an appropriate boundedness condition on ∂ϕt; however, it does
not require either a strong monotonicity condition or a boundedness condition on
∂ψ. Moreover, an initial-boundary value problem for a nonlinear parabolic equation
arising from an approximation of Bean’s critical-state model for type-II supercon-
ductivity is also treated as an application of our abstract theory.

1. Introduction. Various types of doubly nonlinear evolution equations have been
studied by many authors (see, e.g., [5, 10, 3, 14, 16, 15, 11]), and their results were
applied to quasilinear parabolic equations arising from physics, biology, mechanics
and so on. This paper is concerned with doubly nonlinear evolution equations
governed by time-dependent subdifferential operators in reflexive Banach spaces.

Let V and V ∗ be a real reflexive Banach space and its dual space, respectively,
and let H be a Hilbert space whose dual space H∗ is identified with itself H such
that V is continuously and densely embedded in H . Then, we consider

dv

dt
(t) + ∂V ϕ

t(u(t)) ∋ f(t), v(t) ∈ ∂Hψ(u(t)), 0 < t < T, (1)

where ∂V ϕ
t and ∂Hψ denote subdifferential operators of proper lower semi-continuous

convex functionals ϕt and ψ defined on V and H , respectively, and f is a given func-
tion from (0, T ) into V ∗. We here emphasize that ϕt depends on t explicitly, and
this is one of main features of our problem.

In this paper, we aim at constructing a solution of Cauchy problem for (1) with-
out imposing either a strong monotonicity condition (cf. [14]) or a boundedness
condition (cf. [10, 15]) on ∂Hψ. To this end, we employ the chain rules for subdif-
ferentials of t-dependent functionals developed in [2] and make use of an appropriate
boundedness condition on ∂V ϕ

t. In Section 2, our main result on (1) is stated and
proved.
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In Section 3, as an application of our abstract theory, we deal with the following
initial-boundary value problem arising from some macroscopic model for type-II
superconductivity:

(IBVP)























∂

∂t
|u|σ−2u(x, t) − ∆u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ),

∂u

∂n
(x, t) = −g(x, t)|u|σ−2u(x, t), (x, t) ∈ ∂Ω × (0, T ),

|u|σ−2u(x, 0) = j0(x), x ∈ Ω,

where σ > 1, f : Ω × (0, T ) → R and g : ∂Ω × (0, T ) → R are given.

2. Doubly Nonlinear Evolution Equation. Let V and V ∗ be a real reflexive
Banach space and its dual space, respectively, and let H be a Hilbert space whose
dual space H∗ is identified with itself H such that

V ⊂ H ≡ H∗ ⊂ V ∗ (2)

with densely defined and continuous canonical injections.
In this section, we discuss the existence of solutions for the following abstract

Cauchy problem:

(CP)







dv

dt
(t) + ∂V ϕ

t(u(t)) ∋ f(t), v(t) ∈ ∂Hψ(u(t)), 0 < t < T,

v(0) = v0,

where ∂V ϕ
t and ∂Hψ denote subdifferential operators of proper lower semi-continuous

convex functionals ϕt : V → [0,+∞] and ψ : H → [0,+∞], respectively, for every
t ∈ [0, T ].

We here recall the definition of subdifferential operator. Let Φ(X) be the set
of all proper lower-semicontinuous convex functionals φ from a reflexive Banach
space X into (−∞,+∞], where “proper” means φ 6≡ +∞. Then, the subdifferential
∂X,X∗φ(u) of φ ∈ Φ(X) at u is given by

∂X,X∗φ(u) := {ξ ∈ X∗;φ(v) − φ(u) ≥ 〈ξ, v − u〉X ∀v ∈ D(φ)} ,

where 〈·, ·〉X denotes the duality pairing between X and X∗ and D(φ) := {u ∈
X ;φ(u) < +∞}. Hence we can define the subdifferential operator ∂X,X∗φ : X →
2X∗

;u 7→ ∂X,X∗φ(u) with the domain D(∂X,X∗φ) := {u ∈ D(φ); ∂X,X∗φ(u) 6= ∅}.
For simplicity of notation, we shall write ∂Xφ and 〈·, ·〉 instead of ∂X,X∗φ and
〈·, ·〉X , respectively, if no confusion can arise. It is well known that the graph of
every subdifferential operator ∂Xφ becomes maximal monotone in X ×X∗.

In particular, if X is a Hilbert space H whose dual space is identified with itself,
i.e., H ≡ H∗, then the subdifferential ∂Hφ(u) of φ ∈ Φ(H) at u can be written by

∂Hφ(u) = {ξ ∈ H ;φ(v) − φ(u) ≥ (ξ, v − u)H ∀v ∈ D(φ)} ,

since 〈·, ·〉H coincides with the inner product (·, ·)H of H ; moreover, we can always
find a unique element of least norm in ∂Hφ(u), which is called minimal section of
∂Hφ(u) and denoted by (∂Hφ)◦(u), for every u ∈ D(∂Hφ).

We are concerned with strong solutions of (CP) defined below.
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Definition 1. A pair of functions (u, v) : [0, T ] → V × V ∗ is said to be a strong
solution of (CP) on [0, T ] if the following (i)-(iv) hold true:

(i) v is a V ∗-valued absolutely continuous function on [0, T ];

(ii) u(t) ∈ D(∂Hψ) ∩D(∂V ϕ
t) for a.e. t ∈ (0, T );

(iii) There exist sections v(t) ∈ ∂Hψ(u(t)) and g(t) ∈ ∂V ϕ
t(u(t)) such that

dv

dt
(t) + g(t) = 0 in V ∗, for a.e. t ∈ (0, T ); (3)

(iv) v(t) → v0 strongly in V ∗ and weakly in H as t→ +0.

Our basic assumptions are the following. Let p, q ∈ (1,+∞) be fixed.

(Aϕt) There exist functions α ∈W 1,q(0, T ), β ∈W 1,1(0, T ) and a constant

δ > 0 such that for every t0 ∈ [0, T ] and x0 ∈ D(ϕt0), we can take a

function x : Iδ(t0) := [t0 − δ, t0 + δ] ∩ [0, T ] → V satisfying:
{

|x(t) − x0|V ≤ |α(t) − α(t0)| {ϕt0(x0) + 1}1/q
,

ϕt(x(t)) ≤ ϕt0(x0) + |β(t) − β(t0)| {ϕt0(x0) + 1} ∀t ∈ Iδ(t0).

(A1) There exists a constant C1 such that

|u|pV ≤ C1{ϕt(u) + 1} ∀u ∈ D(ϕt), ∀t ∈ [0, T ].

(A2) There exists a constant C2 such that

|ξ|q
′

V ∗ ≤ C2{ϕt(u) + 1} ∀[u, ξ] ∈ ∂V ϕ
t, ∀t ∈ [0, T ].

(A3) There exists a non-decreasing function ℓ1 : R → R such that

ϕt(Jλu) ≤ ϕt(u) + λℓ1(ϕ
t(u)){|∂Hψλ(u)|2H + 1}, ∀λ > 0, ∀u ∈ D(ϕt),

∀t ∈ [0, T ], where Jλ denotes the resolvent of ∂Hψ, i.e., Jλ = (I + λ∂Hψ)−1

with the identity I in H, and ∂Hψλ is the Yosida approximation of ∂Hψ.

(A4) V is compactly embedded in H.

Our main result is now stated as follows:

Theorem 1. Suppose that (Aϕt), (A1)-(A4) are all satisfied with p, q ∈ (1,+∞).

Then, for every f ∈ L2(0, T ;H) ∩ W 1,p′

(0, T ;V ∗) and v0 ∈ {(∂Hψ)◦(u0);u0 ∈
D(ϕ0) ∩D(∂Hψ)}, (CP) admits at least one strong solution (u, v) such that

u ∈ L∞(0, T ;V ). v ∈ Cw([0, T ];H) ∩W 1,∞(0, T ;V ∗), g ∈ L∞(0, T ;V ∗),

where g denotes the section of ∂V ϕ
t(u(t)) given in (3) and Cw([0, T ];H) denotes the

set of all continuous functions from [0, T ] into H equipped with the weak topology

σ(H,H).

Before describing the proof of Theorem 1, we recall a couple of useful properties
of the Legendre-Fenchel transform φ∗ of φ ∈ Φ(X) defined by

φ∗(u) := sup
v∈X

{〈u, v〉 − φ(v)} ∀u ∈ X∗.

It is well known that φ∗ belongs to Φ(X∗), and the following identity holds:

φ∗(f) = 〈f, u〉 − φ(u) ∀[u, f ] ∈ ∂Xφ,

which also implies u ∈ ∂X∗φ∗(f), i.e., ∂X∗φ∗ = (∂Xφ)−1.
Moreover, we give a remark on the assumption (A3).
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Remark 1. By virtue of (A3), we have the following:

(g, ∂Hψλ(u))H ≥ −ℓ1(ϕt(u))
{

|∂Hψλ(u)|2H + 1
}

∀u ∈ D(∂V ϕ
t), ∀g ∈ ∂V ϕ

t(u) ∩H. (4)

Indeed, from the definition of the Yosida approximation ∂Hψλ, we see

(g, ∂Hψλ(u))H =
1

λ
(g, u− Jλu)H ≥ 1

λ

{

ϕt(u) − ϕt(Jλu)
}

.

Thus (A3) implies (4).

We now proceed to the proof of theorem 1.

Proof of Theorem 1. We introduce the following approximate problem for (CP).

(CP)λ







λ
duλ

dt
(t) +

d

dt
∂Hψλ(uλ(t)) + ∂Hϕ

t
H(uλ(t)) ∋ fλ(t), 0 < t < T,

uλ(0) = u0,

where u0 ∈ D(ϕ0) ∩ D(∂Hψ) satisfies v0 = (∂Hψ)◦(u0); ψλ denotes the Moreau-
Yosida regularization of ψ; fλ ∈ C1([0, T ];H) and fλ → f strongly in L2(0, T ;V ∗)

and weakly in L2(0, T ;H)∩W 1,p′

(0, T ;V ∗); moreover, ϕt
H is the extension of ϕt on

H defined by

ϕt
H(u) :=

{

ϕt(u) if u ∈ V,
+∞ otherwise.

We here notice that ϕt
H ∈ Φ(H) and D(ϕt) = D(ϕt

H), ∂Hϕ
t
H(u) ⊂ ∂V ϕ

t(u) for all
u ∈ V and t ∈ [0, T ]. Moreover, note that the mapping u 7→ Au := λu + ∂Hψλ(u)
is Lipschitz continuous in H and satisfies

λ|u − v|2H ≤ (Au−Av, u − v)H ∀u, v ∈ H.

Hence in much the same way as in the proof of Theorem 2.8.1 of [13], we can verify
the existence of solutions uλ ∈ W 1,2(0, T ;H) for (CP)λ.

For simplicity, we write vλ(t) and v0,λ instead of ∂Hψλ(uλ(t)) and ∂Hψλ(u0),
respectively; moreover, put gλ(t) := fλ(t)−λduλ(t)/dt− dvλ(t)/dt ∈ ∂Hϕ

t
H(uλ(t)).

Now we have the following a priori estimates.

Lemma 1. There exists a constant C such that

λ

∫ T

0

∣

∣

∣

∣

duλ

dt
(t)

∣

∣

∣

∣

2

H

dt ≤ C, (5)

sup
t∈[0,T ]

ϕt(uλ(t)) ≤ C. (6)

Proof of Lemma 1. Multiply (CP)λ by duλ(t)/dt to get

λ

∣

∣

∣

∣

duλ

dt
(t)

∣

∣

∣

∣

2

H

+

(

dvλ

dt
(t),

duλ

dt
(t)

)

H

+

(

gλ(t),
duλ

dt
(t)

)

H

=

(

fλ(t),
duλ

dt
(t)

)

H

for a.e. t ∈ (0, T ). We here notice that
(

fλ(t),
duλ

dt
(t)

)

H

=
d

dt
(fλ(t), uλ(t))H −

(

dfλ

dt
(t), uλ(t)

)

H

and

0 ≤
(

dvλ

dt
(t),

duλ

dt
(t)

)

H

,
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since vλ(t) ∈ ∂Hψλ(uλ(t)) and ∂Hψλ is monotone in H . Moreover, by (Aϕt),
Lemma 2.12 of [2] implies

∣

∣

∣

∣

d

dt
ϕt

H(uλ(t)) −
(

gλ(t),
duλ

dt
(t)

)

H

∣

∣

∣

∣

≤ |α̇(t)||gλ(t)|V ∗{ϕt
H(uλ(t)) + 1}1/q + |β̇(t)|{ϕt

H(uλ(t)) + 1}
for a.e. t ∈ (0, T ). Hence, by using (A2), we obtain

λ

∣

∣

∣

∣

duλ

dt
(t)

∣

∣

∣

∣

2

H

+
d

dt
ϕt

H(uλ(t))

≤ C
{

|α̇(t)| + |β̇(t)|
}

{

ϕt
H(u(t)) + 1

}

+
d

dt
(fλ(t), uλ(t))H −

(

dfλ

dt
(t), uλ(t)

)

H

for a.e. t ∈ (0, T ). Moreover, integrating both sides over (0, t) and using (A1) and
(A2), we have

λ

∫ t

0

∣

∣

∣

∣

duλ

dτ
(τ)

∣

∣

∣

∣

2

H

dτ + ϕt
H(uλ(t))

≤ ϕ0
H(u0) + C

{

∫ T

0

|α̇(τ)|dτ +

∫ T

0

|β̇(τ)|dτ + sup
τ∈[0,T ]

|fλ(τ)|p
′

V ∗

+|u0|pV +

∫ T

0

∣

∣

∣

∣

dfλ

dτ
(τ)

∣

∣

∣

∣

p′

V ∗

dτ + 1

}

+
1

2
ϕt

H(uλ(t))

+C

∫ t

0

{

|α̇(τ)| + |β̇(τ)| + 1
}

ϕτ
H(uλ(τ))dτ.

Thus Gronwall’s inequality yields (5) and (6).

Lemma 2. There exists a constant C such that

sup
t∈[0,T ]

|vλ(t)|H ≤ C. (7)

Proof of Lemma 2. Multiplying (CP)λ by vλ(t), we have

λ
d

dt
ψλ(uλ(t)) +

1

2

d

dt
|vλ(t)|2H + (gλ(t), vλ(t))H ≤ |fλ(t)|H |vλ(t)|H (8)

for a.e. t ∈ (0.T ). Moreover, by virtue of Remark 1 and (6), it follows that

(gλ(t), vλ(t))H ≥ −ℓ1(C)
{

|vλ(t)|2H + 1
}

. (9)

Hence integrating (8) over (0, t) and applying Gronwall’s inequality, we get (7).

Lemma 3. There exists a constant C such that

sup
t∈[0,T ]

|uλ(t)|V ≤ C, (10)

sup
t∈[0,T ]

|gλ(t)|V ∗ ≤ C, (11)

∫ T

0

∣

∣

∣

∣

dvλ

dt
(t)

∣

∣

∣

∣

2

V ∗

dt ≤ C, (12)

sup
t∈[0,T ]

|Jλuλ(t)|V ≤ C, (13)

where Jλ denotes the resolvent of ∂Hψ, that is, Jλ := (I + λ∂Hψ)−1.
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Proof of Lemma 3. A priori estimates (10) and (11) follow immediately from
(A1), (A2) and (6). Moreover, by using (CP)λ and the a priori estimates (5) and
(11), we can verify (12), since fλ is bounded in L2(0, T ;V ∗). Finally, by virtue of
(A1) and (A3), we can deduce (13) from (6) and (7).

From these a priori estimates, we can take a sequence λn in (0, 1] such that
λn → +0 and the following lemmas hold.

Lemma 4. There exist u ∈ L∞(0, T ;V ) and v ∈ Cw([0, T ];H) ∩ W 1,2(0, T ;V ∗)
such that

λn
duλn

dt
→ 0 strongly in L2(0, T ;H), (14)

uλn
→ u weakly in L2(0, T ;V ), (15)

Jλn
uλn

→ u weakly in L2(0, T ;V ), (16)

vλn
→ v weakly in L2(0, T ;H) ∩W 1,2(0, T ;V ∗), (17)

strongly in C([0, T ];V ∗), (18)

vλn
(T ) → v(T ) weakly in H. (19)

Moreover, we have v(t) ∈ ∂Hψ(u(t)) for a.e. t ∈ (0, T ). Furthermore, v(t) → v0
strongly in V ∗ and weakly in H as t→ +0.

Proof of Lemma 4. First, (14) and (15) are derived immediately from (5) and
(10), respectively. Moreover, we can deduce v ∈ L∞(0, T ;V ) from (10) (see the
proof of Lemma 4 of [1] for more details). Now (13) yields Jλn

uλn
→ w weakly

in L2(0, T ;V ) for some w ∈ L2(0, T ;V ). We then claim w = u. Indeed, by the
definition of ∂Hψλ, it follows from (7) that

sup
t∈[0,T ]

|uλ(t) − Jλuλ(t)|H = λ sup
t∈[0,T ]

|vλ(t)|H ≤ λC → 0

as λ → 0. Thus we obtain w = u. Now (17) follows from (7) and (12). Moreover,
since vλ is bounded in L∞(0, T ;H) ∩ W 1,2(0, T ;V ∗), by (A4), Ascoli’s compact-
ness lemma ensures (18). Moreover, by (7), we can also verify v ∈ L∞(0, T ;H);
hence, since L∞(0, T ;H)∩C([0, T ];V ∗) ⊂ Cw([0, T ];H), we have v ∈ Cw([0, T ];H).
Furthermore, (7) and (18) also yield (19).

Now note that (16) and (18) imply
∫ T

0

(vλn
(t), Jλn

uλn
(t))Hdt =

∫ T

0

〈vλn
(t), Jλn

uλn
(t)〉dt

→
∫ T

0

〈v(t), u(t)〉dt =

∫ T

0

(v(t), u(t))Hdt (20)

as λn → 0, and (16) also yields

Jλn
uλn

→ u weakly in L2(0, T ;H). (21)

Hence, by Lemma 1.3 of [4] and Proposition 1.1 of [12], it follows from (17), (20)
and (21) that v(t) ∈ ∂Hψ(u(t)) for a.e. t ∈ (0, T ).

Finally, we check the initial condition for v. By (12), it follows that

|vλn
(t) − v0,λn

|V ∗ ≤
∫ t

0

∣

∣

∣

∣

dvλn

dτ
(τ)

∣

∣

∣

∣

V ∗

dτ ≤ C1/2
√
t,

which together with (18) and the fact that v0,λn
→ v0 strongly in H implies

v(t) → v0 strongly in V ∗ as t→ +0.
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Moreover, since v ∈ Cw([0, T ];H), we also deduce that v(t) → v0 weakly in H .

Finally, we prove the convergence of gλn
in the following:

Lemma 5. There exists a function g ∈ L∞(0, T ;V ∗) such that

gλn
→ g weakly in L2(0, T ;V ∗). (22)

Moreover, g(t) = f(t) − dv(t)/dt ∈ ∂V ϕ
t(u(t)) for a.e. t ∈ (0, T ), and dv/dt ∈

L∞(0, T ;V ∗).

Proof of Lemma 5. By (11) and Lemma 4, there exists a function g ∈ L2(0, T ;V ∗)
such that (22) holds true and g = f − dv/dt; moreover, we can also verify g ∈
L∞(0, T ;V ∗), which implies dv/dt ∈ L∞(0, T ;V ∗). So it remains to show that
g(t) ∈ ∂V ϕ

t(u(t)) for a.e. t ∈ (0, T ). Multiply gλn
(t) by uλn

(t) and integrate this
over (0, T ). We then see

∫ T

0

〈gλn
(t), uλn

(t)〉 dt

=

∫ T

0

(fλn
(t), uλn

(t))Hdt− λn

∫ T

0

(

duλn

dt
(t), uλn

(t)

)

H

dt

−
∫ T

0

〈

dvλn

dt
(t), Jλn

uλn
(t)

〉

dt−
∫ T

0

〈

dvλn

dt
(t), uλn

(t) − Jλn
uλn

(t)

〉

dt

=

∫ T

0

(fλn
(t), uλn

(t))Hdt−
λn

2
|uλn

(T )|2H +
λn

2
|u0|2H

−ψ∗(vλn
(T )) + ψ∗(v0,λn

) − λn

2
|vλn

(T )|2H +
λn

2
|v0,λn

|2H ,

since the fact that vλn
(t) ∈ ∂Hψ(Jλn

uλn
(t)) is equivalent to that Jλn

uλn
(t) ∈

∂Hψ
∗(vλn

(t)), where ψ∗ denotes the Legendre-Fenchel transform of ψ ∈ Φ(H), i.e.,
ψ∗(u) := supw∈H{(u,w)H − ψ(w)}. Here since v0,λn

∈ ∂Hψ(Jλn
u0), v0,λn

→ v0
and Jλn

u0 → u0 strongly in H , we get

lim sup
λn→0

ψ∗(v0,λn
) = lim

λn→0
(v0,λn

, Jλn
u0)H − lim inf

λn→0
ψ(Jλn

u0) ≤ ψ∗(v0),

which together with the lower semi-continuity of ψ∗ implies ψ∗(v0,λn
) → ψ∗(v0).

Hence, by virtue of Lemma 4, we can deduce

lim sup
λn→0

∫ T

0

〈gλn
(t), uλn

(t)〉 dt ≤
∫ T

0

〈f(t), u(t)〉dt− ψ∗(v(T )) + ψ∗(v0).

We here notice that

ψ∗(v(T )) ≥ sup
w∈V

{〈v(T ), w〉 − ψ(w)} =: (ψ|V )∗(v(T )),

v0 ∈ ∂Hψ(u0) ⊂ ∂V (ψ|V )(u0),

ψ∗(v0) = (v0, u0)H − ψ(u0) = 〈v0, u0〉 − ψ(u0) = (ψ|V )∗(v0),

where ψ|V denotes the restriction of ψ on V ; moreover, we also observe u(t) ∈
∂V ∗(ψ|V )∗(v(t)), since v(t) ∈ ∂Hψ(u(t)) ⊂ ∂V (ψ|V )(u(t)). Therefore, by Lemmas
2.10 and 2.11 of [2], we find that

−ψ∗(v(T )) + ψ∗(v0) ≤ −(ψ|V )∗(v(T )) + (ψ|V )∗(v0)

= −
∫ T

0

〈

dv

dt
(t), u(t)

〉

dt.
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Thus Lemma 1.3 of [4] and Proposition 1.1 of [12] imply g(t) = f(t)− dv(t)/dt ∈
∂V ϕ

t(t) for a.e. t ∈ (0, T ).

3. Macroscopic Model for Type-II Superconductivity. In 1964, C. P. Bean [6]
proposed a macroscopic critical-state model for type-II superconductivity charac-
terized by the following correspondence between the electric field e and the current
density j:

(B) e ‖ j, |j| ∈
{

1 if |e| > 0,

[0, 1] if |e| = 0.

Moreover, the following power approximation (B)σ is often used in place of (B):

(B)σ j = |e|σ−2e

with σ ∈ (1,+∞) enough close to 1, because of the strong nonlinearity of (B).
On the other hand, just as in [9], the dynamics of the electric field e(x, t) =

(0, 0, u(x, t)) and the current density j(x, t) = (0, 0, j(x, t)) in an infinitely long
cylindrical type-II superconductor Ω × (−∞,+∞) can be described by

∂

∂t
j(x, t) − ∆u(x, t) = f(x, t), (x, t) ∈ Ω × (0, T ), (23)

where Ω denotes a bounded domain in R
2. Furthermore, the current-voltage law

(B)σ is reduced into the following 2 dimensional form:

j(x, t) = |u|σ−2u(x, t), (x, t) ∈ Ω × (0, T ). (24)

In this section, we apply the abstract theory developed in Section 2 to the initial-
boundary value problem (IBVP), which is obtained by imposing the following non-
linear boundary condition and an initial condition on (23) with (24):

∂u

∂n
(x, t) = −g(x, t)j(x, t), (x, t) ∈ ∂Ω × (0, T ), (25)

under the following assumptions:

g ∈ W 1,1(0, T ;L∞(∂Ω)), g(x, t) ≥ g0 > 0, (x, t) ∈ ∂Ω × (0, T ). (26)

To this end, we reduce (IBVP) into an abstract Cauchy problem in the form of (CP).
Put V := H1(Ω) and H := L2(Ω) equipped with the norms: | · |V := |∇ · |L2(Ω) +
| · |L2(∂Ω) and | · |H = | · |L2(Ω), respectively. Then, since Ω is a bounded domain

in R
2 with smooth boundary ∂Ω, we observe that V is densely and continuously

embedded in H . Moreover, V is also continuously embedded in Lr(∂Ω) for any
r ∈ [1,+∞), and | · |V is equivalent to the norm ‖ · ‖V := |∇ · |L2(Ω) + | · |Lr(∂Ω).

Now define φt
σ : V → [0,+∞) and ψσ : H → [0,+∞] as follows:

φt
σ(u) :=

1

2

∫

Ω

|∇u(x)|2dx+
1

σ

∫

∂Ω

g(x, t)|u(x)|σdΓ ∀u ∈ V,

ψσ(u) :=







1

σ

∫

Ω

|u(x)|σdx if u ∈ Lσ(Ω),

+∞ otherwise.
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Then, we can easily see that φt
σ ∈ Φ(V ), ψσ ∈ Φ(H) and ∂V φ

t
σ(u) coincides with

−∆u equipped with the boundary condition (25) in the distribution sense. More-
over, ∂Hψσ(u) is equivalent to |u(·)|σu(·) in H . Hence (IBVP) is rewritten as

(CP)σ







dv

dt
(t) + ∂V φ

t
σ(u(t)) = f(t), v(t) = ∂Hψσ(u(t)), 0 < t < T,

v(0) = v0.

In order to apply Theorem 1 to (CP)σ, we prepare the following lemma.

Lemma 6. Suppose that (26) is satisfied. Then, (A1)-(A4) and (Aϕt) are satisfied

with ϕt and ψ replaced by φt
σ and ψσ, respectively.

Proof of Lemma 6. For all u ∈ V , we have, by (26),

φt
σ(u) ≥ 1

2

∫

Ω

|∇u(x)|2dx+
g0
σ

∫

∂Ω

|u(x)|σdΓ ≥ C{|u|ρV − 1},

where ρ := min{2, σ} > 1. Hence (A1) holds with ϕt and p replaced by φt
σ and ρ,

respectively. Moreover, for every [u, ξ] ∈ ∂V φ
t
σ and w ∈ V , we observe

〈ξ, w〉 =

∫

Ω

∇u(x) · ∇w(x)dx +

∫

∂Ω

g(x, t)|u|σ−2u(x)w(x)dΓ

≤ |∇u|L2(Ω)|∇w|L2(Ω) + |g|L∞(∂Ω×(0,T ))|u|σ−1
Lσ(∂Ω)|w|Lσ(∂Ω),

which implies

|ξ|V ∗ ≤ C{|∇u|L2(Ω) + |u|σ−1
Lσ(∂Ω)} ∀u ∈ V, ∀t ∈ [0, T ].

Thus (A2) follows with ϕt = φt
σ and q′ = min{2, σ′} > 1.

Now let Jλ and jλ be the resolvents of ∂Hψσ and ∂R(σ−1| · |σ), respectively.
Then, (Jλu)(x) coincides with jλ(u(x)) for a.e. x ∈ Ω, so |(Jλu)(x)| ≤ |u(x)| and
|(Jλu)(x + h) − (Jλu)(x)| ≤ |u(x + h) − u(x)| for a.e. x ∈ Ω (see the proof of
Corollary 16 of [8]). Hence it follows that

φt
σ(Jλu) =

1

2

∫

Ω

|∇(Jλu)(x)|2dx+
1

σ

∫

∂Ω

g(x, t)|(Jλu)(x)|σdΓ

≤ 1

2

∫

Ω

|∇u(x)|2dx+
1

σ

∫

∂Ω

g(x, t)|u(x)|σdΓ.

Therefore (A3) is satisfied with ϕt and ψ replaced by φt
σ and ψσ, respectively.

Moreover, since Ω is bounded in R
2 and, ∂Ω is smooth, (A4) also holds true.

Let t0 ∈ [0, T ] and u0 ∈ D(φt0
σ ) = V be fixed and define u(t) ≡ u0. We then see

φt(u(t)) = φt0(u0) +
1

σ

∫

∂Ω

{g(x, t) − g(x, t0)}|u0(x)|σdΓ

≤ φt0
σ (u0) + |g(·, t) − g(·, t0)|L∞(∂Ω)σ

−1|u0|σLσ(∂Ω)

≤ φt0
σ (u0) + g−1

0 |g(·, t) − g(·, t0)|L∞(∂Ω)

{

φt0
σ (u0) + 1

}

and |u(t) − u0|V ≡ 0. Hence (Aϕt) is satisfied with ϕt = φt
σ, α ≡ 0, β =

g−1
0

∫ t

0 |∂τg(·, τ)|L∞(∂Ω)dτ and an arbitrary number q ∈ [0,+∞).

Consequently, we have:
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Theorem 2. Suppose that (26) is satisfied and σ ∈ (1,+∞). Then, for ev-

ery j0 ∈ {v ∈ L2(Ω); ∃u0 ∈ H1(Ω); |u0|σ−2u0 = v} and f ∈ L2(Ω × (0, T )) ∩
W 1,ρ′

(0, T ; (H1(Ω))∗) with ρ := min{2, σ}, there exists u : Ω× (0, T ) → R such that

u ∈ L∞(0, T ;H1(Ω)),

|u|σ−2u ∈ Cw([0, T ];L2(Ω)) ∩W 1,∞(0, T ; (H1(Ω))∗) ∩ L∞(0, T ;Lr(∂Ω))

for any r ∈ [1,+∞),






















〈

∂

∂t
|u|σ−2u(·, t), w

〉

+

∫

Ω

∇u(x, t) · ∇w(x)dx

+

∫

∂Ω

g(x, t)|u|σ−2u(x, t)w(x)dΓ =

∫

Ω

f(x, t)w(x)dx,

∀w ∈ H1(Ω), for a.e. t ∈ (0, T ),

|u|σ−2u(·, t) → j0 strongly in (H1(Ω))∗ and weakly in L2(Ω) as t→ +0.
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[2] G. Akagi and M. Ôtani, Time-dependent constraint problems arising from macro-

scopic critical-state models for type-II superconductivity and their approximations,
Adv. Math. Sci. Appl. 14 (2004), 683–712.

[3] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z.
183 (1983), 311–341.

[4] V. Barbu, “Nonlinear Semigroups and Differential Equations in Banach spaces,” Noordhoff,
1976.

[5] V. Barbu, Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Math. Anal.
10 (1979), 552–569.

[6] C. P. Bean, Magnetization of high-field superconductor, Rev. Mod. Phys. 36 (1964), 31–39.
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