PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS June 16 – 19, 2004, Pomona, CA, USA

pp. **30–39**

DOUBLY NONLINEAR EVOLUTION EQUATIONS AND BEAN'S CRITICAL-STATE MODEL FOR TYPE-II SUPERCONDUCTIVITY

Goro Akagi

Media Network Center, Waseda university 1-104 Totsuka-cho, Shinjuku-ku Tokyo, 169-8050 Japan

Abstract. This paper is intended as an investigation of the solvability of Cauchy problem for doubly nonlinear evolution equation of the form $dv(t)/dt + \partial \varphi^t(u(t)) \ni f(t), v(t) \in \partial \psi(u(t)), 0 < t < T$, where $\partial \varphi^t$ and $\partial \psi$ are subdifferential operators, and $\partial \varphi^t$ depends on t explicitly. Our method of proof relies on chain rules for t-dependent subdifferentials and an appropriate boundedness condition on $\partial \varphi^t$; however, it does not require either a strong monotonicity condition or a boundedness condition on $\partial \psi$. Moreover, an initial-boundary value problem for a nonlinear parabolic equation arising from an approximation of Bean's critical-state model for type-II superconductivity is also treated as an application of our abstract theory.

1. Introduction. Various types of doubly nonlinear evolution equations have been studied by many authors (see, e.g., [5, 10, 3, 14, 16, 15, 11]), and their results were applied to quasilinear parabolic equations arising from physics, biology, mechanics and so on. This paper is concerned with doubly nonlinear evolution equations governed by time-dependent subdifferential operators in reflexive Banach spaces.

Let V and V^* be a real reflexive Banach space and its dual space, respectively, and let H be a Hilbert space whose dual space H^* is identified with itself H such that V is continuously and densely embedded in H. Then, we consider

$$\frac{dv}{dt}(t) + \partial_V \varphi^t(u(t)) \ni f(t), \quad v(t) \in \partial_H \psi(u(t)), \quad 0 < t < T,$$
(1)

where $\partial_V \varphi^t$ and $\partial_H \psi$ denote subdifferential operators of proper lower semi-continuous convex functionals φ^t and ψ defined on V and H, respectively, and f is a given function from (0,T) into V^* . We here emphasize that φ^t depends on t explicitly, and this is one of main features of our problem.

In this paper, we aim at constructing a solution of Cauchy problem for (1) without imposing either a strong monotonicity condition (cf. [14]) or a boundedness condition (cf. [10, 15]) on $\partial_H \psi$. To this end, we employ the chain rules for subdifferentials of *t*-dependent functionals developed in [2] and make use of an appropriate boundedness condition on $\partial_V \varphi^t$. In Section 2, our main result on (1) is stated and proved.

¹⁹⁹¹ Mathematics Subject Classification. Primary: 47J35, 34G25; Secondary: 35K55.

Key words and phrases. Doubly nonlinear evolution equation, time-dependent subdifferential, reflexive Banach space, Bean model.

The author is supported by Waseda University Grant for Special Research Projects, #2004A-366.

In Section 3, as an application of our abstract theory, we deal with the following initial-boundary value problem arising from some macroscopic model for type-II superconductivity:

(IBVP)
$$\begin{cases} \frac{\partial}{\partial t} |u|^{\sigma-2} u(x,t) - \Delta u(x,t) = f(x,t), & (x,t) \in \Omega \times (0,T), \\ \frac{\partial u}{\partial n} (x,t) = -g(x,t) |u|^{\sigma-2} u(x,t), & (x,t) \in \partial\Omega \times (0,T), \\ |u|^{\sigma-2} u(x,0) = j_0(x), & x \in \Omega, \end{cases}$$

where $\sigma > 1, f : \Omega \times (0, T) \to \mathbb{R}$ and $g : \partial \Omega \times (0, T) \to \mathbb{R}$ are given.

2. Doubly Nonlinear Evolution Equation. Let V and V^* be a real reflexive Banach space and its dual space, respectively, and let H be a Hilbert space whose dual space H^* is identified with itself H such that

$$V \subset H \equiv H^* \subset V^* \tag{2}$$

with densely defined and continuous canonical injections.

In this section, we discuss the existence of solutions for the following abstract Cauchy problem:

(CP)
$$\begin{cases} \frac{dv}{dt}(t) + \partial_V \varphi^t(u(t)) \ni f(t), \quad v(t) \in \partial_H \psi(u(t)), \quad 0 < t < T, \\ v(0) = v_0, \end{cases}$$

where $\partial_V \varphi^t$ and $\partial_H \psi$ denote subdifferential operators of proper lower semi-continuous convex functionals $\varphi^t : V \to [0, +\infty]$ and $\psi : H \to [0, +\infty]$, respectively, for every $t \in [0, T]$.

We here recall the definition of subdifferential operator. Let $\Phi(X)$ be the set of all proper lower-semicontinuous convex functionals ϕ from a reflexive Banach space X into $(-\infty, +\infty]$, where "proper" means $\phi \not\equiv +\infty$. Then, the subdifferential $\partial_{X,X^*}\phi(u)$ of $\phi \in \Phi(X)$ at u is given by

$$\partial_{X,X^*}\phi(u) := \{\xi \in X^*; \phi(v) - \phi(u) \ge \langle \xi, v - u \rangle_X \quad \forall v \in D(\phi) \},\$$

where $\langle \cdot, \cdot \rangle_X$ denotes the duality pairing between X and X^* and $D(\phi) := \{ u \in X; \phi(u) < +\infty \}$. Hence we can define the subdifferential operator $\partial_{X,X^*}\phi : X \to 2^{X^*}; u \mapsto \partial_{X,X^*}\phi(u)$ with the domain $D(\partial_{X,X^*}\phi) := \{ u \in D(\phi); \partial_{X,X^*}\phi(u) \neq \emptyset \}$. For simplicity of notation, we shall write $\partial_X \phi$ and $\langle \cdot, \cdot \rangle$ instead of $\partial_{X,X^*}\phi$ and $\langle \cdot, \cdot \rangle_X$, respectively, if no confusion can arise. It is well known that the graph of every subdifferential operator $\partial_X \phi$ becomes maximal monotone in $X \times X^*$.

In particular, if X is a Hilbert space H whose dual space is identified with itself, i.e., $H \equiv H^*$, then the subdifferential $\partial_H \phi(u)$ of $\phi \in \Phi(H)$ at u can be written by

$$\partial_H \phi(u) = \{ \xi \in H; \phi(v) - \phi(u) \ge (\xi, v - u)_H \quad \forall v \in D(\phi) \},\$$

since $\langle \cdot, \cdot \rangle_H$ coincides with the inner product $(\cdot, \cdot)_H$ of H; moreover, we can always find a unique element of least norm in $\partial_H \phi(u)$, which is called minimal section of $\partial_H \phi(u)$ and denoted by $(\partial_H \phi)^{\circ}(u)$, for every $u \in D(\partial_H \phi)$.

We are concerned with strong solutions of (CP) defined below.

GORO AKAGI

Definition 1. A pair of functions $(u, v) : [0, T] \to V \times V^*$ is said to be a strong solution of (CP) on [0, T] if the following (i)-(iv) hold true:

- (i) v is a V^* -valued absolutely continuous function on [0, T];
- (ii) $u(t) \in D(\partial_H \psi) \cap D(\partial_V \varphi^t)$ for a.e. $t \in (0, T);$
- (iii) There exist sections $v(t) \in \partial_H \psi(u(t))$ and $g(t) \in \partial_V \varphi^t(u(t))$ such that $\frac{dv}{dt}(t) + g(t) = 0$ in V^* , for a.e. $t \in (0,T)$; (3)

$$dt$$
 (t) (t)

(iv) $v(t) \to v_0$ strongly in V^* and weakly in H as $t \to +0$.

Our basic assumptions are the following. Let $p, q \in (1, +\infty)$ be fixed.

- $\begin{array}{ll} (\mathbf{A}\varphi^t) & \text{There exist functions } \alpha \in W^{1,q}(0,T), \ \beta \in W^{1,1}(0,T) \text{ and a constant} \\ \delta > 0 \text{ such that for every } t_0 \in [0,T] \text{ and } x_0 \in D(\varphi^{t_0}), \text{ we can take a} \\ \text{function } x: I_{\delta}(t_0) := [t_0 \delta, t_0 + \delta] \cap [0,T] \to V \text{ satisfying:} \\ & \left\{ \begin{array}{c} |x(t) x_0|_V & \leq |\alpha(t) \alpha(t_0)| \left\{ \varphi^{t_0}(x_0) + 1 \right\}^{1/q}, \\ \varphi^t(x(t)) & \leq \varphi^{t_0}(x_0) + |\beta(t) \beta(t_0)| \left\{ \varphi^{t_0}(x_0) + 1 \right\} & \forall t \in I_{\delta}(t_0). \end{array} \right.$
- (A1) There exists a constant C_1 such that $|u|_V^p \leq C_1\{\varphi^t(u)+1\} \quad \forall u \in D(\varphi^t), \ \forall t \in [0,T].$
- (A2) There exists a constant C_2 such that

 $|\xi|_{V^*}^{q'} \le C_2\{\varphi^t(u)+1\} \quad \forall [u,\xi] \in \partial_V \varphi^t, \ \forall t \in [0,T].$

- (A3) There exists a non-decreasing function $\ell_1 : \mathbb{R} \to \mathbb{R}$ such that $\varphi^t(J_\lambda u) \leq \varphi^t(u) + \lambda \ell_1(\varphi^t(u)) \{ |\partial_H \psi_\lambda(u)|_H^2 + 1 \}, \ \forall \lambda > 0, \ \forall u \in D(\varphi^t),$ $\forall t \in [0, T], \text{ where } J_\lambda \text{ denotes the resolvent of } \partial_H \psi, \text{ i.e., } J_\lambda = (I + \lambda \partial_H \psi)^{-1}$ with the identity I in H, and $\partial_H \psi_\lambda$ is the Yosida approximation of $\partial_H \psi$.
- (A4) V is compactly embedded in H.

Our main result is now stated as follows:

Theorem 1. Suppose that $(A\varphi^t)$, (A1)-(A4) are all satisfied with $p, q \in (1, +\infty)$. Then, for every $f \in L^2(0,T;H) \cap W^{1,p'}(0,T;V^*)$ and $v_0 \in \{(\partial_H \psi)^{\circ}(u_0); u_0 \in D(\varphi^0) \cap D(\partial_H \psi)\}$, (CP) admits at least one strong solution (u, v) such that

$$u \in L^{\infty}(0,T;V)$$
. $v \in C_w([0,T];H) \cap W^{1,\infty}(0,T;V^*)$, $g \in L^{\infty}(0,T;V^*)$

where g denotes the section of $\partial_V \varphi^t(u(t))$ given in (3) and $C_w([0,T];H)$ denotes the set of all continuous functions from [0,T] into H equipped with the weak topology $\sigma(H,H)$.

Before describing the proof of Theorem 1, we recall a couple of useful properties of the Legendre-Fenchel transform ϕ^* of $\phi \in \Phi(X)$ defined by

$$\phi^*(u) := \sup_{v \in X} \left\{ \langle u, v \rangle - \phi(v) \right\} \quad \forall u \in X^*.$$

It is well known that ϕ^* belongs to $\Phi(X^*)$, and the following identity holds:

$$\phi^*(f) = \langle f, u \rangle - \phi(u) \quad \forall [u, f] \in \partial_X \phi$$

which also implies $u \in \partial_{X^*} \phi^*(f)$, i.e., $\partial_{X^*} \phi^* = (\partial_X \phi)^{-1}$.

Moreover, we give a remark on the assumption (A3).

32

Remark 1. By virtue of (A3), we have the following:

$$(g, \partial_H \psi_{\lambda}(u))_H \geq -\ell_1(\varphi^t(u)) \left\{ |\partial_H \psi_{\lambda}(u)|_H^2 + 1 \right\} \forall u \in D(\partial_V \varphi^t), \ \forall g \in \partial_V \varphi^t(u) \cap H.$$
 (4)

Indeed, from the definition of the Yosida approximation $\partial_H \psi_{\lambda}$, we see

$$(g,\partial_H\psi_\lambda(u))_H = \frac{1}{\lambda}(g,u-J_\lambda u)_H \ge \frac{1}{\lambda}\left\{\varphi^t(u) - \varphi^t(J_\lambda u)\right\}.$$

Thus (A3) implies (4).

We now proceed to the proof of theorem 1.

Proof of Theorem 1. We introduce the following approximate problem for (CP).

$$(CP)_{\lambda} \begin{cases} \lambda \frac{du_{\lambda}}{dt}(t) + \frac{d}{dt} \partial_{H} \psi_{\lambda}(u_{\lambda}(t)) + \partial_{H} \varphi_{H}^{t}(u_{\lambda}(t)) \ni f_{\lambda}(t), & 0 < t < T, \\ u_{\lambda}(0) = u_{0}, \end{cases}$$

where $u_0 \in D(\varphi^0) \cap D(\partial_H \psi)$ satisfies $v_0 = (\partial_H \psi)^{\circ}(u_0)$; ψ_{λ} denotes the Moreau-Yosida regularization of ψ ; $f_{\lambda} \in C^1([0,T]; H)$ and $f_{\lambda} \to f$ strongly in $L^2(0,T; V^*)$ and weakly in $L^2(0,T; H) \cap W^{1,p'}(0,T; V^*)$; moreover, φ_H^t is the extension of φ^t on H defined by

$$\varphi_H^t(u) := \begin{cases} \varphi^t(u) & \text{if } u \in V, \\ +\infty & \text{otherwise.} \end{cases}$$

We here notice that $\varphi_H^t \in \Phi(H)$ and $D(\varphi^t) = D(\varphi_H^t)$, $\partial_H \varphi_H^t(u) \subset \partial_V \varphi^t(u)$ for all $u \in V$ and $t \in [0, T]$. Moreover, note that the mapping $u \mapsto Au := \lambda u + \partial_H \psi_\lambda(u)$ is Lipschitz continuous in H and satisfies

$$||u-v|_H^2 \leq (Au - Av, u - v)_H \quad \forall u, v \in H.$$

Hence in much the same way as in the proof of Theorem 2.8.1 of [13], we can verify the existence of solutions $u_{\lambda} \in W^{1,2}(0,T;H)$ for $(CP)_{\lambda}$.

For simplicity, we write $v_{\lambda}(t)$ and $v_{0,\lambda}$ instead of $\partial_H \psi_{\lambda}(u_{\lambda}(t))$ and $\partial_H \psi_{\lambda}(u_0)$, respectively; moreover, put $g_{\lambda}(t) := f_{\lambda}(t) - \lambda du_{\lambda}(t)/dt - dv_{\lambda}(t)/dt \in \partial_H \varphi_H^t(u_{\lambda}(t))$. Now we have the following a priori estimates.

Lemma 1. There exists a constant C such that

$$\lambda \int_{0}^{T} \left| \frac{du_{\lambda}}{dt}(t) \right|_{H}^{2} dt \leq C, \tag{5}$$

$$\sup_{t \in [0,T]} \varphi^t(u_{\lambda}(t)) \leq C.$$
(6)

Proof of Lemma 1. Multiply $(CP)_{\lambda}$ by $du_{\lambda}(t)/dt$ to get

$$\lambda \left| \frac{du_{\lambda}}{dt}(t) \right|_{H}^{2} + \left(\frac{dv_{\lambda}}{dt}(t), \frac{du_{\lambda}}{dt}(t) \right)_{H} + \left(g_{\lambda}(t), \frac{du_{\lambda}}{dt}(t) \right)_{H} = \left(f_{\lambda}(t), \frac{du_{\lambda}}{dt}(t) \right)_{H}$$

for a.e. $t \in (0, T)$. We here notice that

$$\left(f_{\lambda}(t), \frac{du_{\lambda}}{dt}(t)\right)_{H} = \frac{d}{dt}(f_{\lambda}(t), u_{\lambda}(t))_{H} - \left(\frac{df_{\lambda}}{dt}(t), u_{\lambda}(t)\right)_{H}$$

and

$$0 \leq \left(\frac{dv_{\lambda}}{dt}(t), \frac{du_{\lambda}}{dt}(t)\right)_{H},$$

33

since $v_{\lambda}(t) \in \partial_{H}\psi_{\lambda}(u_{\lambda}(t))$ and $\partial_{H}\psi_{\lambda}$ is monotone in H. Moreover, by $(A\varphi^{t})$, Lemma 2.12 of [2] implies

$$\left| \frac{d}{dt} \varphi_H^t(u_{\lambda}(t)) - \left(g_{\lambda}(t), \frac{du_{\lambda}}{dt}(t) \right)_H \right|$$

$$\leq |\dot{\alpha}(t)||g_{\lambda}(t)|_{V^*} \{ \varphi_H^t(u_{\lambda}(t)) + 1 \}^{1/q} + |\dot{\beta}(t)| \{ \varphi_H^t(u_{\lambda}(t)) + 1 \}^{1/q} \}$$

for a.e. $t \in (0, T)$. Hence, by using (A2), we obtain

$$\begin{split} \lambda \left| \frac{du_{\lambda}}{dt}(t) \right|_{H}^{2} &+ \frac{d}{dt} \varphi_{H}^{t}(u_{\lambda}(t)) \\ &\leq C \left\{ |\dot{\alpha}(t)| + |\dot{\beta}(t)| \right\} \left\{ \varphi_{H}^{t}(u(t)) + 1 \right\} + \frac{d}{dt} (f_{\lambda}(t), u_{\lambda}(t))_{H} - \left(\frac{df_{\lambda}}{dt}(t), u_{\lambda}(t) \right)_{H} \end{split}$$

for a.e. $t\in(0,T).$ Moreover, integrating both sides over (0,t) and using (A1) and (A2), we have

$$\begin{split} \lambda \int_0^t \left| \frac{du_{\lambda}}{d\tau}(\tau) \right|_H^2 d\tau + \varphi_H^t(u_{\lambda}(t)) \\ &\leq \varphi_H^0(u_0) + C \Biggl\{ \int_0^T |\dot{\alpha}(\tau)| d\tau + \int_0^T |\dot{\beta}(\tau)| d\tau + \sup_{\tau \in [0,T]} |f_{\lambda}(\tau)|_{V^*}^{p'} \\ &+ |u_0|_V^p + \int_0^T \left| \frac{df_{\lambda}}{d\tau}(\tau) \right|_{V^*}^{p'} d\tau + 1 \Biggr\} + \frac{1}{2} \varphi_H^t(u_{\lambda}(t)) \\ &+ C \int_0^t \Biggl\{ |\dot{\alpha}(\tau)| + |\dot{\beta}(\tau)| + 1 \Biggr\} \varphi_H^\tau(u_{\lambda}(\tau)) d\tau. \end{split}$$

Thus Gronwall's inequality yields (5) and (6).

Lemma 2. There exists a constant C such that

$$\sup_{t \in [0,T]} |v_{\lambda}(t)|_{H} \leq C.$$
(7)

Proof of Lemma 2. Multiplying $(CP)_{\lambda}$ by $v_{\lambda}(t)$, we have

$$\lambda \frac{d}{dt} \psi_{\lambda}(u_{\lambda}(t)) + \frac{1}{2} \frac{d}{dt} |v_{\lambda}(t)|_{H}^{2} + (g_{\lambda}(t), v_{\lambda}(t))_{H} \leq |f_{\lambda}(t)|_{H} |v_{\lambda}(t)|_{H}$$
(8)

for a.e. $t \in (0.T)$. Moreover, by virtue of Remark 1 and (6), it follows that

$$(g_{\lambda}(t), v_{\lambda}(t))_H \geq -\ell_1(C) \left\{ |v_{\lambda}(t)|_H^2 + 1 \right\}.$$
(9)

Hence integrating (8) over (0, t) and applying Gronwall's inequality, we get (7). \Box

Lemma 3. There exists a constant C such that

$$\sup_{t \in [0,T]} |u_{\lambda}(t)|_{V} \leq C, \tag{10}$$

$$\sup_{\substack{t \in [0,T] \\ T \mid d_{2}, \dots, n \mid 2}} |g_{\lambda}(t)|_{V^*} \leq C, \tag{11}$$

$$\int_0^T \left| \frac{dv_\lambda}{dt}(t) \right|_{V^*}^2 dt \le C, \tag{12}$$

$$\sup_{t \in [0,T]} |J_{\lambda} u_{\lambda}(t)|_{V} \leq C, \tag{13}$$

where J_{λ} denotes the resolvent of $\partial_H \psi$, that is, $J_{\lambda} := (I + \lambda \partial_H \psi)^{-1}$.

34

Proof of Lemma 3. A priori estimates (10) and (11) follow immediately from (A1), (A2) and (6). Moreover, by using $(CP)_{\lambda}$ and the a priori estimates (5) and (11), we can verify (12), since f_{λ} is bounded in $L^2(0,T;V^*)$. Finally, by virtue of (A1) and (A3), we can deduce (13) from (6) and (7).

From these a priori estimates, we can take a sequence λ_n in (0,1] such that $\lambda_n \to +0$ and the following lemmas hold.

Lemma 4. There exist $u \in L^{\infty}(0,T;V)$ and $v \in C_w([0,T];H) \cap W^{1,2}(0,T;V^*)$ such that

$$\lambda_n \frac{du_{\lambda_n}}{dt} \to 0 \qquad strongly \ in \ L^2(0,T;H),$$
(14)

$$u_{\lambda_n} \to u$$
 weakly in $L^2(0,T;V)$, (15)

$$J_{\lambda_n} u_{\lambda_n} \to u \qquad \text{weakly in } L^2(0,T;V),$$
 (16)

$$v_{\lambda_n} \to v \qquad \text{weakly in } L^2(0,T;V), \tag{13}$$

$$v_{\lambda_n} \to v \qquad \text{weakly in } L^2(0,T;H) \cap W^{1,2}(0,T;V^*), \tag{17}$$

$$\text{atronchy in } C([0,T];V^*)$$

strongly in
$$C([0,T];V^*),$$
 (18)

$$v_{\lambda_n}(T) \to v(T)$$
 weakly in H. (19)

Moreover, we have $v(t) \in \partial_H \psi(u(t))$ for a.e. $t \in (0,T)$. Furthermore, $v(t) \to v_0$ strongly in V^* and weakly in H as $t \to +0$.

Proof of Lemma 4. First, (14) and (15) are derived immediately from (5) and (10), respectively. Moreover, we can deduce $v \in L^{\infty}(0,T;V)$ from (10) (see the proof of Lemma 4 of [1] for more details). Now (13) yields $J_{\lambda_n} u_{\lambda_n} \to w$ weakly in $L^2(0,T;V)$ for some $w \in L^2(0,T;V)$. We then claim w = u. Indeed, by the definition of $\partial_H \psi_{\lambda}$, it follows from (7) that

$$\sup_{t \in [0,T]} |u_{\lambda}(t) - J_{\lambda}u_{\lambda}(t)|_{H} = \lambda \sup_{t \in [0,T]} |v_{\lambda}(t)|_{H} \le \lambda C \to 0$$

as $\lambda \to 0$. Thus we obtain w = u. Now (17) follows from (7) and (12). Moreover, since v_{λ} is bounded in $L^{\infty}(0,T;H) \cap W^{1,2}(0,T;V^*)$, by (A4), Ascoli's compactness lemma ensures (18). Moreover, by (7), we can also verify $v \in L^{\infty}(0,T;H)$; hence, since $L^{\infty}(0,T;H) \cap C([0,T];V^*) \subset C_w([0,T];H)$, we have $v \in C_w([0,T];H)$. Furthermore, (7) and (18) also yield (19).

Now note that (16) and (18) imply

$$\int_{0}^{T} (v_{\lambda_{n}}(t), J_{\lambda_{n}} u_{\lambda_{n}}(t))_{H} dt = \int_{0}^{T} \langle v_{\lambda_{n}}(t), J_{\lambda_{n}} u_{\lambda_{n}}(t) \rangle dt$$
$$\rightarrow \int_{0}^{T} \langle v(t), u(t) \rangle dt = \int_{0}^{T} (v(t), u(t))_{H} dt \quad (20)$$

as $\lambda_n \to 0$, and (16) also yields

$$J_{\lambda_n} u_{\lambda_n} \to u$$
 weakly in $L^2(0,T;H)$. (21)

Hence, by Lemma 1.3 of [4] and Proposition 1.1 of [12], it follows from (17), (20) and (21) that $v(t) \in \partial_H \psi(u(t))$ for a.e. $t \in (0, T)$.

Finally, we check the initial condition for v. By (12), it follows that

$$|v_{\lambda_n}(t) - v_{0,\lambda_n}|_{V^*} \le \int_0^t \left| \frac{dv_{\lambda_n}}{d\tau}(\tau) \right|_{V^*} d\tau \le C^{1/2} \sqrt{t}.$$

which together with (18) and the fact that $v_{0,\lambda_n} \to v_0$ strongly in H implies

$$v(t) \to v_0$$
 strongly in V^* as $t \to +0$.

Moreover, since $v \in C_w([0,T]; H)$, we also deduce that $v(t) \to v_0$ weakly in H.

Finally, we prove the convergence of g_{λ_n} in the following:

Lemma 5. There exists a function $g \in L^{\infty}(0,T;V^*)$ such that

$$g_{\lambda_n} \to g$$
 weakly in $L^2(0,T;V^*)$. (22)

Moreover, $g(t) = f(t) - dv(t)/dt \in \partial_V \varphi^t(u(t))$ for a.e. $t \in (0,T)$, and $dv/dt \in L^{\infty}(0,T;V^*)$.

Proof of Lemma 5. By (11) and Lemma 4, there exists a function $g \in L^2(0,T;V^*)$ such that (22) holds true and g = f - dv/dt; moreover, we can also verify $g \in L^{\infty}(0,T;V^*)$, which implies $dv/dt \in L^{\infty}(0,T;V^*)$. So it remains to show that $g(t) \in \partial_V \varphi^t(u(t))$ for a.e. $t \in (0,T)$. Multiply $g_{\lambda_n}(t)$ by $u_{\lambda_n}(t)$ and integrate this over (0,T). We then see

$$\int_0^T \langle g_{\lambda_n}(t), u_{\lambda_n}(t) \rangle dt$$

$$= \int_0^T (f_{\lambda_n}(t), u_{\lambda_n}(t))_H dt - \lambda_n \int_0^T \left(\frac{du_{\lambda_n}}{dt}(t), u_{\lambda_n}(t) \right)_H dt$$

$$- \int_0^T \left\langle \frac{dv_{\lambda_n}}{dt}(t), J_{\lambda_n} u_{\lambda_n}(t) \right\rangle dt - \int_0^T \left\langle \frac{dv_{\lambda_n}}{dt}(t), u_{\lambda_n}(t) - J_{\lambda_n} u_{\lambda_n}(t) \right\rangle dt$$

$$= \int_0^T (f_{\lambda_n}(t), u_{\lambda_n}(t))_H dt - \frac{\lambda_n}{2} |u_{\lambda_n}(T)|_H^2 + \frac{\lambda_n}{2} |u_0|_H^2$$

$$- \psi^*(v_{\lambda_n}(T)) + \psi^*(v_{0,\lambda_n}) - \frac{\lambda_n}{2} |v_{\lambda_n}(T)|_H^2 + \frac{\lambda_n}{2} |v_{0,\lambda_n}|_H^2,$$

since the fact that $v_{\lambda_n}(t) \in \partial_H \psi(J_{\lambda_n} u_{\lambda_n}(t))$ is equivalent to that $J_{\lambda_n} u_{\lambda_n}(t) \in \partial_H \psi^*(v_{\lambda_n}(t))$, where ψ^* denotes the Legendre-Fenchel transform of $\psi \in \Phi(H)$, i.e., $\psi^*(u) := \sup_{w \in H} \{(u, w)_H - \psi(w)\}$. Here since $v_{0,\lambda_n} \in \partial_H \psi(J_{\lambda_n} u_0), v_{0,\lambda_n} \to v_0$ and $J_{\lambda_n} u_0 \to u_0$ strongly in H, we get

$$\limsup_{\lambda_n \to 0} \psi^*(v_{0,\lambda_n}) = \lim_{\lambda_n \to 0} (v_{0,\lambda_n}, J_{\lambda_n} u_0)_H - \liminf_{\lambda_n \to 0} \psi(J_{\lambda_n} u_0) \le \psi^*(v_0),$$

which together with the lower semi-continuity of ψ^* implies $\psi^*(v_{0,\lambda_n}) \to \psi^*(v_0)$. Hence, by virtue of Lemma 4, we can deduce

$$\limsup_{\lambda_n \to 0} \int_0^T \langle g_{\lambda_n}(t), u_{\lambda_n}(t) \rangle \, dt \leq \int_0^T \langle f(t), u(t) \rangle dt - \psi^*(v(T)) + \psi^*(v_0).$$

We here notice that

$$\begin{split} \psi^*(v(T)) &\geq \sup_{w \in V} \{ \langle v(T), w \rangle - \psi(w) \} =: (\psi|_V)^*(v(T)), \\ v_0 &\in \partial_H \psi(u_0) \subset \partial_V(\psi|_V)(u_0), \\ \psi^*(v_0) &= (v_0, u_0)_H - \psi(u_0) = \langle v_0, u_0 \rangle - \psi(u_0) = (\psi|_V)^*(v_0), \end{split}$$

where $\psi|_V$ denotes the restriction of ψ on V; moreover, we also observe $u(t) \in \partial_{V^*}(\psi|_V)^*(v(t))$, since $v(t) \in \partial_H \psi(u(t)) \subset \partial_V(\psi|_V)(u(t))$. Therefore, by Lemmas 2.10 and 2.11 of [2], we find that

$$\begin{aligned} -\psi^*(v(T)) + \psi^*(v_0) &\leq -(\psi|_V)^*(v(T)) + (\psi|_V)^*(v_0) \\ &= -\int_0^T \left\langle \frac{dv}{dt}(t), u(t) \right\rangle dt. \end{aligned}$$

Thus Lemma 1.3 of [4] and Proposition 1.1 of [12] imply $g(t) = f(t) - dv(t)/dt \in \partial_V \varphi^t(t)$ for a.e. $t \in (0,T)$.

3. Macroscopic Model for Type-II Superconductivity. In 1964, C. P. Bean [6] proposed a macroscopic critical-state model for type-II superconductivity characterized by the following correspondence between the electric field **e** and the current density **j**:

(B)
$$\mathbf{e} \| \mathbf{j}, \| \mathbf{j} \in \begin{cases} 1 & \text{if } |\mathbf{e}| > 0, \\ [0,1] & \text{if } |\mathbf{e}| = 0. \end{cases}$$

Moreover, the following power approximation $(B)_{\sigma}$ is often used in place of (B):

$$(B)_{\sigma} \qquad \mathbf{j} = |\mathbf{e}|^{\sigma - 2} \mathbf{e}$$

with $\sigma \in (1, +\infty)$ enough close to 1, because of the strong nonlinearity of (B).

On the other hand, just as in [9], the dynamics of the electric field $\mathbf{e}(x,t) = (0,0,u(x,t))$ and the current density $\mathbf{j}(x,t) = (0,0,j(x,t))$ in an infinitely long cylindrical type-II superconductor $\Omega \times (-\infty, +\infty)$ can be described by

$$\frac{\partial}{\partial t}j(x,t) - \Delta u(x,t) = f(x,t), \quad (x,t) \in \Omega \times (0,T),$$
(23)

where Ω denotes a bounded domain in \mathbb{R}^2 . Furthermore, the current-voltage law $(B)_{\sigma}$ is reduced into the following 2 dimensional form:

$$j(x,t) = |u|^{\sigma-2}u(x,t), \quad (x,t) \in \Omega \times (0,T).$$
 (24)

In this section, we apply the abstract theory developed in Section 2 to the initialboundary value problem (IBVP), which is obtained by imposing the following nonlinear boundary condition and an initial condition on (23) with (24):

$$\frac{\partial u}{\partial n}(x,t) = -g(x,t)j(x,t), \quad (x,t) \in \partial\Omega \times (0,T),$$
(25)

under the following assumptions:

$$g \in W^{1,1}(0,T; L^{\infty}(\partial\Omega)), \quad g(x,t) \ge g_0 > 0, \quad (x,t) \in \partial\Omega \times (0,T).$$

$$(26)$$

To this end, we reduce (IBVP) into an abstract Cauchy problem in the form of (CP). Put $V := H^1(\Omega)$ and $H := L^2(\Omega)$ equipped with the norms: $|\cdot|_V := |\nabla \cdot|_{L^2(\Omega)} + |\cdot|_{L^2(\partial\Omega)}$ and $|\cdot|_H = |\cdot|_{L^2(\Omega)}$, respectively. Then, since Ω is a bounded domain in \mathbb{R}^2 with smooth boundary $\partial\Omega$, we observe that V is densely and continuously embedded in H. Moreover, V is also continuously embedded in $L^r(\partial\Omega)$ for any $r \in [1, +\infty)$, and $|\cdot|_V$ is equivalent to the norm $\|\cdot\|_V := |\nabla \cdot|_{L^2(\Omega)} + |\cdot|_{L^r(\partial\Omega)}$. Now define $\phi_{\sigma}^t : V \to [0, +\infty)$ and $\psi_{\sigma} : H \to [0, +\infty]$ as follows:

$$\begin{split} \phi_{\sigma}^{t}(u) &:= \frac{1}{2} \int_{\Omega} |\nabla u(x)|^{2} dx + \frac{1}{\sigma} \int_{\partial \Omega} g(x,t) |u(x)|^{\sigma} d\Gamma \quad \forall u \in V, \\ \psi_{\sigma}(u) &:= \begin{cases} \frac{1}{\sigma} \int_{\Omega} |u(x)|^{\sigma} dx & \text{if } u \in L^{\sigma}(\Omega), \\ +\infty & \text{otherwise.} \end{cases} \end{split}$$

GORO AKAGI

Then, we can easily see that $\phi_{\sigma}^t \in \Phi(V)$, $\psi_{\sigma} \in \Phi(H)$ and $\partial_V \phi_{\sigma}^t(u)$ coincides with $-\Delta u$ equipped with the boundary condition (25) in the distribution sense. Moreover, $\partial_H \psi_{\sigma}(u)$ is equivalent to $|u(\cdot)|^{\sigma} u(\cdot)$ in H. Hence (IBVP) is rewritten as

$$(CP)_{\sigma} \begin{cases} \frac{dv}{dt}(t) + \partial_V \phi_{\sigma}^t(u(t)) = f(t), \quad v(t) = \partial_H \psi_{\sigma}(u(t)), \quad 0 < t < T, \\ v(0) = v_0. \end{cases}$$

In order to apply Theorem 1 to $(CP)_{\sigma}$, we prepare the following lemma.

Lemma 6. Suppose that (26) is satisfied. Then, (A1)-(A4) and (A φ^t) are satisfied with φ^t and ψ replaced by ϕ^t_{σ} and ψ_{σ} , respectively.

Proof of Lemma 6. For all $u \in V$, we have, by (26),

$$\phi_{\sigma}^{t}(u) \geq \frac{1}{2} \int_{\Omega} |\nabla u(x)|^{2} dx + \frac{g_{0}}{\sigma} \int_{\partial \Omega} |u(x)|^{\sigma} d\Gamma \geq C\{|u|_{V}^{\rho} - 1\},$$

where $\rho := \min\{2, \sigma\} > 1$. Hence (A1) holds with φ^t and p replaced by ϕ^t_{σ} and ρ , respectively. Moreover, for every $[u, \xi] \in \partial_V \phi^t_{\sigma}$ and $w \in V$, we observe

$$\begin{aligned} \langle \xi, w \rangle &= \int_{\Omega} \nabla u(x) \cdot \nabla w(x) dx + \int_{\partial \Omega} g(x,t) |u|^{\sigma-2} u(x) w(x) d\Gamma \\ &\leq |\nabla u|_{L^{2}(\Omega)} |\nabla w|_{L^{2}(\Omega)} + |g|_{L^{\infty}(\partial\Omega \times (0,T))} |u|_{L^{\sigma}(\partial\Omega)}^{\sigma-1} |w|_{L^{\sigma}(\partial\Omega)} \end{aligned}$$

which implies

$$|\xi|_{V^*} \le C\{|\nabla u|_{L^2(\Omega)} + |u|_{L^{\sigma}(\partial\Omega)}^{\sigma-1}\} \quad \forall u \in V, \ \forall t \in [0,T].$$

Thus (A2) follows with $\varphi^t = \phi^t_{\sigma}$ and $q' = \min\{2, \sigma'\} > 1$.

Now let J_{λ} and j_{λ} be the resolvents of $\partial_H \psi_{\sigma}$ and $\partial_{\mathbb{R}}(\sigma^{-1}|\cdot|^{\sigma})$, respectively. Then, $(J_{\lambda}u)(x)$ coincides with $j_{\lambda}(u(x))$ for a.e. $x \in \Omega$, so $|(J_{\lambda}u)(x)| \leq |u(x)|$ and $|(J_{\lambda}u)(x+h) - (J_{\lambda}u)(x)| \leq |u(x+h) - u(x)|$ for a.e. $x \in \Omega$ (see the proof of Corollary 16 of [8]). Hence it follows that

$$\begin{split} \phi_{\sigma}^{t}(J_{\lambda}u) &= \frac{1}{2} \int_{\Omega} |\nabla(J_{\lambda}u)(x)|^{2} dx + \frac{1}{\sigma} \int_{\partial\Omega} g(x,t) |(J_{\lambda}u)(x)|^{\sigma} d\Gamma \\ &\leq \frac{1}{2} \int_{\Omega} |\nabla u(x)|^{2} dx + \frac{1}{\sigma} \int_{\partial\Omega} g(x,t) |u(x)|^{\sigma} d\Gamma. \end{split}$$

Therefore (A3) is satisfied with φ^t and ψ replaced by ϕ^t_{σ} and ψ_{σ} , respectively. Moreover, since Ω is bounded in \mathbb{R}^2 and, $\partial\Omega$ is smooth, (A4) also holds true.

Let $t_0 \in [0,T]$ and $u_0 \in D(\phi_{\sigma}^{t_0}) = V$ be fixed and define $u(t) \equiv u_0$. We then see

$$\begin{split} \phi^{t}(u(t)) &= \phi^{t_{0}}(u_{0}) + \frac{1}{\sigma} \int_{\partial\Omega} \{g(x,t) - g(x,t_{0})\} |u_{0}(x)|^{\sigma} d\Gamma \\ &\leq \phi^{t_{0}}_{\sigma}(u_{0}) + |g(\cdot,t) - g(\cdot,t_{0})|_{L^{\infty}(\partial\Omega)} \sigma^{-1} |u_{0}|^{\sigma}_{L^{\sigma}(\partial\Omega)} \\ &\leq \phi^{t_{0}}_{\sigma}(u_{0}) + g^{-1}_{0} |g(\cdot,t) - g(\cdot,t_{0})|_{L^{\infty}(\partial\Omega)} \{\phi^{t_{0}}_{\sigma}(u_{0}) + 1\} \end{split}$$

and $|u(t) - u_0|_V \equiv 0$. Hence $(A\varphi^t)$ is satisfied with $\varphi^t = \phi_{\sigma}^t$, $\alpha \equiv 0$, $\beta = g_0^{-1} \int_0^t |\partial_\tau g(\cdot, \tau)|_{L^{\infty}(\partial\Omega)} d\tau$ and an arbitrary number $q \in [0, +\infty)$.

Consequently, we have:

Theorem 2. Suppose that (26) is satisfied and $\sigma \in (1, +\infty)$. Then, for every $j_0 \in \{v \in L^2(\Omega); \exists u_0 \in H^1(\Omega); |u_0|^{\sigma-2}u_0 = v\}$ and $f \in L^2(\Omega \times (0,T)) \cap W^{1,\rho'}(0,T; (H^1(\Omega))^*)$ with $\rho := \min\{2,\sigma\}$, there exists $u : \Omega \times (0,T) \to \mathbb{R}$ such that

$$\begin{split} u &\in L^{\infty}(0,T;H^{1}(\Omega)), \\ |u|^{\sigma-2}u &\in C_{w}([0,T];L^{2}(\Omega)) \cap W^{1,\infty}(0,T;(H^{1}(\Omega))^{*}) \cap L^{\infty}(0,T;L^{r}(\partial\Omega)) \\ for \ any \ r &\in [1,+\infty), \\ \left\{ \begin{array}{l} \left\langle \frac{\partial}{\partial t} |u|^{\sigma-2}u(\cdot,t), w \right\rangle + \int_{\Omega} \nabla u(x,t) \cdot \nabla w(x) dx \\ + \int_{\partial\Omega} g(x,t) |u|^{\sigma-2}u(x,t) w(x) d\Gamma &= \int_{\Omega} f(x,t) w(x) dx, \\ \forall w \in H^{1}(\Omega), \ \ for \ a.e. \ t \in (0,T), \end{array} \right. \end{split}$$

 $|u|^{\sigma-2}u(\cdot,t) \to j_0 \text{ strongly in } (H^1(\Omega))^* \text{ and weakly in } L^2(\Omega) \text{ as } t \to +0.$

REFERENCES

- G. Akagi and M. Ôtani, Evolution equations and subdifferentials in Banach spaces, Dynamical systems and differential equations (Wilmington, NC, 2002), Discrete Contin. Dyn. Syst. 2003, suppl., pp. 11–20.
- [2] G. Akagi and M. Ôtani, Time-dependent constraint problems arising from macroscopic critical-state models for type-II superconductivity and their approximations, Adv. Math. Sci. Appl. 14 (2004), 683–712.
- [3] H. W. Alt and S. Luckhaus, Quasilinear elliptic-parabolic differential equations, Math. Z. 183 (1983), 311–341.
- [4] V. Barbu, "Nonlinear Semigroups and Differential Equations in Banach spaces," Noordhoff, 1976.
- [5] V. Barbu, Existence for nonlinear Volterra equations in Hilbert spaces, SIAM J. Math. Anal. 10 (1979), 552–569.
- [6] C. P. Bean, Magnetization of high-field superconductor, Rev. Mod. Phys. **36** (1964), 31–39.
- [7] H. Brézis, "Operateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert," Math Studies, Vol.5 North-Holland, Amsterdam/New York, 1973.
- [8] H. Brézis, Monotonicity methods in Hilbert spaces and some applications to non-linear partial differential equations, Contributions to Nonlinear Functional Analysis, ed. Zarantonello, E., Academic Press, New York-London, 1971, pp. 101–156.
- [9] A. Bossavit, Modelling superconductors with Bean's model, in dimension 2: Stefan's problem, again., Progress in partial differential equations, Pitman Res. Notes Math. Ser., 314, 1994, pp. 33–38.
- [10] E. Di Benedetto and R. E. Showalter, Implicit degenerate evolution equations and applications, SIAM J. Math. Anal. 12 (1981), 731–751.
- [11] H. Gajewski and I. V. Skrypnik, To the uniqueness problem for nonlinear parabolic equations. Partial differential equations and applications, Discrete Contin. Dyn. Syst. 10 (2004), 315– 336.
- [12] N. Kenmochi, Some nonlinear parabolic variational inequalities, Israel J. Math. 22 (1975), 304–331.
- [13] N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Education, Chiba Univ. 30 (1981), 1–87.
- [14] N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with timedependent constraints, Nonlin. Anal. 10 (1986), 1181–1202.
- [15] E. Maitre and P. Witomski, A pseudo-monotonicity adapted to doubly nonlinear ellipticparabolic equations, Nonlin. Anal. 50 (2002), 223–250.
- [16] K. Shirakawa, Large time behavior for doubly nonlinear systems generated by subdifferentials, Adv. Math. Sci. Appl. 10 (2000), 417–442.

E-mail address: goro@toki.waseda.jp